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Abstract: In order to deal with the problem of projection occurring in fall detection with  

two-dimensional (2D) grey or color images, this paper proposed a robust fall detection 

method based on spatio-temporal context tracking over three-dimensional (3D) depth images 

that are captured by the Kinect sensor. In the pre-processing procedure, the parameters of 

the Single-Gauss-Model (SGM) are estimated and the coefficients of the floor plane equation 

are extracted from the background images. Once human subject appears in the scene, the 

silhouette is extracted by SGM and the foreground coefficient of ellipses is used to determine 

the head position. The dense spatio-temporal context (STC) algorithm is then applied to track 

the head position and the distance from the head to floor plane is calculated in every 

following frame of the depth image. When the distance is lower than an adaptive threshold, 

the centroid height of the human will be used as the second judgment criteria to decide whether 

a fall incident happened. Lastly, four groups of experiments with different falling directions 

are performed. Experimental results show that the proposed method can detect fall incidents 

that occurred in different orientations, and they only need a low computation complexity. 
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1. Introduction 

According to a survey from the National Institutes of Health (NIH), there are more than 1.6 million 

older U.S. adults that suffer fall-relative injuries each year [1]. In 2010, the direct medical cost of  

fall-related injuries, including fatal and non-fatal falls, in the U.S. was $28.2 billion [2]. In China, news 

reported that a large contingent of society is growing older at the same time, and 17% of the population 

will include people older than 60 by 2020. With the aging population growing, the risk of falling and 

fall-related problems raises consequently. Efficient and robust fall detection systems with low costs will 

play an important role in reducing fall injuries and their costs. Many falls are linked to older people’s 

physical condition and home environment. As people get older, their muscles become weak and their 

balance becomes worse. When older people get up from lying down or sitting, the blood pressure will 

drop too much, and this increases the chance of falling down. Apart from the fragile bodies of elders, 

the potential fall hazards (slippery floors, clutter, poor lighting, unstable furniture, obstructed ways, pets, 

etc.) in home environments may also cause people to fall [3,4]. Existing proposed fall detection methods 

can be divided into three categories: wearable sensor-based, ambient sensor-based, and computer  

vision-based methods. Wearable sensor-based methods usually rely on accelerometry, posture, or a 

fusion of the two. In this sort of method, sensors should be attached to the subject’s body, which has 

high level of obtrusiveness. Ambient sensor-based methods deploy external sensors in the vicinity of the 

subject. The most available sensor is the pressure sensor since weight or vibrational data can be captured 

to detect and track the subject. Profiting from the development of computer vision technology, computer 

vision-based methods have become a promising solution for fall detection systems. Only monocular or 

multiple cameras are needed in this sort of method to record color images or depth images of a scene. 

The main advantage is that people do not need to carry specialized sensors, which is makes them more 

convenient for elders. Fall detection systems usually focus on a single subject. If the scene contains two 

or more subjects, a segmentation module that will be used to make out each subject can be detected and 

tracked respectively [5,6]. As most fall events occur in the home environment, the majority of research 

focuses on this background.  

In order to deal with the problem of projection occurring in fall detection with two-dimensional (2D) 

grey or color images, this paper presents a robust fall detection method based on spatio-temporal context 

tracking by analyzing three-dimensional (3D) depth images captured by the Kinect sensor. It is assumed 

that only one elderly person is in the scene. In the pre-processing procedure, the parameters of the Single 

Gauss Module (SGM) are estimated and the coefficients of the floor plane equation in the background 

images are extracted. Once a human subject appears in the scene, the silhouette will be extracted by 

SGM and the foreground coefficient of the ellipses is used to determine the head position. Then, the 

dense spatio-temporal context (STC) algorithm is used to track the head position and the distance from 

the head to the floor plane is calculated in every following frame of the depth image. When the distance 

is lower than an adaptive threshold, the centroid height of the human will be used as the second judgment 

to decide whether a fall incident happened. The logical steps of our method are: (1) reference frame is 

used to extract the human silhouette from the first depth frame and the 3D position of the head is located; 

(2) the 3D position of head is tracked by using the dense spatio-temporal context learning method; and 

(3) the distance from the 3D position of head to the floor is calculated in every frame of the depth image. 

