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Abstract: A major problem related to chronic health is patients’ “compliance” with new
lifestyle changes, medical prescriptions, recommendations, or restrictions. Heart-failure
and hemodialysis patients are usually placed on fluid restrictions due to their hemodynamic
status. A holistic approach to managing fluid imbalance will incorporate the monitoring
of salt-water intake, body-fluid retention, and fluid excretion in order to provide effective
intervention at an early stage. Such an approach creates a need to develop a smart device
that can monitor the drinking activities of the patient. This paper employs an empirical
approach to infer the real water level in a conically shapped glass and the volume difference
due to changes in water level. The method uses a low-resolution miniaturized camera to
obtain images using an Arduino microcontroller. The images are processed in MATLAB.
Conventional segmentation techniques (such as a Sobel filter to obtain a binary image) are
applied to extract the level gradient, and an ellipsoidal fitting helps to estimate the size of the
cup. The fitting (using least-squares criterion) between derived measurements in pixel and
the real measurements shows a low covariance between the estimated measurement and the
mean. The correlation between the estimated results to ground truth produced a variation of
3% from the mean.

Keywords: fluid level measurement; fluid monitoring; fluid imbalance; camera vision;
chronic patients
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1. Introduction

The comorbidities associated with the circulatory system of HF and hemodialysis (HD) patients
make them prone to fluid imbalance [1–3]. In the case of HD patients, fluids are restricted to 1L per
24 h to minimize fluid accumulation between two consecutive dialysis sessions. The amount of fluid
accumulated can be estimated by taking the patient’s weight before dialysis and subtracting the weight
at the end of the previous dialysis session; this is also called inter-dialysis weight gain (IDWG). High
IDWG can lead to symptoms of fluid overload, such as dyspnea, pulmonary edema, decreased appetite,
pain or discomfort. High IDWG is also associated with lower overall survival in this patient group.
Multiple factors influence the adherence to fluid restriction, such as thirst, personal habits, and social
factors. Only 30%–60% of the HD patients are able to adhere to their fluid restriction.

Nonadherence to dietary and fluid restrictions is a common problem in HD or HF patients (amongst
others) and is associated with increased morbidity and mortality. Research on nonadherence is associated
with inconsistencies in definitions and invalid measurement methods, such as self-reporting. Further
research is needed to validate measurement methods and to establish clinically relevant operational
definitions of nonadherence [4]. A literature review revealed that more research is needed into the effect
of psychosocial, behavioral, and physiological factors that affect adherence [5]. A review in [6] shows
the effects of thirst, lifestyle symptoms, and effective interventions in terms of relieving troublesome
symptoms in patients. Social factors related to drinking behavior are also difficult to capture. We
hypothesize an approach to improve adherence by enriching drinking behavior with information on
body fluid retention and fluid excretion. Body fluids can be measured using either body weight or body
composition measurement (BCM). While it is challenging to measure fluid excretion in HF patients, in
HD patients, fluid is removed during dialysis and can therefore be monitored. Measuring fluid intake
remains a challenge due to the diverse range of scenarios of dietary and fluid intake. There are new
sensorized devices emerging with the purpose to track fluid intake. Obli [7] is designed to track water
intake from a stationary bottle. My Vessyl [8] is another device, which was designed for people who like
to keep their vessel close by. To make it possible for a user to monitor his or her drinking behavior using a
portable device while allowing for diverse applications—with a preferred cup, for home and ambulatory
use—we conceptualize a small instrument that can be clipped onto the glass. We use a camera clipped
to the glass to estimate the amount of liquid. With the monitoring technology, we hope to capture the
user’s micro behavioural pattern to intervene in an integrated and smart way. This can hopefully help to
inform the user, reduce thirst, and improve adherence.

In this paper, we present an empirical approach that involves using a camera to infer the real level of
water and the change in volume in a glass, possibly due to drinking. Firstly, we present the state-of-the-art
devices, then we describe the general approach and assumptions, followed by a feasibility study. Finally,
the method is described and the inferred results are presented.

