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Abstract: The work being reported is the first electrochemical sensor for tetrodotoxin 

(TTX). It was developed on a glassy carbon electrodes (C) that was modified with  

poly(4-styrenesolfonic acid)-doped polyaniline film (PANI/PSSA). An amine-end 

functionalized TTX-binding aptamer, 5′-NH2-AAAAATTTCACACGGGTGCCTCGGCTGTCC-3′ 

(NH2-Apt), was grafted via covalent glutaraldehyde (glu) cross-linking. The resulting 

aptasensor (C//PANI+/PSSA-glu-NH2-Apt) was interrogated by cyclic voltammetry (CV) 

and electrochemical impedance spectroscopy (EIS) in sodium acetate buffer (NaOAc,  

pH 4.8) before and after 30 min incubation in standard TTX solutions. Both CV and EIS 

results confirmed that the binding of the analyte to the immobilized aptamer modulated the 

electrochemical properties of the sensor: particularly the charge transfer resistance (Rct) of 

the PANI+/PSSA film, which served as a signal reporter. Based on the Rct calibration curve 

of the TTX aptasensor, the values of the dynamic linear range (DLR), sensitivity and limit 

of detection (LOD) of the sensor were determined to be 0.23–1.07 ng·mL−1 TTX,  

134.88 ± 11.42 Ω·ng·mL−1 and 0.199 ng·mL−1, respectively. Further studies are being 

planned to improve the DLR as well as to evaluate selectivity and matrix effects in  

real samples. 
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1. Introduction 

Tetrodotoxin (TTX), known as puffer fish toxin, is one of the most potent nonpeptidic neurotoxins 

because of its frequent involvement in fatal food poisoning, its unique chemical structure, and its specific 

action of blocking sodium channels of excitable membranes [1]. Through the study of cultured  

puffer fish, it was discovered that tetrodotoxin was not metabolically produced within the fish.  

Instead, it is synthesized by several bacterial species, including strains of the families vibrionaceae and 

pseudomonas [2]. Several approaches for the detection of tetrodotoxin identified using the  

enzyme-linked immunosorbent assay (ELISA) technique were reported by Neagu and co-workers and 

involved the use of the tetrodotoxin with alkaline phosphatase (AP) [3]. On the other hand, high 

performance liquid chromatography (HPLC) using fluorescent detection following post-column alkaline 

degradation and a sample preparation procedure for the analysis were established to quantitatively detect 

tetrodotoxin in gastropods and puffer fishes [4]. Recently, Taylor et al. and Yakes et al. reported a 

quantitative antibody-based detection of tetrodotoxin by inhibition assay with a surface plasmon 

resonance (SPR) sensor and the result was compared to the analytical methods [5,6]. It is well known 

that these above-mentioned analytical methods have some limitations compared to electrochemical 

methods [7]. A biosensor is an analytical device incorporating a biorecognition element intimately 

associated with or integrated within a transducer that converts the physicochemical information into an 

electrical signal. Biosensor devices are in principle adaptable, simple to prepare, selective and specific, 

accurate, and timely, with minimal sample pre-treatment involved [8]. To the best of our knowledge, no 

biosensor based on aptamer has been reported for the detection of tetrodotoxin. 

Aptamers are short oligonucleotides (DNA/RNA) that can bind with high affinity and specificity  

to a wide range of target molecules, such as drugs, proteins, toxins or other organic and inorganic 

molecules [9,10].Due to their easy and quick preparation, cost-effectiveness, small size and versatility, 

aptamers have become useful tools for the validation of intracellular and extracellular targets [11–13]. 