If the height of the head is lower than the threshold, the centroid height of the human will be also be 
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used to judge the threshold to determine a fall. The remainder of this paper is organized as follows. 

Section 2 reviews the relative works in the area of fall detection; Section 3 describes the proposed fall 

detection method which depends on the depth data record from the Kinect sensor. Experimental results 

are presented in Section 4 to show the performances of the proposed approach. Finally, a brief conclusion 

and thoughts on potential future work are given in Section 5. 

2. Relative Works 

Most existing fall detection methods can be divided into three categories: wearable sensor-based, 

ambient sensor-based, and computer vision-based methods. We will review the relative work from  

this perspective.  

2.1. Wearable Sensor-Based Methods 

In the wearable sensor-based methods, elderly persons need to wear sensors on their body to detect 

their motion status or determined location. Most wearable sensors (such as the accelerometer and 

gyroscope) are cheaper than external sensors and are usually easy to operate, though a high level of 

obtrusiveness is the main disadvantage of wearable sensors [3]. Some systems classify fall and non-fall 

activities by using the threshold detection method [7,8]. In [7], the fall detection system consisted of an 

inertial sensor unit, a data logger unit, and a real-time fall detection algorithm. Inertial frame velocity is 

the main variable to detect falls which can be obtained from transform acceleration and angular velocity. 

A fixed threshold and an adaptive threshold were applied in the detection algorithm, respectively. By 

testing 10 young adults and 14 older adults, it was found that the adaptive threshold has a better 

performance in decreasing the probability of false alarms. However, the threshold’s setting is also a 

considerable challenge, especially in different fall types [3]. The machine learning classifiers are also 

widely used in fall detection systems. Özdemir et al. presented an automated fall detection system which 

requires the user to wear motion sensor units (accelerometer, gyroscope, magnetometer/compass) at six 

different positions [9]. By feature selection and reduction from raw data for each sensor, six machine 

learning classifiers (k-nearest neighbor (k-NN) classifier, least squares method (LSM), support vector 

machines (SVM), Bayesian decision making (BDM), dynamic time warping (DTW), and artificial neural 

networks (ANNs)) were used to classify falls from daily activities. Among all classifiers, the k-NN 

classifier has shown 99.91% in accuracy, 99.79% in specificity, and 100% in sensitivity. However, it is 

very inconvenient for elderly people to wear six sensors. Additionally, an external RF connection 

(ZigBee) is also required to connect with a remote PC. All these elements restrict this sort of approach 

from obtaining good performance in real-world environments.  
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2.2. Ambient Sensor-Based Methods 

Ambient sensor-based methods usually arrange external sensors around persons’ environments. The 

common features that are used for person detection and tracking are pressure, vibration, audio, and 

infrared array, etc. [10]. A new fall detection method based on near-field imaging (NFI) was proposed  

in [11] by Rimminen et al. In the experiment, the 19 m2
 test floor was fully covered with a 9 × 16 matrix 

of floor sensors to create the NFI. The shape, size, and magnitude of patterns are extracted from the NFI 

in the feature extraction module. In order to reduce the influence on features from noise and overlap, 

Bayesian filtering has been used previously. By using a prior two-state Markov chain model, the 

probability of falling and getting up were used to classify test features. The system obtained a sensitivity 

of 91% and a specificity of 91% by testing 650 events. However, the system performed moderately when 

test subjects were ending up sitting or falling onto their knees. Additionally, the sensor matrix will grow 

exponentially as the test area increases. Zigel et al. presented a fall detection system based on floor 

vibrations and sound sensing [12]. The system contained a training phase and testing phase. In the 

training phase, 17 features that were extracted from vibration and sound event signals were chosen for 

classification. Bayes classification algorithm was used in this method. In experiments, this system used 

a human-mimicking doll to simulate fall events and got a performance with a sensitivity of 97.5% and a 

specificity of 98.6%. Even though the system is much too sensitive, its precision will decrease if fall 

events happen farther than 5 m away. In order to obtain more precision, two or more sensors should be 

set in a large room environment.  

