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Abstract: There are growing demands for condition-based monitoring of gearboxes,
and techniques to improve the reliability, effectiveness and accuracy for fault diagnosis
are considered valuable contributions. Feature selection is still an important aspect in
machine learning-based diagnosis in order to reach good performance in the diagnosis
system. The main aim of this research is to propose a multi-stage feature selection
mechanism for selecting the best set of condition parameters on the time, frequency and
time-frequency domains, which are extracted from vibration signals for fault diagnosis
purposes in gearboxes. The selection is based on genetic algorithms, proposing in each
stage a new subset of the best features regarding the classifier performance in a supervised
environment. The selected features are augmented at each stage and used as input for a
neural network classifier in the next step, while a new subset of feature candidates is treated
by the selection process. As a result, the inherent exploration and exploitation of the genetic
algorithms for finding the best solutions of the selection problem are locally focused. The
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approach is tested on a dataset from a real test bed with several fault classes under different
running conditions of load and velocity. The model performance for diagnosis is over 98%.

Keywords: fault diagnosis; gearbox; vibration signal; feature selection; genetic algorithms;
neural networks

1. Introduction

Industrial environments have constantly increasing requirements for the continuous working of
transmission machines. This is why new proposals for building fault diagnostic systems with low
complexity and adequate accuracy are highly valuable. Invaluable studies to detect gear faults by
using standard diagnostics techniques based on signals have been widely developed [1]. In gear fault
diagnosis, several analysis techniques have been used, such as wavelet transform [2–4], Kalman filtering
analysis [5], particle filtering [6], blind source separation techniques [7] and generalized
synchrosqueezing transform [8], among others techniques. The availability of an important number
of condition parameters that are extracted from rotating machinery signals, such as vibration signals,
has motivated the use of machine learning-based fault diagnosis, where common approaches use
neural networks (NN) and related models, because of the simplicity for developing industrial
applications [9–16]. These approaches have been very useful for implementing condition-based
maintenance (CBM), as is presented in Jardine et al. [17].

Condition parameters are mostly related to time and frequency domains, but parameters from the
time-frequency domain are also used in order to enhance the condition data to be processed by the
diagnosis algorithms. Then, the high dimensionality of the input vector for machine learning-based
diagnosis applications is a problem that should be addressed, because this high dimensionality can lead
to over-fitted models. This is a well-known problem. On the other hand, the failure nature could be
associated with certain condition parameters, and in the case of incipient failures, it is not clear what are
the best condition parameters providing good diagnostic information.

Taking into account the availability of a large number of parameters as condition candidates for fault
diagnosis, the problem of parameter selection is still an open research area in machine learning-based
diagnosis. In most cases, the feature selection process has been treated as a dimensionality reduction
problem by using principal component analysis, multidimensional scaling, factor analysis, projection
pursuit and other linear and non-linear techniques [18]. However, the physical meaning of the
extracted original condition parameters may be lost by creating new artificial features. Some
effort to use dimensionality reduction techniques for finding the best subset of the original features
has been performed in Bartkowiak and Zimroz [19], by using multivariate linear regression and
variable shrinkage.

Feature selection aims to feature elimination to remove irrelevant features, by using wrapper,
filtering or embedded methods [20]. Some heuristic search algorithms can be used for feature
selection in a wrapper approach. The research in Saravanan et al. [12] and Saravanan et al. [13] uses
a decision tree for developing a first approximate diagnostic model, and the features that are
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selected for the decision algorithm are stated as the best input features for the diagnosis model
based on a neural network. On the other hand, genetic algorithms (GA) have been widely used
in wrapper approaches for dimensionality reduction [21]. In that framework, for the diagnosis
of the machinery condition, GA may be used in order to select the best features, aiming
to improve the diagnosis model accuracy. Classically, GA are applied to the whole set of
feature candidates, as is presented in Hajnayeb et al. [10], Samanta [22], Samanta [23] and
Samanta et al. [24]. In such a case, the computational effort to execute the GA and also the effort
to reach the optimal solution may be hard when a high-dimensional space is analyzed.