2. State-of-the-Art

We present a survey that identifies the obvious sensor technologies that are applicable to estimate the
liquid volume change in a container or vessel used for drinking. We employ three criteria to describe and
compare the suitability of the method from technology and user perspectives. These criteria include:
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• Technology Application and Accuracy—refers to how the sensor is relevant or applicable to
different vessels or shapes in estimating the change in the liquid volume. Examples of the shapes
are shown in Figure 1.
• Technological feasibility—refers to the technological challenges, and the integration possibilities

of the sensor device.
• Human factor—refers to the factors affecting the use of the device from the users’ perspective.

These factors may include, ease of transportation, the ease to attach onto the vessel, cleanability,
and the ability to use for ambulatory or stationary situations.

Figure 1. Shapes of drinking vessels.

The sensor technologies mentioned on Table 1 can be adopted for different scenarios according to
the user’s needs. For example, the weighing method is more suitable for home use wherein the user has
more control over the movement and positioning of the cup. The clip-on methods—using CMOS camera
or the proximity sensor—can also be useful for home use if it can be attached in a simple and fast way.
The band or clip-on methods seems reasonable for outdoor usage (i.e., at stand-up parties, drink at the
bar, etc.). The band and clip-on devices may allow the user to move freely with the cup and to continually
track the liquid volume while holding and refilling the cup. The flow method may be more suitable for
sport or dynamic situations (i.e., cycling) since it allows the user to drink directly from the bottle.

Fluid consumption for HF or HD patients mostly occurs at home and occasionally at social events.
HD patients undergo dialysis 2–4 times per week. Each dialysis session may last for up to 4 h. During
dialysis, drinking also occur that should be included in the monitoring. The clip-on methods have
potential to be portable for easy transportation to be occasionally useful for out of home use. It will
allow the user to use his or her preferred drinking cup and can be applied in stationary or ambulatory
situations. This makes the clip-on method a good modality for monitoring drinking for these patients.
In this paper, we focus on using a low-resolution camera that can be clipped unto a conically shaped
glass to continuously monitor the changes in the liquid volume.
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Table 1. An overview of sensor technologies applicable to monitor water/fluid intake.

Sensor Technology/Method Example Product/Image
Technology Application
and Accuracy

Technological Feasibility Human Factor

Immersion Method

Liquid pressure transducer:

Measures the force required to
stop the fluid from expanding.

The sensor can measure depth
accurately in tanks and basins.
It is not suitable in small vessels
(as shown in Figure 1) due to
its bulkiness.

The technology is well applied in
the industry. They are not so
miniaturized, therefore, difficult
to integrate in the vessels;
nevertheless, integration within
the vessel might be required.

The sensor requires contact with
the liquid to measure. This can
make it difficult to clean.

The sensor may be required to be
integrated in the vessel which
makes it bulky to transport.

When integrated, it can be
suitable for stationary and
ambulatory use.
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Table 1. Cont.

Sensor Technology/Method Example Product/Image
Technology Application
and Accuracy

Technological Feasibility Human Factor

Clip-on Method

Proximity sensor (i.e., ultrasonic
distance sensor):

Measures the distance from the
surface of the liquid to the top of
the container.

Trago [9]: Is a design that
incorporates a proximity sensor
within a bottle cover. It detects
the distance from the bottle cover
to the surface of the contained
liquid. The prototype is in
development phase
on Kick-starter.

The sensor can be made to fit on
all forms shown in Figure 1.
However, the shape of the vessel
should be known and calibrated
accordingly to assure accuracy of
the measurements. Better
accuracy is achieved when the
container has a regular form.

The sensor is required to be
miniaturized to be integrated into
the vessel cover or as
a clip-on device.

The perpendicular alignment of
the sensor is also very important
to avoid diagonal readings, which
makes it challenging.

It can be contactlessly used as a
clip-on or a bottle cover that can
be easy to attach.

The user will need to specify the
shape of the vessel for proper
calibration.

It will be easy to clean as a
separate device.

When designed as a clip-on
device, it should not be in the way
of drinking and should not be
contaminating.