2.3. Computer Vision-Based Methods 

With the development of computer vision and image processing techniques, computer vision-based 

methods have become a new branch of fall detection. Compared with other methods, vision-based 

methods are less intrusive, have higher accuracy, and are more robust. Depth images in particular can 

easily be collected by the Kinect, which has been widely used as it is robust to light condition changes 

and detects behavior characteristics well. In [13], Yu et al. proposed a novel computer vision-based fall 

detection system based on a single camera. In order to extract a human body silhouette, the codebook 

background subtraction technique was used. The ellipse, shape-structure, and position information of 

silhouettes were used as the extracted features. This system applied one class support vector machine 

(OCSVM) method to determine the region in the feature space. We must point out that an online scheme 

was used to make the OCSVM model have a self-adaptive function for new emerging normal postures, 

and certain rules were added to improve system performance. The experiment from 24 datasets of  

12 people, including walking, standing, sitting, lying, and falling activities, showed a fall detection rate 

of 100% and a false detection rate of 3%. However, the advanced video segmentation algorithms were 

required in this system to avoid human intervention (to segment the recorded video to clips). This 

disadvantage restricts the system’s use in practice. In [14], a segmentation module was used as the first 

step for the video captured by the camera, and a human silhouette was obtained. This system used the 

ratio of width to height of the silhouette bounding box and the off-diagonal term from the covariance 

matrix as the features for fall detection since these features have great variation between falls and other 
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activities. In training and the performance module, Hidden Markov model is used for different activities 

such as falling, keeling, and other activities.  

The problem of projection may occur in fall detection with 2D grey or color images, which makes it 

difficult to detect falling events that are collinear with the axis of the cameras [15]. As the color  

camera-based systems contain facial characteristics of the subjects, privacy issues are addressed in many 

studies at the same time [4]. Researchers usually choose some methods that avoid capturing facial 

characteristics, such as capturing environment scenes [16] or using depth images [17,18]. In [16], a 

wearable embedded smart camera is connected around the waist, and the histograms of edge orientations 

and strengths for each pixel are used as features. An optical flow-based method was employed to classify 

three activities and good performance was obtained (correct classification rates of falling, sitting, and 

lying down are 86.66%, 86.8%, and 82.7%, respectively). This system can work effectively both indoors 

and outdoors, but is highly invasive for subjects. Gasparrini et al. has proposed an automatic,  

privacy-preserving fall detection method for indoor environments based on depth images captured by the 

Kinect in top-view configuration [17]. Bian et al. proposed a robust fall detection approach by using the 

improved randomized decision tree (RDT) algorithm to extract joints [18]. An ad-hoc algorithm is used 

in a person segment module and all depth blobs of persons are tracked in the tracking module. Once a 

depth blob is near the floor, a fall will be detected. For the body joints, spine and skeletal information 

extracted from the Kinect SDK will be inaccurate when the subject falls or lies down on the floor [15,19]. 

By employing the head joint distance trajectory as an input feature vector, an SVM classifier was used 

to detect falls or other activities. There were 380 samples in the experiments and good performance was 

obtained. In order to deal with the problem of projection occurring in fall detection with 2D grey or color 

images, this paper presents a robust fall detection method based on RGB-D images captured by a Kinect 

sensor. In the method, a Single-Gauss-Model (SGM) for the background and the spatio-temporal context 

tracking algorithm are used.  

3. The Proposed Method 

In this section, the details of the proposed fall detection method are described. In this method, the 

head position of the subject and the coefficients of the floor plane equation are obtained first. In the 

following frames, the tracking algorithm is used to track the head position and the distance from the head 

to the floor is calculated. When the height of the head is lower than an adaptive threshold, the centroid 

height will be used as the second judgment to compare with the adaptive threshold. The fall activity may 

be detected under the condition that both head and centroid heights are lower than the adaptive threshold. 

The basic flow of our fall detection method is shown in Figure 1.  

3.1. Foreground and Centroid Extraction  

During the process of image capture, one Kinect v1 sensor is set in the laboratory hallway with a 

height of 1.2 m to cover the whole laboratory. As the head and centroid heights are calculated by the 

distance formula of point to surface, the position of the Kinect sensor is alterable. The RGB images are 

captured with a 640 × 480 resolution and a 30 fps frame rate, and depth images are captured with a  

320 × 240 resolution at the same time.  
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Figure 1. Flow chart of the proposed fall detection method.  