In order to improve the searching process, stage-based approaches have been proposed for feature
selection. In Karabadji et al. [25], a wrapped approach is presented for selecting the best subset of
features, aiming to improve the performance of the tree-based diagnosis model by using a research
graph. As a result, each possible feature subset is a node of the graph, and the searching space
exploration is performed by using an iterative algorithm that alternates the candidate generation and
evaluation phases. In Rajeswari et al. [26], another stage-based selection is presented by using GA and
a rough set-based approach; in this case, GA operates on the population of independent features that are
generated by a filter approach based on a rough set by evaluating the dependency factor between features.
Zhang et al. [27] presents multiple feature selection models in order to rank the feature candidates,
and each set of candidates is re-ranked by using a weighted voting scheme based on the classifier
performance. In the second stage, the number of re-ranked candidates is minimized by using two wrapper
models. In Li et al. [28], two-stage feature selection has been proposed for fault diagnosis of a gearbox
based on mutual information and GA. The feature candidates have been selected with mutual information
in the first stage; this is a filtering method, and the optimal feature subset is obtained by using GA in
the second stage, this being a wrapper method. In Yang et al. [29], an iterative wrapper approach is
also developed; the main idea is the splitting of the available data into several subsets, and one classifier
for each set of data is proposed. Thereafter, the obtained classifiers are validated on the unbalanced
test dataset, and the classification distributions are normalized and combined. The area under the ROC
curve is calculated as the fitness indices for feature selection, and an algorithm based on GA is used for
feature selection. On the other hand, hybrid approaches, as presented in Yang et al. [30], have been also
proposed to solve the problem of feature selection in the fault diagnosis of rotating machinery. In this
work, the concepts of similarity, feature re-ranking and redundancy evaluation are properly used from
multiple clustering solutions for feature selection.

The previous works show that, nowadays, GA is still a useful approach for feature selection, but
some problems for finding good solutions could arise when a high-dimensionality searching space is
treated. Two problems could be highlighted: (i) GA are highly dependent on the initial conditions;
then, exploration of the solution candidates should be carefully performed; and (ii) the inherent random
nature of the GA could lead to more exhaustive exploration on the solution space, and the convergence
could be slow. In this sense, good results by using GA are based on a balance between exploration
and exploitation.

This work aims to improve the exploration and exploitation during the searching process, in order
to discover the subset of condition parameters providing useful diagnostic information. Exploration is
posed through a multi-stage approach to enhance the capability for showing different subspaces of the
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whole available space. Exploitation is treated by extending the best solution in the previous stage with
additional information related to other solution subspaces in the new stage. The entire set of extracted
condition parameters from the time, frequency and time-frequency domains, called the features for the
diagnosis problem, is split into different disjoint subsets. In each stage of the selection process, the
GA is performed only on a subset, and the selected features extend the previous selected inputs to the
classifier. As a result, the input features are augmented in each stage with the selected features, and these
new augmented features are considering as fixed input to the next stage, where a new subset of feature
candidates is processed by the GA. In this way, the main contribution of our approach aims to discover
the most important features of each subset. This is significant, because the searching space is delimited
in each stage, and as a consequence, the exploration and exploitation for searching the best solution is
improved on a local feature subspace.

A classical neural network is used as a classification model; then, in addition, the optimization process
at each stage is also applied for selecting the best number of hidden neurons. The approach is validated
with data from a test bed that simulates real industrial environments for several fault occurrences under
different running conditions of load and velocity. The classification performance is over 98% with 45%
of the available features. This result is compared to the classical feature selection by using GA on the
whole set of available condition parameters, where classification performance is over 97% with 53% of
the available features. The proposed feature selection is a simple, but useful wrapper approach, according
to the result analysis.

This paper is organized as follows. Section 2 presents methods and materials supporting the proposed
approach. Conceptual foundations on GA and NN are briefly depicted; the details on the experimental
procedure to collect the data and feature extraction process are shown. Finally, the multi-stage feature
selection approach is developed. Section 3 discusses and compares the obtained results regarding the use
of features from time and frequency domains and only features from time-frequency domains, with the
classical one-stage GA algorithm. Additionally, some comparisons and analysis using feature selection
through the importance variables from Random Forest algorithm are also provided in this section.
Section 4 presents the conclusions of this work.

2. Experimental Section

2.1. Theoretical Background

This section presents the basic conceptual foundations on GA as a technique for multi-objective
optimization and NN as a classifier for fault diagnosis. More detailed foundations about these techniques
can be found in the references.

2.1.1. Genetic Algorithms

The GA are probabilistic search algorithms that emulate the biological population evolution of
individuals, by applying operators called genetic operators, allowing recombination of such individuals
in order to strengthen them regarding an indicator of individual quality. Based on biological theories
of genetic inheritance and survival of the best individuals, the GA have been popularly used for solving
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NP-complete optimization problems, and they constitute the central paradigm of evolutionary computing
(EC). The basic algorithm that determines the operation of EC algorithms, including the GA, is shown
in Figure 1. It contains the following key elements [31].

Figure 1. General cycle of the GA.

(1) Individual encoding: In the GA technique, each individual is associated with a structure and a
content. The structure refers to the format, and the content refers to the information provided by
the individual in each component of its structure. In general, an individual Sj is encoded as a binary
string of length n, where each binary element is called a gene. However, individual encoding can
be adapted to the nature of the solutions for the particular problem.

(2) Initial population: This is composed of individuals of the first generation of possible parents. In
this way, the initial population P is the set P = {Sj}, j = 1, ...,m, which can be seen as a binary
matrix, where each row is one individual and each column is the value of the corresponding gene.

