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Abstract: We propose a novel approach to evaluating how effectively a closed circuit 

television (CCTV) system can monitor a targeted area. With 3D models of the target area 

and the camera parameters of the CCTV system, the approach produces surveillance 

coverage index, which is newly defined in this study as a quantitative measure for 

surveillance performance. This index indicates the proportion of the space being monitored 

with a sufficient resolution to the entire space of the target area. It is determined by 

computing surveillance resolution at every position and orientation, which indicates how 

closely a specific object can be monitored with a CCTV system. We present full 

mathematical derivation for the resolution, which depends on the location and orientation 

of the object as well as the geometric model of a camera. With the proposed approach, we 

quantitatively evaluated the surveillance coverage of a CCTV system in an underground 

parking area. Our evaluation process provided various quantitative-analysis results, 

compelling us to examine the design of the CCTV system prior to its installation and 

understand the surveillance capability of an existing CCTV system. 

Keywords: closed circuit television (CCTV); surveillance performance; surveillance 

coverage; surveillance resolution 
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1. Introduction 

CCTV surveillance operations have rapidly expanded due to the technology’s important role in 

crime prevention, traffic monitoring, and security [1]; although controversies regarding privacy and the 

effectiveness of CCTV installation have continually arisen [2,3]. Currently, many municipal 

governments throughout the world independently operate integrated CCTV control centers, whereby 

CCTV images are used to arrest criminals; additionally, corresponding news items can easily be 

encountered [4–6]. Furthermore, the use of CCTV in public locations such as shopping malls, 

apartments, and underground parking lots has reduced the possibility of crime, including theft, assault, 

and/or fraud [7–10]. The use of CCTV images has expanded beyond crime prevention; for example, to 

ensure the safety of people on a train-station platform; to observe public-transport passengers for 

unexpected behaviors; and to monitor patients at hospitals [11–14]. 

To solve problems regarding social welfare, transport safety, crime prevention, and other social 

issues, the establishment of CCTV systems in public and residential areas has been proposed [15]. 

Further CCTV systems were installed and existing systems were upgraded to decrease the blind spots, 

thereby improving the surveillance quality [16]. In addition to enhancing hardware specifications, the 

performance of CCTV systems can be improved by incorporating new software and technologies; for 

example, some researchers attempted to enhance the overall performance by optimizing the camera 

configuration in a CCTV system [17,18]. In addition, using GIS, they determine the optimal locations 

of CCTV following an analysis of CCTV images [19,20]. For example, a GIS tool, Isovist Analyst is 

used to identify a minimal number of CCTV for complete coverage of a target area based on a greedy 

search [21]. In reality, however, when analyzing CCTV performance in terms of quantifiable 

indicators, we usually calculate the ratio of the blind spots depending on whether or not the target areas 

are observable by a CCTV. The observable area is determined using the location and field of view of 

each camera on a two-dimensional (2D) ground plan of the target space. Importantly, this analysis may 

not provide sufficient accuracy because it does not consider three-dimensional (3D) locations and the 

distributions of the cameras, objects, and targets in the 3D space. For example, the coverage of a 

camera significantly differs according to the height of the camera and the target plane. Such a 

conventional 2D analysis may cause unnecessary overlapping coverage or over-estimated coverage. 

Further research is therefore required to provide a quantitative evaluation of surveillance performance 

including surveillance resolution or blind-spot calculations with the height in 3D space. 

With the improved Building Information Modeling (BIM) technology, both the physical and 

functional characteristics of a building can now be generated in a digital format [22]. As a result, the 

creation, visualization, and simulation of a 3D virtual model of a building can be performed more 

conveniently [23,24]. The BIM models allow for the manipulation of surveillance locations and 

viewpoints; therefore, the idea of using the BIM as the basis for simulating CCTV coverage has been 

proposed and verified to determine surveillance performance [25,26]. By referring to this idea, the 

redundant overlapping coverage of CCTV could be effectively prevented with the generation of a 3D 

model during the design phase of a CCTV system; however, it will still not be possible to determine 

the quality of the surveillance performance using the resolution at which an object can be identified in 

a given area. For example, the use of CCTV images to trace the movements of a suspect at a crime 

scene may not provide an image of the suspect’s face; or even if it does, the resolution is insufficient 
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for facial recognition. This may occur because the surface direction of the target object was not 

considered and the achievable resolution was not computed through a simulation process. Although the 

target area appears covered at the ground level, the coverage of each camera narrows as the height 

increases from the ground. As most targets are off the ground, the surveillance performance for the 

target is lower than the results from the existing evaluation method, which calculates coverage at the 

ground level. Additionally, the existing evaluation method assumes that the target is facing toward the 

camera; however, targets are usually looking in a horizontal direction so that the surveillance 

performance is significantly reduced when compared with the existing method. 