In order to extract the subject’s head position and centroid position, the human silhouette is extracted 

by the foreground extraction module with the Single Gauss Model (SGM). It is assumed that the 

measurement noise of the camera has a Gaussian distribution. The SGM contains two parameters which 

are named mean value μ and standard deviation σ, as shown in Equations (1) and (2). The parameters 

can be obtained from N depth frames. In our experiments, N is 40.  
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where B_DFn is the n-th background depth frame. It can be proved that the probability within 2.5σ is 

98.76% in the SGM. Based on this, 2.5σ can be used as the threshold to extract the human silhouette 

with Equation (3), and the extraction result of the human silhouette is shown in Figure 2. 
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In order to make the SGM adaptive to changes of scene, it is necessary to update the parameters in 

real-time as follows: 
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where α and β are the learning rates of μ and σ, respectively. In our experiments α and β are both 0.05. 

During the updating process, the parameters of the foreground pixels are kept the same and the 

background pixels are updated. Through the updating process of the parameters, the potential mutation 

caused by error parameters of background pixels can be avoided effectively. The distance between the 

centroid of the silhouette and the floor plane will be used in fall detection. In binary images, the centroid 

is obtained from Equation (6). 
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where f(x,y) is equal to 1 in the silhouette area and 0 in background area, correspondingly. The centroid 

position of Figure 2c is marked by a red asterisk in Figure 3.  

   

(a) (b) (c) 

Figure 2. Extraction of human silhouette. (a) Background depth frame; (b) foreground depth 

frame; (c) extracted human silhouette. 

 

Figure 3. Centroid position of extracted human silhouette. 
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3.2. Head Position Extraction and Head Tracking 

In order to extract the head position, the ellipses are used to find the foreground coefficient by 

searching for silhouette contour points [20]. In the algorithm, there are three ellipses: the central ellipse 

is defined by parameters a and b, the inner ellipse is defined by parameters 3a/4 and 3b/4, and the outer 

ellipse is defined by parameters 5a/4 and 5b/4. In order to compute the foreground coefficient, 40 normal 

segments of the central ellipse’s contour were used, which started on the inner ellipse and ended on the 

outer ellipse. It is clear that the foreground coefficient will obtain the maximum value when the central 

ellipse is fitted with the head edge. 
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   (7) 

where N is the number of segments, D is the half-length of normal segments, and d is the distance from 

the central ellipse point to the silhouette point. The head extraction result of Figure 2c is shown in  

Figure 4. 

 

Figure 4. Head extraction result from the human silhouette in Figure 2. 

Since the head position has been extracted, the dense spatio-temporal context (STC) algorithm [21] 

is used for tracking proposes. In the algorithm, a Bayesian framework is adopted to formulate the  

spatio-temporal relationship between the object and its local dense contexts by using a computing 

confidence map. The maximized confidence map is defined as the new object position. It is  

assumed that x denotes the object position, o denotes the object presented in the test frame, and x*  

denotes the object position in the previous frame. The context feature set is defined as 

 *( ) ( ( ), ) | ( )c

cX c z I z z z x   , where I(z) is the depth value at position z and Ωc(x*) is the neighbor 

set of x*. Then the confidence map is computed by Equation (8). 

      
 

  | | , |cc z X
c x P x o P x c z o P c z o


   (8) 

where P(x|c(z),o) is the conditional probability that bridges the gap between object position and spatial 

context, and P(c(z)|o) is context prior probability. In the spatial-context model, the conditional 

probability learns the relativity spatial relations between different pixels as follows: 

    | , scP x c z o h x z   (9) 
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where hsc
 is a function dependent on the distance and direction of object position x and spatial context 

position z. Just as the conditional probability is computed from two different characteristics, it can 

resolve ambiguities effectively when similar objects appear in close proximity. In the context prior model, 

the context prior probability is computed by the convolution of the depth value of the context position 

and Gaussian weight shown as Equation (10). Additionally, Fast Fourier Transform (FFT) makes the 

learning and detection module fast.  