(3) Fitness function: The value of the fitness function f , or the evaluation function, is a measure
of each individual performance in the GA. In general, the fitness function f is a mapping f :

P → <, which assigns to each individual a real value according to its performance for solving
the optimization problem. A fitness scaling is performed sometimes to avoid the dispersion of the
function values.

(4) Parent selection: The process for selecting the best individuals for the next generation should be
guided, based on the values of the fitness function. There are different selection mechanisms, most
of them based on the relative probability of the selection pj of an individual Sj .

(5) Genetic operators and reproduction: The reproduction is achieved by applying genetic operators
to produce new individuals with improved genetic material. Usually, the crossover and mutation
operators are applied; however, other operators also exist, and they can be more appropriate in
specific problems.

(6) Population replacement: Replacement strategies should aim to maintain diversity in the
population, as well as to improve the evaluation of the fitness function of the individuals of the
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new population. Once new individuals have been generated, they replace only a part of the parents
for the new generation. Other replacement strategies are the direct replacement, where the children
replace the parents in the next generation, and the elitist replacement, where a fraction of the best
individuals goes directly to the next generation.

GA runs in an iterative way until reaching the best solution according to some stop criteria, and each
iteration executes the cycle in Figure 1. The specification of the GA in our approach is detailed in
Section 2.3.

2.1.2. Artificial Neural Networks

Artificial neural networks or neural networks (NN) are computational information models emulating
biological neural networks by defining non-linear relationships between a set of data called “the inputs”
and “the outputs”. Then, the information processing is given through non-linear functions, and a learning
process is used for adjusting the functions parameters in order to achieve a good explanation between
inputs and outputs. Figure 2 shows the basic architecture of an NN for classification purposes; it is
composed of three layers with neurons: the input layer that is associated with the input features, the
hidden layer with neurons that are associated with n1

j functions j = 1..., J and the output layer with
neurons that are associated with n2

k functions k = 1..., K, each neuron in the output layer proposing
the membership to the class Ck for the input features. There are weighted linkages between neurons in
two successive layers; then, W l is the vector of weights controlling the function mapping from layer l
to layer l + 1. These vectors are properly arranged into the matrix W . In general, for a layer l and
neuron j:

nl
j = f(w

(l−1)
j0 x

(l−1)
0 + w

(l−1)
j1 x

(l−1)
1 + ...+ w

(l−1)
jN x

(l−1)
N ) (1)

Figure 2. Basic architecture of an NN for classification.

Where the vector x(l−1) = (x
(l−1)
0 , x

(l−1)
1 , ..., x

(l−1)
N ) is the output of the previous layer, Nis the number

of neurons in the previous layer, x(l−1)0 is the bias, w(l−1)
ji is a weight, w ∈ <, and f(•) is called the

activation function. Usually, the unipolar sigmoid function is commonly used as the activation function
for each neuron nl

j .
Consider the data with m samples of a couple (xi, yi), i = 1, ...,m; xi is a vector of N features, i.e.,

xi = (xi1, x
i
2, ..., x

i
n), and yi = (yi1, y

i
2, ..., y

i
K) is the output vector where yik = 1 indicates that the vector
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of features xi is associated with the class Ck, and yik = 0 otherwise. Most of the problems in data-driven
multi-class classification, as fault diagnosis, may be solved with a classical feedforward NN by using the
backpropagation algorithm with the gradient descent method for adjusting the vector of weights W l in
order to minimize the cost function J in Equation (2) [32,33]:

J(W ) = − 1

m

[
m∑
i=1

K∑
k=1

yik log(hW (xi)k) + (1− yik) log(1− hW (xi)k)

]
(2)

where hW (xi)k is the output function of the neuron k in the output layer.
Given the dataset withm samples (xi, yi), the algorithm for training an NN for classification purposes

is widely known, and it is summarized as follows, [34]:

(1) Randomly initialize the weights of each layer W l, l = 1, ...L, where wji is the weight from the
neuron n(l−1)

i to the neuron nl
j .

(2) Compute the feedforward propagation to obtain hW (xi)k.
(3) Compute the cost function J(W ).
(4) Run the backpropagation algorithm to compute ∂

∂wl
ji
J(W ).

(5) Use the gradient descent method for adjusting the weights wl
ij according to the equation

wl
ij := wl

ji − α ∂
∂wl

ji
J(W ).

In our approach, NN is used as the diagnoser, and the precision of the diagnostic result that is
associated with each individual is used as the input for processing the fitness function in GA. The
details about coupling NN to the optimization problem of feature selection by using GA is presented in
Section 2.3.