In Figure 1, the weak points of the existing surveillance-performance evaluation method are shown, 

whereby there are four people in the 2D coverage of a CCTV camera; therefore, complete surveillance 

is achieved for the four people based on the existing method. The faces of the people, however, cannot 

be recognized. Three-dimensional coverage of the face of the male in the black T-shirt is not 

observable from the camera image, while the entire face of the female in the green jacket is hidden by 

the male in the red polo shirt. The male in the red shirt is positioned with his back to the camera so that 

his face cannot be detected from the camera image. The child is looking at the TV in a different 

direction from the optical axis of the camera and is sitting in a lower position away from the optical 

axis of the camera; consequently, the resolution of the camera image is insufficient to recognize his 

face even though his face is in the 3D coverage. With commercial software such as VideoCAD, we can 

check 3D coverage and simulate images on virtual avatars captured by a certain camera in a site 

interactively through a 3D graphic interface. However, because the software does not provide any 

comprehensive quantitative indicator about surveillance performance of the system, we still cannot 

understand how completely a CCTV system monitors the target area in a certain level of detail [27]. 

 

Figure 1. It is not possible to observe the faces of the four people from the image even 

though they exist in the 2D coverage of a CCTV camera. 

In this study, we therefore propose new comprehensive indicators to quantify CCTV-surveillance 

performance, which quantitatively represents how completely a target space can be monitored by a 

CCTV system with a degree of detail enough for given surveillance requirements. Here, it is carefully 

considered that the details of objects appearing in a CCTV image depend on types and specifications 

of the sensors in the system and the orientation as well as location of the objects in the target area.  

We also develop a performance evaluation method using the proposed indicators and applied it to a 

real case to verify its feasibility. The remaining part of this paper is organized as follows: proposed 
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concepts and methods are explained in Section 2; examples of surveillance coverage evaluation are 

shown in Section 3; and conclusions are presented in Section 4. 

2. Surveillance Coverage Evaluation 

Surveillance performance indicates how effectively a target area is being monitored by a CCTV 

system. As quantitative measures of surveillance performance, we propose the following two 

indicators: surveillance resolution and surveillance coverage index. Surveillance resolution indicates 

how closely a specific object can be monitored with a CCTV system, depending on the location and 

orientation of the object as well as the cameras of the CCTV system. Surveillance coverage index 

focuses on a specific region rather than an object, indicating how completely a region of interest can be 

monitored with more than a specified surveillance resolution. The region can also be a path, an area, or 

a 3D space as a subset of the object space; for example, to what extent a pedestrian path in a parking 

lot, a crowded area in a mall, or the entire inner space of a building can be completely monitored may 

be of interest. The resolution threshold can be established according to its own application; for 

example, it can be two px/cm for facial recognition. 

The evaluation process to derive the proposed performance indicators requires two kinds of inputs. 

The first group includes those with almost constant properties—at least during the evaluation  

process—which are a 3D geometric model of the object space, and the intrinsic and extrinsic 

parameters of all of the cameras of the CCTV system. The second group includes the changeable 

parameters, which are the resolution threshold and the regions of interest that are specified within the 

object space. 

In this section, we first describe the definition and derivation of the proposed indicators, the 

surveillance resolution of an object with a specified location and orientation, and the surveillance 

coverage index for a specified region of interest. We then explain the proposed evaluation process to 

derive these indicators in an actual practical situation. 

2.1. Surveillance Resolution and Coverage Index  

The following four types of resolutions are used to define the quality of an image: geometric, 

radiometric, spectral, and temporal. Among these resolutions, the geometric resolution is the most 

effective when describing an object’s geometric properties such as position and shape. The geometric 

resolution is typically expressed in terms of Ground Sampling Distance (GSD), which refers to the 

distance of an object surface in a single pixel of an image. In this context, the surveillance performance 

of a CCTV can be evaluated by observing the minimum GSD required to monitor an object. An 

arbitrary length can therefore be set within the target area in the object space and the actual length 

projected on the CCTV image can be calculated; we define the latter value as the surveillance 

resolution and apply it when assessing the surveillance performance of a CCTV. The surveillance 

resolution depends on sensor’s physical characteristics, such as the focal length, the principle point, the 

pixel size, the projection type. It also varies according to the relative geometric relationship between 

the camera and the object. Even with an object at the same position, the resolution can be different in 

accordance with the orientation of the object surface. By considering these diverse factors affecting the 

resolution, we derive a formula to derive the resolution as follows. 
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When an object locating at a location with its surface normal is monitored by a CCTV camera, it is 

projected to the image with a resolution. The defined surveillance resolution is represented as the ratio 

between the actual length (𝑑𝐿) of an object and its projected length (𝑑𝑙′) on the image, which is 

defined as Equation (1). It consists of four terms that accurately model four steps of the projection 

process from the object space to the image space. The steps are computing (1) the projected length 

(𝑑𝐿′)  of 𝑑𝐿  on the surface where the object can be observed at a maximum resolution;  

(2) the incident angles (𝛼)  when the object is projected through the perspective center; (3) the 

projected length (𝑑𝑙) of 𝑑𝐿  on the image according to a lens formula without any distortion; and  

(4) the projected length (𝑑𝑙′)  of 𝑑𝐿  on the image considering distortions, respectively. Figure 2 

illustrates the geometric meanings of the main parameters associated with the derivation of the defined 

surveillance resolution. 