A continuously growing number of nucleic acid aptamers are used as research tools to study specific 

protein functions and interactions [14,15]. Many reports on the aptamer-based biosensors for detection 

of various proteins [16–18] and toxin [19–22] have been investigated. One important parameter in the 

fabrication of aptamer-based biosensors is the method for attachment of the aptamer. As well as the 

immobilization of enzyme, peptides, ligands or other biomolecules, aptamer have the same method for 

immobilization since there is no general universally applicable method of particular molecule 

immobilization [23]. However, three principal methods can be used for immobilization of aptamer such 

as adsorption, covalence and the cross-linking method. For this study, the covalent binding method, 

which is the reaction involving the formation of covalent bonds between the functional groups belonging 

to the biomolecule (aptamer) and the support matrix (conducting polyaniline), was applied. Conducting 

electroactive polyanilines have received considerable attention from both academia and industry because 

of their many potential applications such as artificial muscles and sensors [24]. The application of 

conducting polymers to electrochemical biosensors is mainly based on the idea that they can improve 
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direct electron transport between the biomolecule and electrode surface in amperometric biosensors [25]. 

In this context, ordered monolayers of conducting p-doped PANI/PSSA films prepared using 

electrochemical polymerization [26] can perhaps be used. 

This paper aimed to carry out the first electrochemical analysis of tetrodotoxin involving affinity 

interactions, by using glassy carbon electrode modified with selective aptamer immobilized on p-doped 

PANI/PSSA electroactive polymer platforms. The aptamer functioned as the biorecognition probe for 

the amperometric and impedimetric determination of TTX.  

2. Experimental Section 

2.1. Chemicals and Materials 

Tetrodotoxin (96%) was purchased from Latoxan (Valence, France). Phosphoric acid (H3PO3)  

(85 wt%) purchased from Sigma-Aldrich (St. Louis, MO, USA). Aniline, glutaraldehyde (≥50 wt%), 

poly(4-styrenesulfonic acid) (18 wt% in water), sodium acetate anhydrous (99%), acetic acid, and glacial 

(99.7%), were procured from Sigma-Aldrich. The TTX aptamer used in the present study was the 

aminylated DNA-aptamer sequence, 5′-NH2-AAAAATTTCACACGGGTGCCTCGGCTGTCC-3′  

(NH2-Apt), chosen on the basis of the original work of Shao et al. [27] and custom-produced at Inqaba 

Biotec (Pretoria, South Africa). 

2.2. Electrochemical Set-Up and Measurements 

A conventional three-electrode electrochemical cell was used for electrochemical studies. The 

electrolyte (0.1 M sodium acetate buffer (NaOAc, pH 4.8) was always degassed and then blanketed over 

with argon gas during experiments. A modified glassy carbon working electrode (WE, d = 3.0 mm, BAS 

Inc., West Lafayette, IN, USA), a Ag/AgCl reference electrode (BAS Inc., West Lafayette, IN, USA) 

and a platinum wire (99.9%, Sigma-Aldrich) counter electrode were employed. The surface of the 

working electrode was cleaned by successively polishing with alumina polishing powders (Buehler, 

Lake Bluff, IL, USA) of 1 µm, 0.3 µm and 0.05 µm particle sizes in that order. After the polishing step, 

the electrode was rinsed with ultra-pure water and then placed in an ultrasonic bath containing absolute 

ethanol and sonicated for 10 min and rinsed with ultra-pure water. 

2.3. Preparation of TTX Aptasensor 

2.3.1. Electrodeposition of Polystyrene Sulfonic Acid-Doped Polyaniline Film (PSSA/PANI) 

The PANI/PSSA film was first electrochemically deposited on a bare glassy carbon electrode (C) 

from an aqueous solution of H3PO3 (0.1 M) containing 0.05 M aniline (monomer) and 0.025 M PSSA, 

by potentiodynamic electro-oxidation of the monomer at a scan rate of 50 mV·s−1 from -0.1 V to +1.3 V 

for five cycles. The resulting p-doped PANI/PSSA- or pernigraniline blue/PSSA-coated electrode, 

herein referred to as PSSA/PANI//C, was immediately rinsed with ethanol and deionized water in order 

to remove excess reactants and soluble intermediates. 
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2.3.2. Immobilization of the Aminylated Anti-TTX Aptamer (Apt-NH2) onto PANI/PSSA Film 