2.2. Measurement Procedure and Feature Extraction

This section presents the experimental setup to build the data matrix that will be used in our
approach. Our test bed in Figure 3 has been designed to simulate real faults that can occur in industrial
environments. The rotation motion of the equipment is generated by a 1.1-kW motor powered by
three-phase 220 V at 60 Hz with a nominal speed of 1650 rpm. The torque motion is transmitted
into a gearbox, where several gears fault configurations are assembled. At the end of the gearbox
shaft, the torque is transmitted to a pulley, which is part of the magnetic brake system. The magnetic
brake function is to control different loads according to the measurement settings. A variable-frequency
drive was used to generate different speeds. Tables 1 and 2 show the details of the different gear faults
under study.

The vibration analyzer and digital balancer Digivive MX-300 was used to collect the raw signals; the
data acquisition software was performed by Digivibe MX 5.14. In order to record the spur gear vibration
signal, the accelerometer with a sensitivity of 330 mV/g was vertically allocated. The measurements
were conducted at different speeds (300, 600, 900, 1200 and 1500 rpm) and with different break loads
of about 10%, 50% and 90% regarding the maximum power of the motor. The total number of measured
signals, with different measurements settings, was up to 1200 signals (8 gear faults, 3 loads, 5 speeds,
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10 measurements repetitions for each case on 2 s, with 1-s interval between samples). The sampling
frequency was about 11,025 Hz.

Figure 3. Vibration analysis laboratory at the Universidad Politécnica Salesiana in
Cuenca, Ecuador.

Table 1. Simulated gear faults.

Label Description

f0 Normal
f1 Gear crack 0.5 mm
f2 Gear tooth breakage 10%
f3 Pinion pitting
f4 Pinion with face wear 0.5 mm
f5 Gear misalignment
f6 Gear tooth breakage 50%
f7 Gear tooth breakage 100%

The signal processing for extracting the most common condition parameters was performed in
MATLAB c©. Each raw vibration signal was treated to compute condition parameters from the time,
frequency and time-frequency domains. In particular, wavelet packet decomposition (WPD) was used
to extract condition parameters from each signal at the last level of the decomposition. Several works in
the literature propose combining a large number of condition parameters as feature candidates, because
different faults could have different effects on certain condition parameters. In the case of incipient
failures, it is not clear what are the best condition parameters providing good diagnostic information.
The next sections describe the feature extraction procedure for each domain, and it is summarized
in Figure 4, for some vibration signals. At the end of the process, we have a data matrix with
1200 rows and 359 columns; each row is a sample, and each column is the value of the corresponding
condition parameter.
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Table 2. Gear faults.

Image Description

Gear crack 0.5 mm

Gear tooth breakage 10%

Pinion pitting

Pinion with face wear 0.5 mm

Gear misalignment

Gear tooth breakage 50%

Gear tooth breakage 100%

Figure 4. Feature extraction process from the vibration signal.
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2.2.1. Condition Parameters on the Time and Frequency Domains

Nine classical condition parameters were obtained by statistical analysis from the time domain,
such as: mean, variance, standard deviation, skewness, kurtosis, root mean square (RMS), maximum
value, crest factor and energy. In the case of the frequency domain, the fast Fourier transform (FFT)
is applied to the time signal, and ten condition parameters are calculated, such as: mean, variance,
skewness, kurtosis, central frequency, root mean square (RMS) and the standard deviation. Equations for
computing these parameters can be found in [35,36]. Additionally, another three condition parameters in
Equations (3)–(5) have been included, denoted as CP1, CP2 and CP3 [35]:

CP1 =

∑K
k=1(fk − FC)3s(k)
K(STDF )3

(3)

CP2 =
STDF

FC
(4)

CP3 =

∑K
k=1(fk − FC)

1
2 s(k)

K
√
STDF

(5)

where s(k) is the spectrum for k = 1, ..., K, K is the number of the spectrum lines, fk is the
frequency value of the k-th spectrum line, STDF is the standard deviation for frequency and FC is the
frequency center.

Another condition parameter on the frequency domain is the RMS value on a specific frequency band.
The rationale for using frequency bands is because a fault can generate clear changes in the vibration
amplitude in a band where, usually, this amplitude is non significant in the case of no faults. In this work,
the RMS value on twenty frequency bands on the whole frequency range of 3660 Hz was calculated, each
band a size of 183 Hz; however, different sizes can be analyzed to identify more specific bands providing
diagnostic information.

2.2.2. Condition Parameters on the Time-Frequency Domain

The time raw signals were used as input data for the wavelets analysis, in order to obtain the energy
of each wavelet coefficient, which are used as features in the diagnosis problem. Wavelet transform
(WT) is a powerful tool that has attracted great attention in several fields, such as engineering, and,
particularly, as a powerful analysis instrument for gear fault detection and diagnosis [3,4,37–39]. The
analysis presented in Yan et al. [38] provides an extensive overview of some of the latest efforts in the
development and applications of WT for fault diagnosis in rotating machinery. In the WPD framework,
compression and de-noising ideas are exactly the same as those developed in the WT framework. The
only difference is that WPD offers flexible analysis, because the details, as well as the approximations of
the analyzed signal are split into tree-based decomposition. Figure 5 shows the decomposition of some
raw signals until Level 3; the signals at the last level are the wavelet coefficients.