𝑟 ≡
𝑑𝑙′

𝑑𝐿
≡
𝑑𝐿′

𝑑𝐿
∙
𝑑𝛼

𝑑𝐿′
∙
𝑑𝑙

𝑑𝛼
∙
𝑑𝑙′

𝑑𝑙
 (1) 

 

Figure 2. Definition of surveillance resolution. 

The first term considers the orientation of the object surface. In spite of the same object position, the 

resolution of its projection can be different from the object’s orientation. The highest resolution can be 

achieved when the surface normal corresponds to the direction toward the perspective center. The 

length projected to the surface and directed to the perspective center can be derived as the following: 

𝑑𝐿′ = 𝑑𝐿cos𝛽 (2) 

where β is the angle between the actual orientation and the orientation resulting in the highest 

surveillance resolution. 

The second term transforms the projected length (𝑑𝐿′) into the range of the incident angle (α), 

which can be derived based on the arc length formula, as follows: 
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𝑑𝛼 =
𝑑𝐿′

𝐷
=
𝑑𝐿′

𝐻
cos𝛼 (3) 

where 𝐷 is the distance from the object to the perspective center; and 𝐻 is its projected length to the 

optical axis, which is represented as 𝐷cos𝛼. 

The third term reflects a projection model. In a narrow angle system, it is usually assumed that the 

central projection model is available, whereas different models apply for wide angle systems, which 

are mostly utilized for CCTV systems. Some useful models are presented as Equation (4). Through a 

lens of a focal length (𝑓), an object point in the direction (𝛼) is projected to a position (𝑙) distant from 

the principal point. The first of the models in Equation (4) signifies the central projection model, while 

the last term models the distortion correction. If we consider only the radial distortion of the lens, the 

correction model can be expressed as Equation (5). 

𝑙 =  

{
 
 

 
 
𝑓tan𝛼

2𝑓tan
𝛼

2

𝑓𝛼

2𝑓sin
𝛼

2

𝑓sin𝛼

 𝑑𝑙 =  

{
 
 

 
 
𝑓sec2𝛼𝑑𝛼

𝑓sec2
𝛼

2
𝑑𝛼

𝑓𝑑𝛼

𝑓cos
𝛼

2
𝑑𝛼

𝑓cos𝛼𝑑𝛼

 (4) 

𝑙′ = 𝑙0 +  𝑙 + 𝑘1𝑙
3 + 𝑘2𝑙

5 𝑑𝑙′ = (1 + 3𝑘1𝑙
2 + 5𝑘2𝑙

4)𝑑𝑙 (5) 

As shown in Figure 2, when an object (𝐴) locating at location (𝑝𝑖) with its surface normal (𝑛𝑗) is 

monitored by a CCTV camera (𝑐𝑘), it is projected to a CCTV image with a resolution (𝑟𝑖𝑗𝑘). The 

defined surveillance resolution is represented as the ratio between the actual length (𝑑𝐿) of an object 

(𝐴) and its projected length (𝑑𝑙), which is formulated as Equation (6). Here, it is assumed that the 

camera follows the central projection without any distortion: 

𝑟𝑖𝑗𝑘 = 𝑓(𝑝𝑖 , 𝑛𝑗 , 𝑐𝑘) =
𝑑𝑙

𝑑𝐿
=
cos (𝛽𝑖𝑗𝑘)

𝑑𝐿′

𝑑𝐿′

cos(𝛼𝑖𝑘)
 
𝑓𝑘
𝐻𝑖𝑘

=
𝑓𝑘
𝐻𝑖𝑘

 
cos(𝛽𝑖𝑗𝑘)

cos(𝛼𝑖𝑘)
 (6) 

The vertical distance (𝐻𝑖𝑘) between the object and center of projection and the offset angle from the 

optical axis (𝛼𝑖𝑘) are determined based on 𝐴’s location (𝑝𝑖), and the camera’s position and attitude. 

According to the orientation (𝑛𝑗), the angle (𝛽𝑖𝑗𝑘) between the actual orientation of 𝐴 (𝑛𝑗) and the 

orientation resulting in the highest surveillance resolution (𝑛𝑖𝑘
𝑚𝑎𝑥)  is decided. The 𝑛𝑗  and 𝑛𝑖𝑘

𝑚𝑎𝑥 

represent the normal vector of 𝐴 on the object surface and the normal vector of 𝐴 on the image plane at 

the maximum surveillance resolution possible, respectively. In addition, focal length (𝑓𝑘) is computed 

from the camera modeling process. 

Although CCTV cameras will acquire images at a maximum resolution of 𝐴 if the object orientation 

is facing 𝑛𝑖𝑘
𝑚𝑎𝑥, the resulting image resolution will be lower when the object is placed on the surface 

tilted by 𝛽𝑖𝑗𝑘. When the angle of 𝛽𝑖𝑗𝑘 increases to 90°, the object will not be identifiable in the images. 