The device can be made portable
as it depends on the design.
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Table 1. Cont.

Sensor Technology/Method Example Product/Image
Technology Application
and Accuracy

Technological Feasibility Human Factor

Clip-on Method

CMOS Camera:

The camera is used to capture
images within the vessel to
approximate the liquid surface
area and the change in
the liquid level.

Camera on Vessel: The design
incorporates a camera that can be
clipped on the edge of a vessel
type 1, 2, 4, 5 as shown in
Figure 1. (This paper present the
development of this device type)

Calibrated to measure the change
in liquid volume for a single cup.

It requires image processing and
geometric conversions.

The image quality is also
dependent on the
lighting conditions.

Miniaturization is desired.

When miniaturized, it can be used
without obstructing drinking.

When miniaturized, it can easily
be transported.

It is portable for outdoor use.

It provides the possibility to
identify the content of the glass
(i.e., water, milk, etc.).
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Table 1. Cont.

Sensor Technology/Method Example Product/Image
Technology Application
and Accuracy

Technological Feasibility Human Factor

Band Method

Capacitive level sensor:

Capacitive level sensors consist of
two plates. The capacitive value
between the plates will change
depending on the liquid level in
the vessel. The change in value
also depends on the dielectric
property of the liquid.

Capacitive Sleeve: With this
design, the capacitor plates are
integrated into a sleeve-like
design. It measures the capacitive
liquid level from the outside walls
of the container. Device is in
research phase.

The sleeve can easily be wrapped
around a regularly shaped/
elongated vessels such as 1–3, 5
in Figure 1.

Capacitive level sensing is
accurate depending on the area of
the plates and the dielectric
material. Water has a high
dielectric constant that is highly
sensitive to the change in liquid
level. While, coffee has a low
dielectric constant that is
less sensitive.

Capacitive level sensing is well
known and applied in the industry
that can be applied in the design
of the capacitive plate.

A major challenge is to shield the
capacitive field from external
capacitance such as touch. This
will allow proper measurements.

The technology can only measure
the liquid level and not the
volume. It should be used for
known diameters only.
Otherwise, an additional sensor
should be used to measure the
diameter of the vessel.

The electronic should be flexible
and miniaturized for proper
integration in the sleeve.

The user is required to wrap the
sleeve around the vessel
before drinking.

The device supports good
hygiene, as it is not required to
have contact with the liquid or
the drinking area.

It can be applied to a variety of
containers suitable for various
scenarios or applications.

The form factor makes it possible
to use on the go.

It can be obtrusive if the sleeve is
not properly designed/ integrated.
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Table 1. Cont.

Sensor Technology/Method Example Product/Image
Technology Application
and Accuracy

Technological Feasibility Human Factor

Band Method

Accelerometer/ gyroscope:

Measures movement and
orientation due to gravity.

THE + HUG [10]: A sensor band
that tracks water intake
by movement.

May apply to all shapes.

It can only measure drinking
action and cannot measure the
quantity that was drunk.

Simple and accessible sensor.

It is challenging to estimate
drinking based on movement.

It is non-obtrusive. It would not
bother the user while drinking.
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Table 1. Cont.

Sensor Technology/Method Example Product/Image
Technology Application
and Accuracy

Technological Feasibility Human Factor

Base Method

Strain gauge/air pressure sensor:

Measures the change in weight of
the vessel.

Obli [7]: A device available on
the market used for tracking
drinking. It measures the weight
of a fixed bottle and assumes the
weight of water. It can give
notifications when the user does
not drink.

The weighing technique can be
used for different vessels when
placed on flat surface.

The measurement should be
re-calibrated when used with
different weights.

Can perform very
accurate measurement.

Weight sensors are accessible and
industrially well known.

It is easy to calibrate.

Requires discipline, only works if
vessel is placed on the sensor
each time before and
after drinking.

It is most applicable for
home use.

Not obstructive, does not bother
user while drinking

Simple and easy to apply.
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Table 1. Cont.