Immobilization of Apt-NH2 onto the PANI/PSSA layer was effected by using glutaraldehyde as  

a cross-linker, which was based on a procedure reported in the literature [28,29]. Glutaraldehyde is a  

di-aldehyde which forms a covalent bond between its aldehyde group and an amine group of the binding 

molecule [28]. In the present case, –CHO functional groups of glutaraldehyde reacted with the amine 

group of PANI chains at one end and the amine group of aminylated DNA aptamer at the other, resulting 

in the formation of stable covalent bonds [28]. In a typical procedure the PANI/PSSA//C surface was 

reacted with aqueous 2% glutaraldehyde solution for 4 h at room temperature (25 °C). The resulting 

glutaraldehyde-functionalized film (glu-PANI/PSSA) was then rinsed with de-ionized water and further 

exposed to a solution of Apt-NH2 (2 µM) in acetate buffer (0.1 M) for about 4 h at 4 °C. The aptasensor 

produced (Apt-NH2-glu-PANI/PSSA//C) was rinsed with aliquots of 0.1 M acetate buffer and  

stored at 4 °C when not in use. Figure 1 is a schematic representation of the preparation of the  

Apt-NH2-glu-PANI/PSSA//C aptasensor. 

 

Figure 1. Schematics for the development of the TTX aptasensor: (a) electrodeposition  

of PSSA-doped polyaniline onto the carbon electrode; (b) glutaraldehyde-functionalization  

of PANI/PSSA film; (c) immobilization of NH2-aptamer on glu-PANI/PSSA/GC; and  

(d) TTX detection. 
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2.4. Microscopic and Spectroscopic Characterization 

The UV-Vis absorption characteristics of the Apt-NH2-glu-PANI/PSSA film was studied with a 

Nicolet Evolution 100 Spectrometer (Thermo Fisher Scientific, Waltham, MA, USA). The scanning 

electron microscopy (SEM) imaging of the film was performed with a Carl Zeiss Auriga HRSEM  

(Carl Zeiss Microscopy GmbH, Oberkochen). For the UV/Vis analysisthe film was dispersed in 

dimethyl formamide (DMF) under sonication for about 20–30 min. For SEM imaging purposes, carbon 

screen printed carbon electrodes (C-SPE) obtained from DropSens (Llanera, Asturias, Spain) were used 

as platforms. 

2.5. Electrochemical Studies 

Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were performed with 

an IM6ex ZAHNER Elektrik Electrochemical Workstation (ZAHNER-Elektrik GmbH & Co. KG, 

Kronach, Germany) in 0.1 M NaOAc, pH 4.8 and (at a frequency range of 100 kHz to 100 mHz for EIS 

measurements). The aptasensor was incubated in TTX solutions for about 30 min at room temperature. 

After incubation of the sensor in TTX the aptasensor surface was rinsed with the NaOAc buffer to 

remove loosely held TTX molecules before making measurements. 

3. Results and Discussion 

3.1. SEM and UV-Vis Analysis 

Figure 2a–d shows the SEM images obtained at different stages of the preparation of the aptasensor 

on a screen printed carbon electrode (C-SPE). According to Figure 2b, p-doped PANI/PSSA films form 

clusters of flake-shaped particles with diameters of 70–100 nm, which is in contrast to the more or less 

spherically shaped and uniformly dispersed 25–50 nm diameter carbon particles of the C-SPE platform 

(Figure 2a). The PANI/PSSA particles appear to have grown only over certain sites on the C-SPE, which 

can be understood as being because of the fact that not all of its carbon particles are accessible for 

electrochemical reactions. 