Moreover, the surveillance resolution will have a negative value when 𝛽𝑖𝑗𝑘 is larger than 90°, and this 

is the case when the opposite side of the object is projected to the image; for example, only the back of 

a suspect is captured in the CCTV image when the intention was to observe the facial features of the 

suspect. The negative surveillance-resolution value is not useful information in this case and it is 

therefore replaced by 0. 
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The camera parameters describe its projection characteristics. The intrinsic parameters are focal 

length, principal point, and distortion coefficients, whereas the extrinsic parameters are the position 

and orientation of the camera in an object coordinate system. As the camera parameters can be 

estimated through a camera modeling process, such as self-calibration using the acquired CCTV 

images and reference data, the intrinsic and extrinsic parameters can be assumed as known. In addition, 

the same camera parameters can be applied in cases where the coverage originates from an identical 

camera. The surveillance resolution (𝑟𝑖𝑗𝑘) of a camera is therefore derived from an object in a specific 

location and orientation in a target space. 

Referring back to Equation (6), 𝛼𝑖𝑘, 𝛽𝑖𝑗𝑘, and 𝐻𝑖𝑘  must be known to determine the surveillance 

resolution at a certain location and orientation. As it is assumed that the CCTV camera’s intrinsic and 

extrinsic parameters and the object’s location and orientation are known, the following equations can 

be used to compute 𝛼𝑖𝑘, 𝛽𝑖𝑗𝑘, and 𝐻𝑖𝑘. First, the distance from the object location 𝑝𝑖(𝑋𝑝𝑖 , 𝑌𝑝𝑖 , 𝑍𝑝𝑖) to 

the center of the projection (𝐷𝑖𝑘), and the unit vector of the optical axis (𝑣𝑐𝑘) in a 3D coordinate 

system defined by the camera’s extrinsic parameters (𝑋𝑐𝑘, 𝑌𝑐𝑘, 𝑍𝑐𝑘, 𝜔𝑐𝑘, 𝜙𝑐𝑘, 𝜅𝑐𝑘) are calculated. Then, 

the normal vector of the surface where the CCTV camera can monitor at maximum resolution 𝑛𝑖𝑘
𝑚𝑎𝑥 

can be calculated using Equation (7), as follows: 

𝑛𝑖𝑘
𝑚𝑎𝑥 =

1

𝐷𝑖𝑘
[𝑋𝑐𝑘 − 𝑋𝑝𝑖 , 𝑌𝑐𝑘 − 𝑌𝑝𝑖 , 𝑍𝑐𝑘 − 𝑍𝑝𝑖] (7) 

Next, the off-axis angle from the CCTV camera’s optical axis 𝛼𝑖𝑘 is determined by Equation (8) 

and Equation (9) is used to compute 𝐻𝑖𝑘. In addition, the angle created by the actual surface where the 

object exists, and the surface at which the CCTV camera can observe the object at maximum 

resolution 𝛽𝑖𝑗𝑘 can be calculated with the relation shown in Equation (10), as follows: 

cos(𝛼𝑖𝑘) = 𝑛𝑖𝑘
𝑚𝑎𝑥 ∙ 𝑣𝑐𝑘 (8) 

𝐻𝑖𝑘 = 𝐷𝑖𝑘 cos(𝛼𝑖𝑘) (9) 

cos(𝛽𝑖𝑗𝑘) = 𝑛𝑖𝑘
𝑚𝑎𝑥 ∙ 𝑛𝑗 (10) 

The values of 𝛼𝑖𝑘, 𝛽𝑖𝑗𝑘, 𝐻𝑖𝑘 vary with respect to the local reference frame defined by the CCTV 

camera and the object as expressed in Equations (8)–(10), and these values will determine the 

surveillance resolution defined by Equation (6). Nonetheless, in general, multiple cameras are installed 

over the target area and one object may appear in many camera images. As the relative position and 

orientation differ between each CCTV camera and the particular object, each image will attain 

different surveillance resolutions. Although there may be different surveillance resolutions for a given 

object, the largest value will be assigned as the object’s surveillance resolution. Consequently, the 

surveillance resolution of an object in a CCTV system with multiple cameras (𝑟𝑖𝑗) can be expressed as 

the following, where 𝑙 is the total number of cameras in a CCTV system: 

𝑟𝑖𝑗 = max(𝑟𝑖𝑗𝑘|1 ≤ 𝑘 ≤ 𝑙) (11) 

The surveillance resolution 𝑟𝑖𝑗 is calculated with 𝛼𝑖𝑘, 𝛽𝑖𝑗𝑘, 𝐻𝑖𝑘, which are obtained with respect to 

the object’s position and orientation in a space. To assess the surveillance coverage (𝜂) , the 

surveillance resolution at every possible position and orientation in a given space is produced. Then, 
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the percentage of the surveillance resolution that exceeds over a pre-defined threshold can be computed by 

Equation (12), as follows: 

𝜂 =
𝑁(𝑟𝑖𝑗 ≥ 𝑟𝑡ℎ)

𝑛 × 𝑚
 (12) 

where 𝑛 is the total number of positions sampled; 𝑚 is the total number of orientations sampled at each 

position; and 𝑁( ) is the number of samples that meet the requirement in the bracket. 