Sensor Technology/Method Example Product/Image
Technology Application
and Accuracy

Technological Feasibility Human Factor

Tubular Method

Flow sensor:

Measures flow from a
drinking tube.

BluFit [11]: The sensor is placed
on the cover of the bottle.
It measures the amount of liquid
that flow through the tube as the
user drinks.

Device is in development phase.

The sensor is limited to
a single bottle.

It can only be used on a bottle or
a container that has a lead.

Flow sensors are
generally accurate.

Flow sensors/techniques are
accessible and industrially
well known.

It measures when the user
actually drank from the bottle.

Requires user to drink all liquids
from the same bottle.
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Table 1. Cont.

Sensor Technology/Method Example Product/Image
Technology Application
and Accuracy

Technological Feasibility Human Factor

Manual Method

Drink counting App:

The user can manually log his
drinking activities using
a mobile-phone application.

Waterlogged [12]: With the
mobile application, the user can
manually log his
drinking activities.

It does not matter what kind of
vessel used for drinking.

Many applications are available
and do not constitute a major
technical challenge.

It is difficult to capture drinking
at the moment it occurs.

It is unreliable for the user to
estimate the size of every
drinking glass and to
register appropriately.

It is difficult for the user to keep
track of multiple
drinking activities.

It requires a subjective estimation.
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3. Approach

A camera is placed in such a way that it captures the inside of a glass, in order to estimate the
difference in volume due to changes in liquid level as the user drinks. We manually measure the liquid
level and diameter of the glass for each level, in millimeters, as the ground truth. We also measure the
liquid level and the sectional area of the glass for each level, in pixels. We can only dynamically obtain
the measurements in pixels as the derived measurement. A correlation metric is then applied to infer
the measurements in millimeters. Using the inferred parameters, we are able to estimate the volume
difference of the empty portion of the glass in ml, which suggests the amount that has been consumed.

3.1. Setup and Assumptions

We assume a glass that is conically shaped (as most cups are). As illustrated in Figure 2, the camera
is affixed on the edge of the glass to capture the inside. As shown in Figure 2b, the image should contain
the segment of the arc resulting from the contact of the liquid with the surface of the glass. The resulting
view is an arc of an ellipse due to the camera angle. The arc changes its degree of curvature depending on
the liquid level and size of the glass. Distance ab is the measured level of the liquid in pixels. By using
several stages of image processing, the surface of the liquid is reconstructed (assuming an ellipse) using
geometric conversions. The etched ellipse in Figure 2 is the ellipsoidal conversion that can be obtained
using the present features. The area of the ellipse is the cross-sectional area of the glass in pixels. Thus,
we can obtain a volumetric measurement due to the change in liquid volume. When the glass is empty,
no level will be present or detectable.

a

bc

(a)

a

b

c

(b)

Figure 2. (a) Camera setup on the vessel; (b) Illustration of the image captured.

3.2. Feasibility Study

We aimed to determine if it is possible to find the water edge in the container under relatively good
conditions. We used the back camera of an iPhone 5s to capture the inside of a plastic cup containing
water or coffee. This camera was chosen as a quick start and because of its ability to take high quality
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images. The camera was positioned at an overhead angle to the container, similar to Figure 2. We
expected the image to contain edges that depict the liquid level. Multiple images were captured and
imported into MATLAB R2013B to perform line-based edge detection using default Canny and Sobel
filters. Image capturing and processing are sometimes time, memory and CPU intensive to execute.
For this reason, the images were resized to 120 × 160 and converted to greyscale. A Disk Blur filter
was applied to the image using imfilter prior to the edge detection to enhance the results. The resultant
images shown in Figure 3 were visually analyzed in order to determine whether the desired edges were
present. Canny Edge detection showed better results than Sobel Edge detection. However, undesired
edges were still present—and sometimes dominant—due to the reflection of the surrounding lights within
the container.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3. Images with their corresponding edges. (a–d) Raw images with liquid at
different levels; (e–h) Default Sobel Edge detection, thresh = 0.005; (i–l) Default Canny
Edge detection.