Upon the exposure of the PANI/PSSA film to glutaraldehyde, followed by NH2-aptamer, new cloudy 

particle shapes appeared (Figure 2c), confirming that the aptamer molecules were successfully attached 

onto the PANI/PSSA surface via the glutaraldehyde cross-linking process. It also shows that the 

PANI/PSSA framework reorganized itself into clusters of smaller spherical particles with diameter of 

22 to 44 nm on formation of the Apt-NH2-glu-PANI/PSSA supra-molecular assembly, completing the 

aptasensor fabrication process. The SEM image underwent an even more morphological change after 

exposure of the aptasensor to the TTX solution, as can be seen in Figure 2d. Of the three major types of 

surface features in this image (Figure 2d), the dark regions and the random clusters of particles were 

identified as left-over of non-TTX-binding areas, while the ambient smooth and gray shaded region are 

where agglutination occurred between the aptamer and TTX. The darkest regions should definitely 

represent C-SPE sites without PANI/PSSA and hence without aptamer. This indicates that there is a 

strong binding affinity between the immobilized aptamer and TTX and that the preparation of the 

aptasensor was successful. 
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(a) (b) 

(c) (d) 

Figure 2. Scanning electron micrographs of (a) bare C-SPE; (b) PANI/PSSA//C-SPE; 

(c) Apt-NH2-glu-PANI/PSSA//C-SPE; and (d) TTX-Apt-NH2-glu-PANI/PSSA//C-SPE 

(where C-SPE is carbon screen printed electrode). 

Figure 3 displays the UV-Vis spectra of PANI/PSSA, Apt-NH2-glu-PANI/PSSA, and TTX-Apt-NH2-

glu-PANI/PSSA that were dispersed or dissolved in dimethyl formamide (DMF). Figure 3 shows that in 

each step of the aptasensor formation four characteristic absorptions bands (a, b, c, and d) were observed. 

The (d) absorption band can be attributed to chromophores present in DMF. The absorption band 

between 275.5 and 294.9 nm is due to the π → π* transition of benzenoid ring of PANI and PSSA. The 

absorption band (a) corresponds to the C=C chromophores with π → π* electronic transition, and the 

absorbance of this band increases when Apt-NH2-glu-PANI/PSSA is formed, which is due to the increase 

of concentration of C=C in the aptamer system. A huge difference was observed for absorption band (a) 

when the aptasensor was exposed TTX (TTX-Apt-NH2-glu-PANI/PSSA). The 88% decrease in the 

absorbance of band (a) when the aptasensor binds TTX may be due to the delocalization of electrons 

within composite polymer chain. This delocalization makes the C=C chromophores less stable or 

unavailable due to the formation of hydrogen bonds between O and N atoms of the aptamer and the H 

atom of TTX. The absorption band at 327.4 nm (b) corresponds to n → σ* transition of the N−C 

chromophores of PANI. When the TTX is attached to the aptasensor, the absorption (b) becomes more 

pronounced, which is indicative of the reactivity of the binding of TTX to the aptamer. No significant 



Sensors 2015, 15 22553 

 

 

change was observed on the broad band at 623.9 nm (c) for each of the three composite polymer systems. 

The band corresponds to the shift of electron from the benzenoid to the quinoid rings of PANI due to  

π → π* electronic transition. 

 

Figure 3. UV-Vis spectra of PANI/PSSA, Apt-NH2-glu-PANI/PSSA, and  

TTX-Apt-NH2-glu-PANI/PSSA composite materials dispersed in DMF. 

3.2. Electroanalysis of Aptasensor 

Figure 4a shows an overlay of the CVs of PANI/PSSA//C (black), glu-PANI/PSSA//C (red),  

Apt-NH2-glu-PANI/PSSA//C (green) and TTX-Apt-NH2-glu-PANI/PSSA (blue: obtained after 30 min 

exposure of the aptasensor to standard solution of TTX (5 μM)). The EIS spectra (Nyquist plots) in 

Figure 4b were obtained with the same cell solution used for CV by setting the dc bias potentials to the 

formal potentials of a1/c1 and a2/c1 redox couples. The a1/c1 and a2/c1, regardless of the  

film-composition, are due to the PANI film exhibiting two consecutive electrode reactions as already 

well described in the literature [30,31]. In this study, since the PANI was made to be deposited in its 

fully oxidized form (or pernigraniline salt) and always interrogated with cathodic initial scans, c1 is the 

first observed cathodic peak, followed by the second cathodic peak c2, whereas peaks a2 and a1 are the 

respective anodic reverse peaks. In brief, while c1 represents a two-electron reduction of bipolaronic 

segments in pernigraniline-PANI into polarons to form the emeraldine PANI, c2 is the reduction of the 

latter to neutral leucoemeraldine PANI via another two-electron process. The decrease of the peak 

current around −0.1 V and 0.01 V demonstrates an effective affinity binding detection of TTX on the 

