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Abstract: This paper proposes a real-time feature extraction VLSI architecture for  

high-resolution images based on the accelerated KAZE algorithm. Firstly, a new system 

architecture is proposed. It increases the system throughput, provides flexibility in image 

resolution, and offers trade-offs between speed and scaling robustness. The architecture 

consists of a two-dimensional pipeline array that fully utilizes computational similarities in 

octaves. Secondly, a substructure (block-serial discrete-time cellular neural network) that can 

realize a nonlinear filter is proposed. This structure decreases the memory demand through 

the removal of data dependency. Thirdly, a hardware-friendly descriptor is introduced in 

order to overcome the hardware design bottleneck through the polar sample pattern; a 

simplified method to realize rotation invariance is also presented. Finally, the proposed 

architecture is designed in TSMC 65 nm CMOS technology. The experimental results show a 

performance of 127 fps in full HD resolution at 200 MHz frequency. The peak performance 

reaches 181 GOPS and the throughput is double the speed of other state-of-the-art architectures. 

Keywords: AKAZE; binary feature descriptor; feature extraction; hardware architecture; 

VLSI implementation 
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1. Introduction 

Recently, visual sensor networks (VSNs) have attracted considerable attention in the research  

field. They are able to collect, process and communicate visual information in their surrounding 

environments [1]. They are already available in a wide range of visual applications, such as 

environmental monitoring [2] and virtual reality [3]. Real-time visual feature extraction is a key 

requirement for VSNs. The visual feature is a fundamental algorithm that is widely used in many  

high-level visual applications, such as augmented reality and object recognition [4–9]. Furthermore, the 

local processing of image data can significantly reduce the communication burden. Complex vision 

analysis can also provide VSNs with high levels of intelligence. These algorithms (such as feature 

extraction) enable VSNs to collaborate by exchanging detected features and collectively estimating the 

behavior of the captured object [10]. 

It is difficult to directly embed and locally process in real time for applications on VSNs because the 

feature extraction algorithm is computationally intensive [11]. Numerous efforts have been made to 

accelerate these vision algorithms by VLSI implementation. Huang et al. implemented SIFT [12] on a 

parallel architecture [13] that separately used interactive components for detector and descriptor tasks. 

The accelerator reached 30 fps for VGA images at 100 MHz frequency. In this system, the descriptor 

generation module accounted for 89% of the total time and became the bottleneck. Chiu et al. proposed a 

layer parallel SIFT feature and implemented it on a hardware architecture [14]. The design used an 

integral image technique to accelerate the scale pyramid build. The proposed system achieved 30 fps for 

images with different resolutions. As the image size increased, the number of descriptors was reduced 

due to the limited memory bandwidth. More recent studies have paid closer attention to the acceleration 

of the descriptor part. Jiang et al. introduced a real-time SIFT accelerator with a task-level parallel and 

pipeline technique [15]. In this design, a window dividing method was proposed to avoid sample patch 

rotation in the descriptor. This technique reduced computational complexity and gained a 15× speed 

increase for descriptor generation. The system processed a 512 × 512 image in 6.55 ms. Other hardware 

designs are based on binary descriptors that show significant efficiency improvements. In [11], Wang et al. 

proposed a real-time FPGA-based embedded system architecture that employed a SIFT detector and 

BRIEF [16] descriptor. This architecture achieved 60 fps for 720 p video. In general, most of the current 

designs are based on traditional features, such as SIFT or SURF. These features employ float descriptors 

that may cause a communication burden for the VSNs [17]. For designs based on binary descriptors, 

high throughput was realized at the expense of lower robustness in some aspects of the transformation 

due to the BRIEF descriptor [11,18]. 

In order to achieve real-time performance, the design for the current research is based on the 

accelerated KAZE (AKAZE) feature [19]. The AKAZE feature employs nonlinear scale space and a 

binary descriptor, which provides a considerable trade-off between speed and accuracy. Although AKAZE 

embeds a recent numerical scheme in order to accelerate the scale pyramid build, the computational 

complexity still poses a challenge for the hardware design. Also, considerable memory burden still exists 

due to the data dependency in the pyramid build and descriptor generation. 

In light of the above considerations, this paper proposes a flexible embedded system architecture for 

real-time feature extraction. The architecture embeds a different kind of block-serial scheme in order to 

reduce the hardware cost and a pixel-level parallel scheme to increase throughput. It achieves a high 
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throughput while maintaining a comparable performance to the original AKAZE algorithm. The 

contributions of this work are as follows: 

 The authors believe this to be the first feature extraction design based on the AKAZE algorithm. 

The AKAZE feature was mapped to an octave-serial architecture (OSA) primarily consisting of 

a two-dimensional pipeline array. It decreases the hardware resource requirement and also 

provides sufficient flexibility for the various application fields, characterized as different image 

resolutions, precision and power consumption. 

 A substructure consisting of a block-wise discrete-time cellular neural network (B-DTCNN) is 

presented. It decreases memory demand through the reduction in data dependency. 

 A hardware-friendly descriptor, termed the robust polar binary descriptor (RPB), is presented. 

The polar arrangement of the sample pattern, combined with a simplified technique to realize 

rotation invariance, greatly decreases the memory burden and computational complexity. 

Section 2 analyzes the AKAZE algorithm in order to determine possible obstacles. It also introduces 

the hardware-friendly descriptor, RPB. Section 3 presents the hardware design details. Section 4 presents 

the experimental and simulation results. Section 5 provides the conclusions. 

2. Algorithm Optimization 

This section provides a brief introduction to the AKAZE feature. Further analysis demonstrates the 

advantages and disadvantages of AKAZE to achieve real-time performance for hardware solutions. Finally, 

a hardware-friendly binary descriptor is introduced to reduce memory cost and computational complexity. 