4. Method

4.1. Image Capture

Miniature TTL Serial camera from Adafruits [13] was then selected due to its miniaturized nature
and low power consumption. The camera was connected to an Arduino micro-controller [14], which
is programmed to control the general functionality of the camera system. The micro-controller streams
captured images to a custom NodeJS server [15] running on a 2.5 GHz Intel Core i5 Apple computer (OS
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X Yosemite). The server then converts the binary images to JPEG format and saves them in an appropriate
directory for processing with MATLAB. In the future, the images should be pre-processed or fully
processed by the micro-controller before transmitting to an accompanying mobile or desktop application.

4.2. Processing

All images were pre-processed, as described in Section 3.2. This section enumerates the steps taken
to derive measurements from the images.

4.2.1. Segmentation

The feature of interest is the tubular structure that denotes the liquid level. The image was pre-blurred
using a Disk filter. The Sobel approximation was applied to find the edges because of its high sensitivity,
which is needed for the low-resolution image. A morphological filter can produce better results than the
Sobel filter and can be tailored to extract the tubular structure. We experimented with multiscale vessel
enhancement filtering [16] and implemented the Vesselness function from [17]. The Vesselness function
uses the eigenvectors of the Hessian to compute the likeliness of an image region to tubes. We applied
Gaussian and Salt & Pepper noise (where the noise density is incremented by 0.1) to systematically
worsen the quality of the image (see Figure 4a). The Sobel filter was applied to the noised image as
shown in Figure 4b. The Vesselness filter was also applied to the noised image, Figure 4c. The feature
of interest was not visible by the second iteration of the Sobel filter. The feature of interest remained
visible for all images using the Vesselness filter.

The Sobel filter was used as it was sufficient to detect the feature of interest for most of the images
captured. We obtained a binary gradient mask that segments the lines of high contrast in the image.
The result was dilated using imdilate based on linear structuring elements to close the gaps between
connected pixels. The leftover holes due to the dilation process were then filled using imfill. Finally, we
applied imerode to smooth the results and to clean up the segmented elements.

4.2.2. Level Detection

We expected the pixels that denote the liquid level to be pronounced in the segmentation result. The
connected components were obtained using bwconncomp. The arc should have a quadratic form of
y = ax2 + bx + c. Given the size of the image, the gradient for a = 0.003 and the observed line
of symmetry lies within the range −0.58 > b < −0.14. C is the intersection alongside of the image
(size = 120× 160). To detect the level segment, the segmented image was scanned for every row in the
image with the constructed curve. Four steps for b at every row were sufficient to detect the connected
segments that intersected with the curve (Figure 5a). We selected the scan result with the most pixels
and added new points to connect the unconnected components. We iterated through the image again
to remove the connected pixels that were too wide on the vertical profile. This helped to reduce false
averages during fitting. Finally, the image was smoothened as shown in Figure 5c.
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(a)

(b)

(c)

Figure 4. (a) Image with Gaussian and Salt and Pepper added in levels of 0.1; (b) Results
from Sobel filter; (c) Results from vesselness filter.

A: level detection
detected segment

(a)

B: Extracted components

(b)

C: Smoothed

(c)

Figure 5. Level detection. (a) Gradient mask with detected segments; (b) Extracted
segments; (c) Sorted and smoothed segments.

4.2.3. Formulating the Missing Points

We assumed that the surface of the liquid was ellipsoidal due to the camera perspective. The extracted
segments in Section 4.2.2 is one side of the ellipse; therefore, we rotated a copy to make-up for the
opposite side that is not visible in the image, Figure 6a. Using trial and error, a constant value of
50 pixels was chosen as the distance between the rotated segment to the bottom of the image. The
trial and error approach was based on the performance of the ellipsoidal fitting and the corresponding
measurements in milliliters. The performance increased slightly from a SE (standard error of mean)
value of 4.26–4.13 mL as the value was changed to 10, 20, . . . 50 pixels. At 60 pixels, the performance
decreased slightly to 4.14 mL.
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Figure 6. (a) Re-constructed image; (b) Result of ellipsoidal fitting and level detection.