The wavelet function is designed to keep a balance between the time domain and the frequency
domain. From the point of view of diagnosis, wavelet coefficients can have important diagnostic
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information to be exploited, and it could be different from the information in the RMS values of the
frequency bands, because the information on the time domain is completely lost by the FFT analysis.
More details about the use of the WT and WPD for fault diagnosis in rotating machinery are in [38,40].

Figure 5. The wavelet packet decomposition.

Five mother wavelets are used for extracting condition parameters for our approach:
Daubechies (db7), symlet (sym), Coifier(coif4), biorthogonal (bior6.8) and reverse
biorthogonal (rbior6.8). In a wavelet analysis, different combinations of bases could produce a
more desirable representation for a particular signal, as different mother wavelets applied to the same
signal could produce different results. There are no standard or general methods to select mother
wavelets. The intention to use several wavelets is to find out the most suitable wavelet for our
application. The coefficients are collected from Level 6 for each mother wavelet; then, 26 coefficients
are obtained. The energy has been calculated for each coefficient, and they complete the feature vector
for diagnosis.

2.3. Multi-Stage Feature Selection Based on GA with NN Classifiers

This section presents the multi-stage feature selection approach and the details about the GA design.
Figure 6 shows the architecture for implementing our approach. After developing the feature extraction
in Section 2.2, a data matrix with 1200 samples (150 samples for each fault mode) and 359 condition
parameters from the time, frequency and time-frequency domains are the input for the algorithm.

Firstly, the entire set PS of the available condition parameters cp is defined,
PS = {cp1, ..., cpi, ..., cpn}. This set is split into different disjoints subsets PSk = {cpkj}, that
is PS = PS1∪̇PSk∪̇...∪̇PSl, k = 1, ..., l, where |PSk| = N and

∑l
k=1 |PSk| = n. At each stage, one

subset is selected to be processed by the GA according to the classical cycle in Figure 1. The details of
each element of the algorithm are given in Section 2.3.1. The population is proposed from the available
condition parameters in the selected subset PSk, and the individuals matrix is treated. A data matrix
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with samples and the corresponding condition parameters are created for each individual to train an
NN-based classifier. The performance for each individual is computed from the diagnostic precision
of its corresponding NN, by using a validation dataset. Then, for each stage, the training phase for all
NNs is performed in the classical cycle of GA until reaching the stop criteria. Once the best individual
is selected, the subset of selected condition parameters is defined, and they can be considered as a
partial fixed input to the classifier; or, also, they can be considered to propose the new population in the
next step, according to the decision of the expert. For the next stage, the selected condition parameters
extend the current partial fixed input in the previous step, and another subset PSk is processed. All of
the subsets PSk that have been processed in previous stages are not taken into account in the next ones.

Figure 6. Multi-stage approach for feature selection in fault diagnosis.

The selection process in Figure 6 runs in an iterative way until processing all of the subsets PSk. At
the end of this process, the set of the selected features is obtained, and the diagnosis model based on NN
is reached.

2.3.1. GA Design

The GA was designed as follows:

(1) Individual encoding: Two partial solutions are encoded in this approach: the features to be selected
and the number of hidden neurons in the NN. Figure 7 shows the encoding for only one hidden
layer. In this way, every possible solution Sj is a vector with the first chain of bits s1 encoding
the condition parameters in the subset PSk, where the bit bj , j = 1, ..., N , can be bj = 1, which
indicates the selection of the condition parameter cpkj , or bj = 0 otherwise. The second chain of
bits s2 is composed of six bits vj , 0 or 1, encoding the binary number to propose 63 hidden neurons
at most.
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Figure 7. Individual encoding.

(2) Initial population: At each stage, a population P from the set PSk is generated with random
selection of 0 or 1 for each bit bj and vj .

(3) Fitness function: The performance of the classifier in the training and test phases is based on the
mean square error value that is defined in Beleitesa et al. [41].

(4) Parent selection: Firstly, fitness scaling based on rank was used for defining the raw fitness value
over a suitable range [42]. According to this scaling, an individual with a lower value of raw fitness
is assigned to a higher value of scaling fitness; consequently, the individual has a higher probability
to be chosen as a parent by the selection function. The rank is a function rank : f → N ,
which sorts individuals from 1 to N based on the best fitness value (lower value of the fitness
function). Once the individuals are ranked, their new fitness franked is recalculated according to
Equation (6):

franked = p− 2
(r − 1)(p− 1)

Ps − 1
(6)

where r is the rank of the individual, p is the desired selective pressure and Ps is the population
size. The selective pressure is the probability that the best individual is selected regarding the
average selection probability of the remaining individuals. The rank-based fitness scaling allows a
selective pressure between about [1.0, 2.0]. The uniform stochastic selection method was applied
in this approach:

(a) Determine the cumulative probabilities qi based on the value franked of each individual, as
follows:

q0 ← 0

for i = 1, ..., N ,
qi ← qi−1 + fSi

ranked

/∑N
j=1 f

Sj

ranked

end
(b) Select K parents, in the following manner:

For i = 1, ..., K,
r ← random(0, qN)

parenti ← Si if qi−1 < r < qi

end

(5) Genetics operators: Crossover and mutation operators were applied. The crossover fraction was
set at 80%, that is the number of children that will be obtained from crossover. The crossover point
selection was performed by applying a random scattered selection, as follows:

(a) Select Father 1
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(b) Select Father 2
(c) Generate a random binary vector v of N bits, that is vi = 0 or vi = 1

(d) If vi = 1,

i. Gene i of Parent 1 is preserved,
otherwise,

ii. Replace the gene i of Parent 1 with the gene i of Parent 2.

The 20% of the remaining population will be obtained by mutation, with a mutation rate of
0.05 for each gene of the selected father.

(6) Parent replacement: A direct replacement mechanism was used; 10% of the current population
was selected by elitism, and they will be part of the next generation. The remaining individuals
are replaced according to the fraction of children obtained by crossover and mutation.

(7) Stop criteria: The maximum number of generations, the cycles of GA in each stage, was selected
as the stop criteria.

3. Results and Discussion

The proposed multi-stage selection approach was performed on the data matrix in Section 2.2. Each
column of this matrix is the value of its corresponding condition parameter on the time, frequency and
time-frequency domains. The 70% of the available samples was taken as the training set; 15% was
assigned to each set for validation and testing. The validation set is used during the training phase for
the NN, and the test set will be used for testing the performance of the final classifier at each stage, as
presented in Section 3. A classical three-layer NN was used, as is illustrated in Figure 2.

At first, available conditions parameters cp define the set PS, with n = 359. Two disjoint sets PS1

and PS2 are proposed, each one with condition parameters cpkj from the time and frequency features for
k = 1 and the time-frequency features for k = 2.

The multi-stage selection approach ran in three stages as follows:

(1) First stage: The subset PS1 was processed at first, |PS1| = 39 (see Table 3). The initial population
was 20 individuals; then, a binary matrix with 20 rows and 45 columns is defined, and 20 data
matrices for training and validation are created for each individual. After the selection process by
using GA, 18 features are selected with 43 hidden neurons. These features are fixed inputs for the
NN-based classifier in the second stage.

(2) Second stage: The subset PS2 was processed at this stage, |PS2| = 320 (see Table 3). At this
stage, the selection process is addressed for detecting the relevance of the condition parameters
from each wavelet family. In this sense, the partial solution related to the input features is encoded
as a binary sequence of five bits, where bi = 1 indicates that all of the energy parameters from
wavelet family coefficients are selected as inputs, and bi = 0 indicates that all parameters are
excluded. The initial population was 20 individuals; then, a binary matrix with 20 rows and
11 columns is defined, and the corresponding data matrices for training and validation are created
for each individual. The selection process only runs on the partial inputs to the NN that are being
optimized. Finally, all parameters from wavelet family rbior6.8 are discarded, and 30 hidden
neurons are selected. At this stage, according to the decision of the user, the selected condition
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parameters are not taken for extending the previous fixed inputs (18 features in the first stage),
and a new subset PS3 containing parameters from the remaining wavelet families is created. This
subset will be treated in the third stage.

(3) Third stage: The subset PS3 was processed at this stage, |PS3| = 256 (see Table 3). The initial
population was 100 individuals; then, a binary matrix with 100 rows and 262 columns is defined,
and the corresponding data matrices for training and validation are created for each individual.
The selection process runs on the partial inputs to the NN. As a result of the selection process,
144 parameters are selected and accepted to extend the previous 18 fixed inputs. The proposed
number of hidden neurons was 36. All subsets PSk have been processed, and the multi-stage
process is completed.

The final set of classifier inputs, that is the features for the diagnostic problem, is composed of
162 features with 36 hidden neurons. This multi-stage process is illustrated in Figures 8 and 9, showing
the fitness function evolution. The fitness value was improved from 0.016958 in the first stage to
0.00488668 in the third stage. The best set of the selected features is summarized in Table 4.

Figure 8. Case study: Final results.

Table 3. Sets of the initial population. db7, Daubechies; sym3, symlet; coif4, Coifier;
bior6.8, biorthogonal; rbior6.8, reverse biorthogonal.

Number of Stages Number of Features Condition Parameters

1 39 20 RMS values from frequency bands + 10 from the frequency domain
+ 9 from the time-domain

2 320 energy from wavelets coefficients (db7 + sym3 + coif4 + bior6.8 + rbior6.8)
3 256 energy from wavelets coefficients (db7 + sym3 + coif4 + bior6.8)
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Figure 9. Fitness function performance.
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Table 4. Best individual by using multi-stage selection.