      *|P c z o I z z x   (10) 

3.3. Floor Plane Extraction 

Fall detection methods are usually based on the distances from head and centroid to floor plane.  

In [17], the MaxHeight depth value and threshold were used to extract the floor plane. The Kinect sensor 

is placed on the top view configuration specifically, otherwise the floor plane cannot be extracted 

accurately. In [18], the four coefficients of the floor plane equation are determined by choosing three 

points from the depth image. However, fewer input points made the system be less robust to noise. 

In our algorithm, the least squares method is used to obtain coefficients after choosing the definite 

floor area. The depth points can defined as (Xi,Yi,Zi), where Xi,Yi and Zi are depth points’ coordinates in 

the real world. As the depth points’ coordinates have been determined, the floor plane equation can be 

described as AX + BY + CZ = 1. Then Equation (11) is satisfied for these depth points.  

1 1 1

2 2 2

1

1

1n n n

X Y Z
A

X Y Z
B

C
X Y Z

   
    
    
    
     

  

 (11) 

and the coefficients can be solved by the least squares method shown as 
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 (12) 

After the coefficients of the floor plane equation have been determined, all depth points should be 

substituted into the floor plane equation. If the subtraction result is smaller than 0.05, the depth points 

will be defined as the floor plane. The criterion is shown as:  

| 1| 0.05AX BY CZ     (13) 

As shown in Figure 5, the floor plane has been extracted effectively, and it is robust to illumination 

and color interference.  
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(a) (b) 

Figure 5. Extracted results of floor plane from depth images. (a) Definite domain of floor 

plane; (b) estimated results of floor plane. 

3.4. Fall Detection 

  

(a) (b) 

  

(c) (d) 

Figure 6. Histogram of head and human in depth images. (a) Head depth image;  

(b) histogram of head in depth image; (c) human subject depth image; (d) histogram of 

human subject depth image. 
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The distance between the head and the floor plane is the main criterion in fall detection, and the 

distance between the silhouette centroid and the floor plane is the second criterion. In order to reduce 

the distance calculation error caused by noise, the histogram of the depth image is fitted by the Gauss 

model and the mean value is used as the depth value of the head and centroid of the human, shown as 

Figure 6. Combined with Sections 3.1 and 3.2, the 3D position of the head and centroid can be 

represented as Head(X,Y,Z) and Centroid(X,Y,Z). 

At last, the distance is calculated by Equation (14) from the known floor plane equation.  

2 2 2

| * * * 1|A X B Y C Z
H

A B C

  


 
 (14) 

When a person first appears in the scene, the head position will be extracted and tracked, and a 

sequence of the head height can be calculated which is marked as H_head. Then, 0.25*H_head1 is used 

as the threshold, which is suggested by reference [22], where H_head1 is the first value of the head height 

that has been calculated. The dynamic threshold made the method adaptive to persons with different 

heights. If the head height in the tracking process is lower than the threshold, the centroid height 

H_centroid will be used as the second judgment. If head height is not lower than the threshold, the 

centroid position and centroid height will not be extracted and calculated. This judgment policy can 

reduce the complexity of the algorithm to a great degree. When the head height and the centroid height 

are both lower than the threshold at the same time, a fall accident can be determined. 

4. Experimental Results and Discussion 

Most depth image-based fall detection methods were proposed after 2012, and no standard 3D depth 

imags database is available to evaluate the performance of different methods and mechanisms. In this 

section, the performance of the proposed method is evaluated by experiments on a dataset with four 

different orientations. The experiments were performed in the simulated home environment. A Kinect 

sensor was used for recording the real video sequence. The recorded video sequence is processed by 

using Matlab2013 on an Intel(R) Core(TM) i5 3.10 GHz CPU and 3 GB RAM. Then the proposed 

method was applied to fall detection on the dataset.  