2.2. Coverage Evaluation Procedure 

By applying the surveillance resolution and coverage index described in Section 2.1, the evaluation 

of surveillance coverage can be conducted using the steps shown in Figure 3. First, we need to 

generate 3D spatial models of the target surveillance area and determine the CCTV camera’s extrinsic 

and intrinsic parameters. Next, samples are selected at each location, whereby the object is visible 

from different orientations. Then, the surveillance resolutions at each of the sampled locations and 

orientations are derived from Equation (1). Finally, the completeness of the surveillance coverage is 

evaluated by computing the surveillance coverage index based on Equation (12). 

 

Figure 3. Surveillance Coverage Evaluation Procedure. 

In the first stage, we need to generate polyhedral models of the area from existing 2D architectural 

floor plans or newly acquired sensory data. If we use the floor plans, rather than using other sensory 

data, it is easier to create the corresponding 3D model of the building; however, floor plans contain the 

detailed architectural design of a building, and inconsistencies between the designed model and the 

actual building construction may exist. To accurately model the physical building, we need to acquire 

the sensory data of the area, such as images and laser-scanning data; then, the polyhedral model can be 

generated manually from stereo images or semi-automatically from point clouds. With the 3D 

polyhedral model, we need to know the camera’s extrinsic and intrinsic parameters. For extrinsic 

parameters, we have the location of the camera’s perspective center, expressed by three coordinates, 

and its attitude, expressed by three independent rotation angles. To obtain the parameter values, we 

distribute GCPs (Ground Control Point) in the area and perform bundle adjustment with images 

including the GCPs. The intrinsic parameters describe the metric characteristics of a camera, and can 
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be determined through a camera-calibration process using a specially designed calibration target. The 

position of principal point, focal length, distortion amount, and pixel size are the main intrinsic 

parameters. In this case, unlike most, we cannot change the camera’s position and attitude, so we must 

position the calibration target on the floor in various directions and acquire images of the target. 

In the second stage, we determine the amount of sampling desired from all of the possible 3D 

locations of the object, along with their corresponding orientations, in the entire target space. For the 

determination of sampling locations, we first define the target space in an arbitrary 3D Cartesian 

coordinate system. Then, each of the axes is divided to form a 3D grid. It is possible to define the 

surveillance resolution at each of the 3D grid points by using 𝑝𝑖 = {𝑝1, 𝑝2, … , 𝑝𝑛}; for instance, when 

the three axes are split every 10 cm in a 1 ×  1 ×  1 m3 space, there would be a total of 1000 locations 

to sample. On the other hand, the orientations that an object can face range from 0° to 360° 

horizontally, 0° to 180° vertically, and 0 𝜋 to 4 𝜋 for their solid angle. To include all of the possible 

orientations, we divide the angles both horizontally and vertically using an arbitrary location as the 

center. Using the same idea that applied to the 3D grid points, the surveillance resolution of all of the 

orientations at a given location can be found by using 𝑛𝑗 = {𝑛1, 𝑛2, … , 𝑛𝑚} ; for example, if the 

sampling was conducted at an interval of 1°, the total orientation samples for a given location will be 

360 ×  180 = 64,800 . When the interval is increased to 10° or 45° to reduce the number of 

orientation samples, there would be 648 and 32 orientations, respectively. This means that even when 

8 ×  4 = 32 orientations are observed at each location, the number of calculations for finding the 

surveillance resolution reach 32,000 in a 1 m3 with 1000 locations. 

The advantage of using such a method to sample at every given interval for both location and 

orientation seems logical; however, the disadvantage is that each of the defined orientations do not 

cover the same solid angle, whereby the solid angle covered by each orientation decreases as the 

vertical angle increases. The vertices of the regular polyhedrons inscribed in a sphere or the center of 

their faces therefore provide the same solid angle across the orientations for a location. The five 

regular polyhedrons are the tetrahedron, hexahedron, octahedron, dodecahedron, and icosahedron.  

For example, assuming a particular location as the center of an icosahedron, orientation sampling can 

be made facing each of the vertices, which will provide the same solid angle throughout and the 

number of samples will decrease to 12. 

In the third stage, when deriving surveillance resolutions at each of the sampled locations and 

orientations, we must analyze the visibility of the position from a camera by applying a ray-tracing 

algorithm. With this algorithm, we define a ray from the position to the perspective center of the 

camera and determine whether this line is intersected with other obstacles. If an intersection is 

determined, the position is within the occluded area of the camera and we cannot define the 

surveillance resolutions at the position. Before applying ray-tracing for each position, we need to 

compute the horizontal coverage of every camera and the 2D Minimum Bounding Rectangle (MBR) of 

all of the obstacles in the target area. Although the obstacles are defined in a 3D sense, most of them 

are extended to the ceiling starting from the ground, with the same horizontal outline such as a pillar. 