4.2.4. Ellipsoidal Fitting and Measurements

The surface area of the liquid obtainable in pixels is the area of the ellipse that best fit the extracted
segments. Ellipse Fit [18] was used to find the best-fit to the ellipse for the given set of points obtained
from the previous result in Section 4.2.3. Ellipse Fit uses a least-squares (LS) criterion to find the best fit.
The LS estimation is done for the conic representation (ax2+bxy+cy2+dx+ey+f = 0) of ellipse with
a possible tilt. After the estimation, the tilt is removed from the ellipse (using a rotation matrix), and the
rest of the parameters that describe an ellipse are then extracted from the conic representation. Ellipse Fit
outputs a structure that defines the best fit. If no ellipse is detected—neither parabola nor hyperbola—an
empty structure is returned. Other methods, such as Ellipse Direct Fit [19] and Ellipse Taubin Fit [20],
were also tested. By comparison, Ellipse Fit seemed to be simple and straightforward to implement due
to its output structure. However, the execution time for Ellipse Fit was slower. The execution times for
Ellipse Fit, Ellipse Direct Fit and Ellipse Taubin Fit were approximated to 3.59× 10−4, 2.03× 10−4 and
1.75× 10−4, respectively.

Figure 6b shows the result of the ellipsoidal fitting. The product of the semi-major and semi-minor
axes and π gives the area of the ellipse, and thus the surface area of the liquid in pixels. Since we
assume the glass is conical, we use the general volumetric equation for cone (Volume = (1/3) · π · h ·
(r21 + r22 + (r1 · r2)), where: h is the height between two levels and r1 & r2 are their respective radii) to
calculate the volume between top level and the consequent levels. Value for radius is calculated using
√
(area_of_ellipse/π). The height of the horizontal line tangential to the top of the ellipse is the level

in pixels.
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4.3. Dataset

To infer the relationship between ground truth measurements in millimeters and the derived
measurement in pixels, we captured images at various liquid levels in the glass. The images were labeled
accordingly and processed as described above. These images are obtainable at [21]. Table 2 shows the
sequence of measurements derived from the images. The algorithm could not derive measurements from
image 18. Outliers were identified and removed before fitting. These errors were a result of bad image
quality and edge handling.

Table 2. Ground truth, and the derived measurement results. These images are obtainable
at [21].

Ground Truth Measurement

Image
No.

Level of Water
(mm)

Diameter at Level
(mm)

Calc. Vol
(mL)

Derived Level
(Pixels)

Derived Surface Area
(Pixels 2)

Derived Volume
(mL)

1 60 64 193 146 8215 193
2 60 64 193 11 37173 -
3 60 64 193 147 8019 195
4 50 67 169 133 12106 176
5 50 67 169 132 9932 172
6 50 67 169 133 11596 176
7 40 69 139 109 13895 140
8 40 69 139 110 16630 144
9 40 69 139 111 18662 146

10 30 71 108 74 28001 103
11 30 71 108 75 30119 104
12 30 71 108 76 28314 105
13 20 72 73 43 41572 76
14 20 72 73 44 40306 76
15 20 72 73 44 44878 77
16 10 73 37 64 21279 -
17 10 73 37 80 20109 -
18 10 73 37 - - -

Data identified as outliers and exempted from analysis. Could not obtain parameters.

5. Results and Discussion

By plotting the derived level against ground truth, Figure 7a, we observed a quadratic form with a
positive correlation due to the skewed effect of the camera angle and the shape of the glass. A quadratic
polynomial fit, poly2, was used to derive the linear model in Equation (1) with stdError = 1.49 and
R2 = 0.99. Equation (1) was used to infer the derived level from pixels to millimeters.

DerivedHeightFit(x) = p1 · x2 + p2 · x+ p3 (1)

where coefficients: p1 = 1.68 × 10−3, p2 = 4.71 × 10−2, p3 = 1.54 × 101 and x is the derived height
in pixels.
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Figure 7. (a) Liquid level data plot; (b) Liquid surface area data plot.