Some examples of falls in four different orientations are anterior, posterior, left, and right, as shown 

in Figure 7. Figure 7a,c,e,g are frames of color images of falling down in four directions, and  

Figure 7b,d,f,h are frames of depth images of falling down in four directions at the same time. In the 

first frame of each sequence, the head positions have been extracted by the method shown in Section 3.2 

and the threshold can be calculated. The head positions of participants are marked by a green bounding 

box and the centers of the rectangle are marked by a green asterisk. In the following frames, the head 

positions are tracked and the distances from the head to the floor plane are computed and compared with 

the threshold. As long as the distance is lower than the threshold, the distance from the centroid of the 

human to the floor plane will be used as the second judgment. When the double distances are both lower 

than the threshold, the participant will be detected as falling. In the last row of each sequence, the fall 

has been detected and the head position is marked by a red bounding box and a red asterisk. The 

trajectories of the distances from the head and centroid to the floor plane are shown in Figure 8. 

Correspondingly, only when the fall has been detected the distance is marked from green to red. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

Figure 7. Falling down in different orientations. (a) Frames of color images of falling down 

in the anterior direction; (b) frames of depth images of falling down in the anterior direction; 

(c) frames of color images of falling down in the posterior direction; (d) frames of depth 

images of falling down in the posterior direction; (e) frames of color images of falling down 

in left direction; (f) frames of depth images of falling down in left direction; (g) frames of 

color images of falling down in right direction; (h) frames of depth images of falling down 

in the right direction. 
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As shown in Figures 7 and 8, the fall incidents have been detected accurately. In general methods, 

falling is hard to detect when the fall orientation is aligned with the optical axis of the vision sensor [3,4]. 

In these experiments, we got the right detection results although the orientations are on the optical axis 

of the Kinect in the anterior and posterior directions. The adaptive threshold enhances this method to fit 

persons with different heights. One issue with the Kinect is that depth resolution will decrease at large 

distances, even though is robust to illumination. The accurate distance is only 5 m, which limits its 

application in large areas [22,23]. As only the depth image is used, there is no need to consider the 

adjustment between depth images and color images. During the process of head tracking, the sizes of the 

bounding box change largely as shown in the fourth image of Figure 7. A future version of the tracking 

algorithm with a different tracking scale will improve the accuracy of fall detection.  

  

(a) (b) 

  

(c) (d) 

Figure 8. Trajectories of the distance from the head and centroid to the floor in different 

orientations. (a) Falling down from the anterior orientation; (b) falling down from the 

posterior orientation; (c) falling down from the left orientation; (d) falling down from the 

right orientation. 

As fall accidents happen in a very short period of time, the fall detection methods are required to 

obtain fast response abilities. The time for total frames and time per frame of each sequence in our dataset 

have been measured on our PC and the results are shown in Table 1. It can be concluded that the frame 

rate of our method is about 43 frames per second, which is faster than the frame rate of common video 
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with 30 frames per second. This is because our method does not need a pre-processing module to handle 

compact and redundant pixels.  

Table 1. Time consumption of the proposed method. 

Fall Direction Time for Total Frames (s) Time for per Frame (ms) Frame Number 

anterior 3.7241 22.8472 163 

posterior 5.4960 22.3415 246 

left 4.1075 23.0758 178 

right 3.5418 23.9311 148 

5. Conclusions 

In this paper, we have proposed a new robust fast fall detection method which is based on  

depth images captured from a Kinect sensor. The method only requires the construction of a  

Single-Gauss-Model and the determination of the coefficients of the floor plane equation. The high speed  

spatio-temporal context tracking algorithm is applied on the raw depth images to enhance the proposed 

method and reduce the response time to the fall incident. As the Kinect sensor is cheap, the proposed 

method can be easily applied in a smart home environment. Most existing fall detection methods depend 

on posture extraction and classification, and fall and non-fall activities can only be detected in some 

specific environments by methods of pattern classification. However, all postures in fall activities cannot 

be included and learned, no matter how much training data has been used. In the proposed method, only 

the distances from head and centroid to the floor plane are used as judgment, which avoids individual 

differences effectively. As for practical application in the future, the resolution and scope of the depth 

image should be improved. The Kinect v2 sensor will be used. Our further research work will be focused 

on how to solve the problem of the tracking scale as scales are changing during the process of tracking 

in order to improve the accuracy of head position extraction. Other judgments may also be added in the 

proposed method so as to enhance its robustness.  
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