Apt-NH2-glu-PANI/PSSA//C electrode. The cathodic peaks (emeraldine and neutral leucoemeraldine 

PANI formation peaks) decrease as the PANI-PSSA electrode loses it conductivity due to modification 

with glutaraldehyde, aptamer and TTX [32].  
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(a) (b) 

Figure 4. CVs (a) and EIS spectra (b) of TTX aptasensor and its electrode materials. 

Conditions: NaOAc buffer (0.1 M and pH 4.8); initial CV scan direction is cathodic; and 

EIS’s E = 0.010 V and f = 100 mHz–100 kHz. The equivalent circuit on top of (b) was used 

to fit the Nyquist plots (Rs, Rct and CPE1 are solution resistance, charge transfer resistance 

and constant phase element, respectively). 

By following the changes in CV characteristics through the progress of sensor fabrication, one could 

observe that the peak currents decreased when glutaraldehyde was attached to the PANI/PSSA surface. 

Further decreases were again observed after the Apt-NH2 molecules were attached to the glu-PANI/PSSA 

surface and then also after the resulting aptasensor was exposed to the TTX solution. At same time, the 

formal potentials, approximated as average of the peak pairs, also shifted to lower and lower values at 

each successive step of the aptasensor fabrication, particularly for the c1/a2 redox peak pairs. A possible 

explanation for the above effects on peak currents and potentials would be that the microenvironment of 

PANI’s electron transfer reactions was successively altered as the different molecular additives and 

functional groups were grafted into it. For the EIS measurements, the redox system of the c2/a1 peak 

pairs was chosen because its charge transfer resistance (Rct) was found to vary more favorably and more 

significantly at each stage of the fabrication process as well as after binding of TTX in contrast to the 

c1/a2 redox system. For analytical signal collection purposes, the simplified Randles’ cell circuit shown 

in Figure 4b (top) was used to fit (χ2 was in the order of 10−4) the semi-circle or ZARC segments of the 

EIS spectra of PANI/PSSA//C (black), glu-PANI/PSSA//C (red), Apt-NH2-glu-PANI/PSSA//C and 

TTX/Apt-NH2-glu-PANI/PSSA//C (blue). 

The Rct increased after the immobilization of glutaraldehyde due to its non-conducting  

behavior [29,33]. The further increase in Rct following the immobilization of Apt-NH2 might be 

attributed to the negatively charged backbone of aptamer causing repulsion of charge balancing counter 

ions [29], in addition to its steric and insulating effects. This is in agreement with the trend observed in 

the CV studies, which is not unexpected considering the fact that the current should be inversely related 

to the Rct [34,35]. 
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3.3. Optimization of the Aptasensor 

Experiments were performed to optimize the concentrations of the cross-linker (glutaraldehyde) and 

recognition agent (aptamer) required for the development of the TTX aptasensor. The percentage change 
in Rct , , ,(% 100 ( ) / )ct ct after ct before ct beforeR R R RΔ = × −  before and after exposure to TTX solution was plotted 

in order to find the critical concentrations of these reagents required in the sensor. The %ΔRct increased 

with increasing concentration of glutaraldehyde in the range 0–0.05 mM, but decreased in the range 

0.05–2 mM. With regard to the aptamer the %ΔRct increased with increasing concentration of aptamer 

in the range 0–0.05 µM and decreased in the 0.05–10 µM range. Therefore, in subsequent preparations 

of the aptasensor 0.05 mM glutaraldehyde and 0.05 µM aptamer were used. 