Given the radius of the glass at the liquid level, we calculated the sectional area of the glass. The result
is graphed with the derived area in pixels, which shows a positive correlation. The pattern that the
measurements follow suggests the use of an exponential fitting. This pattern is caused by the shape of
the glass and by the camera angle. A second-order exponential fitting was used to derive the general
model in Equation (2) with stdError = 51.23 and R2 = 0.98. Equation (2) can be used to infer the area
from px2 to mm2.

DerivedAreaFit(x) = a · exp(b · x) + c · exp(d · x) (2)

where coefficients: a = 3.67 × 103, b = 2.51 × 106, c = −3.65 × 103, d = −2.43 × 10−4 and x is the
derived area of the ellipse in pixels.

The actual change in volume for each level was calculated in mL using Ground truth measurements
by applying the generic equation for cone mentioned in Section 4.2.4. The derived measurements in px

are converted to standard metrics using Equations (1) and (2) and used to infer the change in volume
for each level in ml. To determine whether the two measurement groups (ground truth and inferred
measurements) agree closely enough, we computed their differences. Figure 8 is a plot of the two groups
and the residuals of the inferred result to ground truth. We get the standard error of mean (SE) of
4.1 mL and a coefficient of variation (CV) of 3%. CV is the standard deviation of the mean values in
percentage. With a restriction of 1 L/day, we obtain a 30 mL error per day. In a study amongst patients
with hemodiaysis [22], self-reporting showed up to 29% noncompliance in hemodialysis patients, even
after intervention. An achievable 3% error in using the proposed method is therefore acceptable.
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Figure 8. A Bland-Altman plot of the volumetric measurements. This plot was produced in
MATLAB using the Bland-Altman function produced by Ran Klein [23].

Digital image processing can be time, memory and CPU intensive. In this work, we used a MATLAB
environment running on a 2.5 GHz Intel Core i5 Apple computer to process the images. It took 438 ms
on average in executing the image processes required to infer the volume from each image. During
execution, the CPU usage increased by 40% (bearing in mind that the program is not optimized for
memory usage). It can be a challenge to run the same application on a tiny micro-controller environment.
CPU utilization (the amount of time not in the idle task) should be minimum to maximize the device
uptime. It should not be necessary to sample the images at a fixed time interval but preferably on
event based. Incorporating a motion sensor to track the physical movement of the vessel can help to
significantly reduce CPU utilization. It allows that the inferential processes are initiated only when it
is useful (i.e., when the device is in a balanced position and the volume content is stable). Further
optimization routines can be implemented to keep the sensor module in idle state when the device is
not in use. A real-time application is desirable to provide on-spot feedback to the patient that can have
impact on their immediate behaviour.

6. Options for Future Work

Further experiments should be conducted to evaluate the robustness of the system. The segmentation
process can be improved using other morphological methods. Stepwise experimentations can be done
with different fluid opacity to evaluate the edge detection methodology. The angle of the camera can
be changed in steps in order to check whether the ellipsoidal fittings will provide similar results.
Experiments with different glass diameter and with various shapes of the vessel will also prove the
robustness of the proposed method. An infrared (IR) camera can be used with an IR source to ensure
visibility in poor lighting conditions. The camera device can be miniaturized, integrated and tested.
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7. Summary and Conclusions

We attempted to infer volumetric measurements using a camera on a conically shaped glass.
The results are reasonably correlated to the ground-truth. The inferred method has an acceptable error
margin as it depends on the goodness of the fit between the observed measurement and the result of
the model. However, we anticipate that the error could vary depending on the cup size. We expect this
method to be configurable for different cup sizes. It is possible to miniaturize the camera module, which
will make it suitable for both home and ambulatory use. On the other hand, image processes can be
CPU intensive; therefore, the hardware specifications should be carefully considered. A motion sensor
can be used to monitor the physical movement of the vessel and measure volume only when it is useful.
By using the proposed method for inferring liquid volume in a vessel, fluid nonadherenace can be better
estimated and data can be used to provide smart behavioral interventions within the context of drinking.
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