In this case, by examining the 2D overlap, we can determine whether it is overlapped in a 3D sense 

without a complicated 3D process.  

Ray-tracing for the calculation of the surveillance resolution at a position with an orientation by a 

camera is performed as follows: (1) determine whether the position is within the horizontal coverage of 
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the camera; (2) determine the 2D MBRs of the line between an object point (a sampled position) and 

the perspective center; (3) check whether there is a 2D overlap between the MBRs of a line and an 

obstacle; if there is no 2D overlap, stop at this step with no 3D overlap; (4) check whether the line 

segment intersects with the 2D boundary polygon of the obstacle; if it does, stop at this step because 

the obstacle has an identical horizontal outline according to the height, signifying that it also intersects 

with the obstacle in a 3D sense; (5) determine if the line segment intersect with a 3D polyhedron 

model of the obstacle; and (6) if there is an overlap, the position cannot be identified in the camera 

image and the surveillance resolution is set to 0. 

In the final stage, we compute the surveillance coverage index by comparing the achievable 

resolution with the desired one. Here, we determine the proportion of the instances that reach above 

the desired resolution among the resolution values computed at all the sampled locations and 

orientations in the previous stage. The desired resolution can be established or derived from the 

specified surveillance requirements for recognition and tracking. For example, one may want to 

monitor every location in the target space with a resolution of 0.5 px/cm required for a meaningful 

recognition process. Using the resolution values computed in the previous stage, we can easily 

compute the proportion of the locations monitored with at least the desired resolution and present it as 

the overall coverage index of the target space. In addition, we can visualize the computed surveillance 

resolution at each location with different object orientations in the 2D/3D space to visually inspect the 

weak and strong surveillance areas. Furthermore, we can check the coverage index for a special 

surveillance sector such as a doorway or moving path in a parking area. In a doorway, one may want to 

recognize even the faces of the people going in and out through an exit; and for the face recognition, 

the required resolution of at least 2 px/cm may be assumed. We can also determine how well such a 

requirement is satisfied in the space of interests in a quantitative way by checking the computed 

resolution values at all the locations with different orientations within the target space. In addition, we 

can identify the weak area and propose the location and orientation for additional camera installation to 

fulfill surveillance requirements. Adding cameras or constructing a CCTV system involves a major 

expense; therefore, we need an elaborate design for achieving the surveillance purpose before the 

installation. In addition, there are available so many different cameras with different prices and 

performance, and thus we can check the surveillance performance by changing the camera models or 

the camera parameters to derive more optimal camera specifications and configurations. 

3. Application Example and Analysis 

3.1. Experimental Data 

The underground parking lots of buildings such as apartments are the places where CCTV systems 

are encountered in daily life. We therefore produced a simulation of a typical configuration and size of 

a parking lot, like that in Figure 4, based on the concept of the proposed surveillance resolution for the 

evaluation of the surveillance coverage of the target area. The surface area of the generated parking lot 

is 5079.47 m2 with a height of 3 m. Additionally, the CCTV cameras were positioned to reflect the real 

world, whereby the cameras were installed in pairs, facing the opposite direction. In addition, CCTV 

cameras are usually installed on the ceiling of the path that the cars and people mostly use. Here, we 



Sensors 2015, 15 23351 

 

 

assumed that each pair of cameras is rotated by ±12° in the 𝑦-axis, and the approximate distances 

between them are 20 m in the 𝑥-axis and 17 m in the 𝑦-axis. We also assumed that the focal length, 

pixel size, and detector dimension of each camera are 10 mm, 5 µm, and 4000 by 3000 pixels, 

respectively. In this case, the coverage of each camera is about 6 m by 4.5 m at a place of 3 m distance. 

 

Figure 4. Arrangement of CCTV cameras in an underground parking lot. 

3.2. Evaluation Results and Analysis 

3.2.1. Overall Analysis 

The possible locations of the object were sampled at each of the 3D grid points with an interval of 

50 cm and the possible orientations of the object were sampled every 90° in the horizontal and vertical 

planes. Then, the observed surveillance resolutions from the CCTV cameras were determined for all of 

the samples. In Figure 5, the horizontal position of the object monitored above a surveillance 

resolution of 0 is displayed, when the object is located on the ground (𝑧 = 0 m) and is facing the 

ceiling. Out of the total 20,541 ground locations, 13,186 locations can be observed in CCTV images, 

and 64.2% of the ground surface is computed as the surveillance area. This evaluation of surveillance 

coverage is similar to an existing method for determining blind spots, whereby the coverage of CCTV 

cameras in 2D space is derived [17,28]. 