3.4. Test for Non-Specific Adsorption 

In Figure 5 the CVs and EIS spectra of TTX aptasensor (Apt-NH2-glu-PANI/PSSA//C) are compared and 

contrasted with those of a control sensor (glu-PANI/PSSA//C), which contained all components except 

the aptamer. For the control sensor, it can be seen that the CVs and EIS spectra before and after exposure 

to the analyte (TTX) did not significantly differ. In contrast, the aptasensor exhibited shifts in peak 

currents, peak potentials and charge transfer resistance (as measured by the diameter of the semicircles 

in Figure 5b), thereby confirming that the response obtained for TTX originated from its specific 

interaction with the immobilized aptamer. 

3.5. Dynamic Linear Range and Limit of Detection 

The calibration curves of the optimized TTX aptasensor are plotted in Figure 6 for 0–2.5 ng·mL−1 

TTX and used to determine the sensor’s dynamic linear range (DLR), sensitivity and limit of  

detection (LOD).  

(a) (b) 

Figure 5. (a) CVs and (b) EIS spectra of TTX aptasensor (Apt-NH2-glu-PANI-PSSA//C) 

and the control sensor (glu-PANI/PSSA//C) before and after 30 min exposure to 5 μM TTX 

standard solution in NaOAc buffer (0.1 M, pH 4.8). 
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Figure 6. Calibration plot of the impedimetric TTX aptasensor (main graph); and the plot of 

the analytical linear range of the aptasensor (inset). 

The sensor’s response to TTX revealed an underlying Langmuir adsorption-isotherm process 

characterized by a hyperbolic increase in Rct value with increase in TTX concentration. Therefore, one 

molecule of the aptamer suggestively binds only one molecule of TTX. The DLR of the TTX aptasensor 

was estimated to be 0.23–1.07 ng·mL−1 TTX (see Figure 6 inset), which is narrower than the values 

reported for ELISA and SPR methods [5,36–38]. The sensitivity and LOD of the aptasensor were 

calculated to be 134.88 ± 11.42 Ω·mL·ng−1 and 0.199 ng·mL−1, respectively. The LOD value of the 

aptasensor is lower than the ones reported by Taylor et al. (0.3 ng·mL−1) [5] for a surface plasmon 

resonance (SPR) sensor and Neagu et al. (2 ng·mL−1, R2 = 0.924) [3] for an immunosensor. 

In Table 1, the analytical figures of merit of the TTX aptasensor (impedimetric aptasensor) are 

compared with those of other methods reported for TTX analysis. It can be seen that none of the previous 

studies used electrochemical method to analyze TTX. Though the aptasensor exhibited narrower DLR 

compared to other techniques, its LOD is comparable to those of LC-MS/MS, SPE-GC/MS, ELISA, 

SPR and HPLC. 

Table 1. The analytical parameters of tetrodotoxin determination techniques. 

Method DLR (ng·mL−1) LOD (ng·mL−1) Reference 

LC-MS 94–9375 15.6 [39] 
LC-MS/MS 1–10 0.1 [40] 

HPLC 30–600 1.0 [41] 
SPEGC/MS 0.5–10 0.1 [42] 

SPR 0.01–10 0.3 [5] 

ELISA 
2–50 1.0 [43] 
5–500 0.1 [44] 

40–8000 40 [45] 

Impedimetric aptasensor 0.23–1.07 0.19 This work 
  



Sensors 2015, 15 22557 

 

 

4. Conclusions 

This is the first reported development of an impedimetric tetrodotoxin aptasensor, in particular and 

electrochemical TTX sensor in general. The sensor consists of an amine-terminated aptamer cross-linked 

(with glutaraldehyde) to a p-doped sulfonated polyaniline on glassy carbon electrode. The aptasensor’s 

LOD value is comparable to both chromatographic and ELISA methods [40,42,44]; and the lower value 

of the aptasensor’s DLR (i.e., 0.1 ng·mL−1) is similar to that of the highly sensitive GC/MS method [42]. 

This means that for future studies, the sensor can be further developed for application in real samples. 
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