Parameters Total Number Description

RMS from frequency bands 12 −183 Hz (1st band)
733 Hz to 915 Hz (5th band)

915 Hz to 1098 Hz (6th band)
1281 Hz to 2702 Hz (8th band to 14th band)
2745 Hz to 3111 Hz (16th band to 17th band)

Frequency 2 Standard deviation
Skewness

Time 4 Mean
Standard deviation
Root Mean Square

Crest Factor
Energy from Wavelets 144 36 coefficients from db7

coefficients 37 coefficients from sym3
35 coefficients from coif4

36 coefficients from bior6.8

This section presents the results after applying the proposed multi-stage feature selection. The
proposed classifier at each stage is evaluated on the data in the test set. Figure 10 illustrates the sequence
of the obtained confusion matrix; there are ten misclassified samples in the first stage, four misclassified
samples in the second stage and only two misclassified samples in the third stage. The classical F1-score
is used as metric to measure the performance of the classifiers. Table 5 shows the final results where the
F1-score is improved from 0.9444 to 0.9889. This result shows that by aggregating new selected features
and by adjusting the number of hidden neurons at each stage, the performance of the NN-based classifier
is improved. Moreover, the use of only the time and frequency condition parameters is not enough to
obtain a good performance in classification, as highlighted by the result in the first stage.

Figure 10. Confusion matrix for the test set, at each stage.
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The previous results are compared to the classical GA-based feature selection on the entire set of
available condition parameters, also considering the tuning of the hidden neurons’ number. The GA was
applied on the set PS; 193 condition parameters were selected with 50 hidden neurons and F1 = 0.9778.
The reported result in Stage 3, by previously eliminating the parameters from the rbior6.8 wavelet family
(see Table 5), is better than the obtained one from the entire set PS.

Table 5. Classifier performance by using multi-stage selection.

Number of Number of Number of Available Number of Number of F1-Score
Stages Fixed Features Initial Features Final Features Hidden Neurons

1 0 39 18 43 0.9444
2 18 320 274 30 0.9778
3 18 256 162 36 0.9889

One additional experiment was developed to show the rationale of the individuals encoding in the
second stage of our approach. One new initial set with 320 features from time-frequency data (by using
the wavelets families db7, sym3, coif4, bior6.8 and rbior6.8) was treated by the classical GA, including
the tuning of the hidden neurons’ number. As a result, 156 condition parameters were selected with
63 hidden neurons, and F1 = 0.9611. This result proposes a large number of hidden neurons regarding
the proposed ones in the second stage, and the performance is not better than the result in the second
stage, even considering condition parameters from the wavelet family rbior6.8. Table 6 summarizes the
experiments by using classical GA-based feature selection, and by comparing to Table 5, the proposed
multi-stage approach using GA is more useful than the classical approach.

Table 6. Classifier performance by using classical feature selection with GA.

Number of Number of Number of Precision Sensibility F1-Score
Initial Features Final Features Hidden Neurons

320 156 63 0.9611 0.9611 0.9611
359 193 50 0.9778 0.9778 0.9778

The results obtained with the GA-based multi-stage approach for feature selection was compared to
the selection through the random forest (RF) algorithm. RF is an algorithm based on decision trees that
uses a bagging strategy for improving the variance by decreasing the correlation between the trees. In
RF, k decision trees are built and trained with bootstrap sample versions of the original training data.
Then, given a new input, the estimated class is obtained from a voting process that is executed over the
prediction given by each tree [43]. This algorithm is also suitable for obtaining the most representative
attributes, since each decision tree computes the contributed information by each attribute to the classes.
Therefore, in RF, the information of each attribute over all of the trees can be averaged in order to rank the
important variables. The information degree based on entropy is widely used for ranking the variables.
If the information degree is high, the attribute is more significant; then, RF is used as the feature
selector [44].

Figure 11a shows the importance variables for our case study, over the entire set of 359 features. The
RF was run with 800 trees, and the performance for the cumulative out-of-bag error during the training
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is presented in Figure 11b. Out-of-bag error is a measure of the classification performance calculated
with the samples that are out of the bootstrap samples used for growing each tree. In order to compare
to the results in Tables 5 and 6, we have selected the same number of features that have been selected by
the multi-stage approach (162 features; see Table 5) and the best selection with the classical approach by
applying GA over the entire set of 359 attributes (193 features; see Table 6). Additionally, we have also
analyzed 6, 31 and 88 features with the information degree greaterthan 0.5, 0.4 and 0.3, respectively (see
Figure 11a). On the other hand, because the RF was applied over the entire set of features, we have taken
the number of neurons in Table 5 (50 hidden neurons) as a reference in the next experiments. Then, we
have run two experiments with 40 and 60 hidden neurons, respectively.