For example, to identify a suspect who has trespassed through a parking lot, the suspect should 

appear in a CCTV image and his face should be recognizable from the image; however, it is difficult to 

estimate the success of such an objective when the surveillance coverage is determined with the 

existing 2D blind-spot-analysis method. Although slight parameter differences exist between CCTV 

cameras, the resolution that is typically required for monitoring an object in detail is about 2 px/cm, 

whereas it is about 0.7 px/cm for general surveillance (Theia Technologies, 2009). Accordingly, the 

surveillance resolution must be at least 2 px/cm to distinguish the appearance of a suspect without a 

criminal record. The surveillance resolution from the ground surface when the orientation of an object 



Sensors 2015, 15 23352 

 

 

is upper vertical is illustrated in Figure 6; accordingly, a surveillance resolution exceeding over  

2 px/cm is displayed in Figure 7. The resulting outcome produced 4930 locations, from the total of 

20,541, as the positions that exceeded over 2 px/cm, signifying that, at this height, the suspect’s facial 

features can be identified approximately 24%  of the time. With a CCTV-surveillance-coverage 

evaluation method like that which is previously explained, the percentage of surveillance resolutions 

that reach the required resolution to successfully fulfill the CCTV system’s purpose can be determined. 

 

Figure 5. Areas with a surveillance resolution greater than 0 when objects are on the  

bottom and their orientations are upper vertical (white: resolution > 0 px/cm ; black:  

resolution = 0 px/cm). 

 

Figure 6. Surveillance resolutions when objects are on the ground and their orientations 

are upper vertical (blue: resolution = 0 px/cm; red: resolution = 7 px/cm). 
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Figure 7. Areas with a surveillance resolution greater than or equal to 2 px/cm when objects 

are on the bottom and their orientations are upper vertical (white: resolution ≥ 2 px/cm; 

black: resolution < 2 px/cm). 

As the height of the object increases, the surveillance coverage significantly decreases, as shown in 

Figure 8; this represents a surveillance coverage index with a threshold of 1 px/cm according to the 

elevation when objects have an upper-vertical orientation. Figure 8c shows that the subject’s face 

could be observed in the area with a probability of 19.7% if the individual’s face is at a 1.5 m height 

and looking in an upper-vertical direction. 

 

Figure 8. Surveillance coverage index with a threshold of 1 px/cm  according to the 

elevation when objects have an upper-vertical orientation; (a) the index at the elevation of 

0.5 m; (b) the index at the elevation of 1 m; (c) the index at the elevation of 1.5 m; (d) the 

index at the elevation of 2 m. 

Furthermore, the surveillance coverage index changes according to the object’s orientation. Figure 9 

shows the surveillance coverage index with a threshold of 1 px/cm according to the orientation when 
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objects are at an elevation of 0.5 m; 0.5 m is the general height of a car’s license plate. Figure 9f shows 

that if an object is moving in the area looking downward, it is not possible to recognize the  

object’s surface. 

 

Figure 9. Surveillance coverage index with a threshold of 1 px/cm according to the 

orientation when objects are at an elevation of 0.5 m; (a) the index with the eastward 

orientation; (b) the index with the northward orientation; (c) the index with the upward 

orientation; (d) the index with the westward orientation; (e) the index with the southward 

orientation; (f) the index with the downward orientation. 

3.2.2. Areal Analysis 

The suggested methodology incorporates the geometric properties and movement trend of an object 

to allow for a detailed evaluation of the surveillance coverage in a 3D space; for example, the red 

rectangular area in Figure 4 represents the entrance from a parking lot into a building, such as an 

escalator or elevator, where more careful monitoring is required. Surveillance coverage in such areas 

can therefore be determined to analyze the vulnerability of the CCTV system when it comes to crime 

prevention and reaction. For this analysis, we limited the vertical range—from 1.2 m to 1.8 m—in 

consideration of the average height of a human face, and sampled the target space of this vertical range 

with locations of 20 cm intervals, which is the space denoted with the blue line in Figure 4. At each 

location, we considered four horizontal orientations with a 90° interval. The number of sampling of 

locations and orientations in the area totaled 100(x) × 100(y) × 4(z) × 4 (horizontal angle) × 1 (vertical 

angle) = 160,000, where all of their surveillance resolutions were determined. The head of a person 

would roughly be at a height of 1.6 m, when the average height of adults is taken into account. 

Illustrations of the surveillance resolutions at the 1.6 m height when the orientation is in the direction 

in which the maximum resolution is achieved are shown in Figure 10. The corresponding surveillance 

coverage index is 23.7%, and it can be concluded that it is very difficult to verify the identity of an 

individual in the target area using the CCTV system. 
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Figure 10. (a) Surveillance resolutions when objects are at a 1.6 m height and their 

orientation is in the direction in which the maximum resolution is achieved;  

(b) Surveillance coverage index with the threshold of 2 px/cm. 

To improve the existing monitoring quality, the installation of two additional CCTV cameras is 

planned. We examined the difference of the target-area resolution after the additional cameras are 

installed, with a possible location as the center (34, 51, 3)  and a rotation of ±12° in the 𝑦 -axis.  

Figure 11 shows the surveillance resolutions at the height of 1.6 m, when the orientation is in the 

direction in which the maximum resolution is achieved, after the cameras are added. In this case, we 

can conclude that, by adding the additional cameras at the possible location, the surveillance coverage 

for the target area was enhanced, as the surveillance coverage index increased from 23.7% to 38.7%. 

 

Figure 11. (a) Surveillance resolutions when objects are at 1.6 m height and their 

orientations are in the direction in which the maximum resolution is achieved; (b) Surveillance 

coverage index with a threshold of 2 px/cm (after adding two cameras).  
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Table 1 shows the surveillance coverage index at different elevations when an object is facing the 

direction that provides the maximum resolution, before and after adding the cameras. From this, we 

can check that the surveillance coverage for the target area is improved by approximately 60% after the 

two cameras are added; however, as the height of the object increases, the surveillance coverage  

significantly decreases. 

Table 1. Surveillance coverage index before and after adding cameras (unit: %). 

 Z = 1.2 m Z = 1.4 m Z = 1.6 m Z = 1.8 m Total 

Before 35.0 28.9 23.7 18.4 26.5 

After 59.9 48.5 38.7 29.9 44.3 

Finally, Figure 12 displays the surveillance resolutions at the most probable orientations at the 

height of 1.6 m. From this, we can observe that, even though the location of the object is identical, the 

surveillance resolution significantly differs between the orientations. In the case where the object is 

facing in the – z direction, as illustrated in Figure 12f, the object does not appear in the CCTV image, 

even with the additional camera. This implies that, when a person intentionally faces the ground as 

they travel, their facial features cannot be observed from the CCTV system. To solve this problem, 

additional cameras facing in an upward direction should be installed at a lower height range of 0 cm to 

50 cm, as needed. After installing the additional cameras, we can enhance the surveillance coverage in 

the area three dimensionally and omni-directionally. 

 

Figure 12. Surveillance resolutions according to the orientation (after adding a camera); (a) the 

resolutions with the +x direction; (b) the resolutions with the −x direction; (c) the resolutions 

with the +y direction; (d) the resolutions with the –y direction; the resolutions with the −x 

direction; (e) the resolutions with the +z direction; (f) the resolutions with the +z direction. 
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3.2.3. Path Analysis 

The red line in Figure 4 represents the moving paths for vehicles in the parking lot, where careful 

surveillance is required. We sampled the paths with an interval of 0.1 m and 0.5 m in horizontal and 

vertical directions, respectively. At each location, we selected six orientations with a 90° interval. We 

then computed the surveillance resolution at each sampled location and orientation. We presented the 

surveillance resolutions of the sampled locations, when the orientation is the one direction where the 

maximum resolution is attained, using vertical bars, as shown in Figure 13, where the length of a vertical 

blue bar indicates the magnitude of the surveillance resolution. As shown in Table 2, the surveillance 

coverage index with the thresholds of 0 px/cm and 1 px/cm are 87% and 83%, respectively. 

 

Figure 13. Surveillance resolution at the sampled locations, when the orientation is the one 

direction where the maximum resolution is attained. 

Table 2. Surveillance Coverage Index (SCI) along a certain path. 

Threshold (𝐩𝐱/𝐜𝐦) 
All Directions (E/W/N/S) Maximum Direction (E/W/N/S) 

Total >Threshold SCI Total >Threshold SCI 

0 13864 6908 50% 3466 3016 87% 

1 13864 3192 23% 3466 2864 83% 

4. Conclusions 

Although the efficient design and installation of CCTV systems is recognized as important, there is 

a lack of comprehensive indicators, which are useful to understand quantitatively how well a CCTV 

system covers a target area while satisfying specific surveillance requirements. In this study, we thus 

have proposed new indicators, surveillance resolution and coverage index, which allow us to evaluate 

quantitatively the effectiveness of CCTV systems on the task-specific surveillance. The surveillance 

resolution, indicating how closely an object can be observed by cameras, is derived from a rigorous 

projection model from objects to cameras. The derivation reflects the 3D orientation as well as the 

location of objects and cameras; and it can also be applicable to various kinds of cameras with 
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different projection and distortion characteristics. Based on the surveillance resolution, we defined the 

surveillance coverage index representing how completely an area is monitored with a certain level of 

detail. Using these two indicators and the presented derivation associated with them, we established an 

evaluation process to enable versatile, practical and visual analysis on the CCTV’s surveillance 

coverage. For example, one can derive the overall surveillance coverage of the entire target area, check 

whether a specific interesting area (or path) is monitored with a required resolution, and provide 

various alternatives to improve the current coverage. During these processes, one can easily 

incorporate the dynamic and static attributes of objects and cameras, for example, the movement of 

persons or vehicles. 

In the near future, we will adapt the proposed evaluation approach to field problems related to the 

regions of more strict specific surveillance requirements, for example, crime-ridden districts, subway 

stations, complex malls, casinos, and other places. With the adapted approach, we can assess the 

current status and provide appropriate solutions. In addition, using the proposed surveillance index as 

the target values to be optimized, we can provide the optimal position and orientation of the cameras to 

maximize the performance of a CCTV system according to its surveillance requirements. 
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