Table 7 shows the precision in classification for the test set, with the selected features by RF, including
the entire set of 359 features. At first result, NN needs more than 40 hidden neurons to improve the
classification precision with the features selected by RF. Furthermore, the precision obtained with the
best 162 features with our approach is better than the results with 162 features in Table 7. The same
result is observed with 193 features. In general, for this case study, the results with the multi-stage
approach using GA, even with the classical approach, are better than the results with RF-based feature
selection. The selection of the best features and the best number of hidden neurons in NN applications
is a classical problem that is analyzed simultaneously. The best selection of both components leads to
the good performance of NN-based classifiers. The features that have been selected by the RF algorithm
could need more analysis for setting the best number of hidden neurons, in the context of using NN.

(a) (b)

Figure 11. (a) Importance variables computed by the RF algorithm; (b) out-of-bag error in
the training phase.

Table 7. Classification performance by using RF-based feature selection and the
NN-based diagnoser.

Number of Features
Precision with Precision with

40 Hidden Nodes 60 Hidden Nodes

6 0.5000 0.5185
31 0.8278 0.8284
88 0.9037 0.9111

162 0.9389 0.9593
193 0.9481 0.9585
359 0.9481 0.9593
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Table 8 presents the selected features with RF and the corresponding number of coincident features
by using the multi-stage approach with GA. We can see that RF has selected 23 coefficients from the
mother wavelets “rbior6.8” and no features from the time domain. This result is quite different from the
results with our multi-stage approach, which has discarded the coefficients from “rbior6.8” and selected
four condition parameters of the time domain. RF has selected the same number of 12 frequency bands,
but only eight coincident coefficients. In the frequency domain, only the standard deviation has been the
selected feature. Finally, 22 coefficients have been selected by the two methods from each coincident
mother wavelet.

Previous results show that both methods produce different selections, and they are compared only
based on their performance. Some aspects can be discussed in order to establish some analogies and
differences between them. Feature selection with RF is an attractive method, because it is based on a
metric that is easily calculated with low computational effort, regarding the approaches based on GA.
The metric value is estimated from the out-of-bag samples, and the goodness of this value depends on
the exhaustive search to find the best disjoint regions associated with a class, over a subset of features
selected at random for each tree. In this sense, the RF method performs a random process for selecting
features, like the process performed by the GA in a classical manner. Our multi-stage approach differs
from the procedure in RF, because it aims to provided a random search over a refined subset of features,
by applying genetic operators that are more sophisticated random operations than those ones applied
in RF.

Table 8. Best 162 features selected by RF.

Parameters Total Number Description Number of Coincident Parameters

RMS from frequency bands 12 2nd band 0
5th band to 7th band 2

9th band 1
11th band to 17th band 5

Frequency 1 Standard deviation 1
Time 0 ——– 0

Energy from Wavelets 149 39 coefficients from db7 22
coefficients 39 coefficients from sym3 22

24 coefficients from coif4 22
24 coefficients from bior6.8 22
23 coefficients from rbior6.8 0

4. Conclusions

In this work, a multi-stage feature selection approach by using GA has been proposed for designing
fault diagnosis models. The approach aims to select, in each stage, the best features from a subset of
candidate features that improve classification metrics on the diagnostic model. The selected features are
considered as a partial input in the next stage, while a new subset is treated by the GA. As a result, the
input features to the classifier are augmented at each stage with a partial solution of the optimization
problem. With this approach, we aim to improve the exploration in the search of the optimal solution
by analyzing local subspaces of the entire available space. Moreover, exploitation is also improved by
extending the best solution in the previous stage with additional information in the new stage.
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The case study is the feature selection for fault diagnosis of a spur gearbox, where there is a large
number of condition parameters as feature candidates. The selection of the parameters containing
adequate diagnostic information is a very sensitive problem for implementing diagnosers with low
complexity and high precision in industrial supervision applications.

The experimental results for this case study show interesting elements for fault diagnosis: (i) the
use of the multi-stage approach improves the F1-score of the diagnostic model regarding the classical
approach considering the entire set of available features; in this case, the multi-stage approach proposes
162 features and 36 hidden neurons with an F1-score over 98.9%; the classical approach proposes
193 features and 50 neurons with an F1-score over 97.8%; (ii) the use of only the time and frequency
condition parameters is not enough for obtaining a good performance in classification; and (iii) energy
from wavelets coefficients, as condition parameters, improves the classification performance regarding
the use of the time and frequency condition parameters. Comparison to the results by using RF-based
feature selection shows that GA is still a good tool for optimizing search processes, and it can be
implemented under new approaches to improve its performance.

Our framework is a general approach that can be applied to several case studies when a database with
an adequate number of samples for NN-based classifiers is available. From the point of view of fault
selection, in this case study, it was found that the feature candidates from the rbior6.8 wavelet family do
not improve the useful diagnostic information. These results can lead to a study of the physical meaning
of relevant condition parameters for fault diagnosis in spur gears.
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