2.1. AKAZE Overview 

The AKAZE feature contains three major stages: nonlinear pyramid build, key point location and 

binary descriptor generation. In the first stage, AKAZE employs the Perona-Malik (P.M.) equation [20] to 

build a nonlinear scale pyramid. In order to construct different sublevels in the pyramid, this method 

diffuses the original image to a series of increasing scale levels using Equation (1), where I is the image 

luminance and k is the contrast factor. In order to accelerate the diffusion process, AKAZE adopts a fast 

explicit diffusion (FED) scheme [20,21] that approximates the solutions by iterations. Each iteration can 

diffuse the image with a small-scale step. Based on variable scale-steps (rather than constant), FED 

greatly reduces the number of iterations: 

2 2
( )
1 | | /

I I
div

t I k

 


  
 (1) 

The key points are located in the second stage. Once the pyramid is constructed, the determinant of 

the normalized Hessian matrix is computed (Equation (2)). Next, the local maxima at each sublevel are 

picked out as candidate key points. In order to search the scale extremes, a potential point is compared 

with other candidate key points within a σ × σ window from sublevel i − 1 to i + 1: 
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The third stage of AKAZE introduces a modified-local difference binary (MLDB) descriptor. 

Typically, MLDB descriptor generation is divided into three steps: main orientation estimation, sample 

patch rotation and binary descriptor generation. Firstly, MLDB estimates the main orientation using a 

SURF-like method based on the histogram. Then, the sample pattern is rotated according to the direction 

of the key point. Finally, the binary descriptors are generated through comparison among the grids in 

three channels (one luminance and two rotated first-order derivatives). 

2.2. AKAZE Analysis 

Brief runtime analysis of AKAZE is conducted on a PC platform (Intel i5-3210M @2.5 GHz) in order 

to optimize the configuration. A “boat” image from the Oxford dataset [22] is used for the AKAZE 

algorithm testing. Figure 1 shows the time usage of each stage. The first stage (nonlinear pyramid build) 

is the most time-consuming component, taking approximately 40% of the total time. The third stage 

requires 0.034 ms to calculate a descriptor. The PC platform can only achieve 3 fps and struggles to meet 

real-time performance for high-resolution images. 

 

Figure 1. Runtime analysis of AKAZE on PC platform (Intel i5-3210M @2.5 GHz). 

Further analysis of AKAZE shows one main advantage and two significant disadvantages for the 

hardware design. As an advantage, AKAZE provides a novel simplified method to find spatial and scale 

extremes. It divides the process into two different steps and introduces candidate key points as 

intermediate data. The memory demand can be reduced because there is no need to align data for scale 

extreme searching in the adjacent sublevels. However, there are still two significant challenges for 

achieving real-time performance. The first challenge is a nonlinear pyramid build. Several nonlinear 

filters must be processed in series in order to build four sublevels within one octave (Figure 2a).  

A nonlinear filter contains various iterations (Figure 2b), each having 17 arithmetic operations  

(Figure 2c). Due to the generation process of the cascade, the increase of sublevels and octaves may lead 

to unacceptable hardware resource usage under the current architecture design [11,13,23]. Also, the 

frame-level intermediate data in a nonlinear filter generate large memory demand. 

The second challenge is the descriptor generation. The AKAZE uses a traditional 3-stage process 

flow. Similar hardware designs [13,14,24] indicate that this design is a bottleneck for system throughput. 

Also, it poses challenges for hardware resources (especially memory demand). Firstly, the pixels around a 

key point are read out in the first and third stages. This not only encumbers the algorithm pipelining in 

the hardware, but also causes significant random memory access. 
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Figure 2. Nonlinear scale pyramid build process: (a) scale pyramid build process;  

(b) process to generate next sublevel (various iterations); (c) operations to update one pixel 

within an iteration. 

Recent studies [11,15,23] show that random access is the main barrier to achieving real-time 

performance. This challenge is difficult to resolve only using hardware design. Also, the data random 

access leads to excessive buffer caching for the intermediate data around a key point. Additionally, for 

rotation invariance, the coordinates (x, y) need to be rotated according to the main direction, θ, in the 

second stage (Equation (3)) as well as the first-order derivative in the third stage, which results in 

numerous triangle functions: 

'

'
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 
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 (3) 

2.3. AKAZE Optimization 

In this section, a hardware-friendly binary descriptor is proposed. It aims to overcome the memory 

burden challenge in the hardware. The challenge results from the number and order of random access, 

which is difficult to overcome only using hardware design. The PRB descriptor is introduced in order to 

find a method to speed up generation. It consists of a polar sample pattern combined with local integral 

images. It successfully converts most random access into regular access. Also, a simplified method to 

estimate the main orientation is proposed based on the polar sample pattern. It further reduces random 

memory access as well as computational complexity. In addition, the PRB descriptor easily pipelines in 

hardware because it only accesses the integral image once. Details of the RPB descriptor are as follows. 

Descriptor generation is always the bottleneck in hardware design. This general process can be 

divided into three stages: main orientation estimation, patch rotation and local descriptor generation. 

Analysis shows that the process contains significant random memory access in the first and third stage, 

which poses a challenge to achieve high throughput (see Section 2.2). Also, the random scatter of key 

points brings extra complexity to the control. Huang [13] proposed an interactive architecture with a  

co-processor for descriptor generation that successfully overcame the control complexity of the random 

distribution. However, 89.7% of the time was used by the descriptor generation. Several hardware 

solutions [11,13,15] were proposed to accelerate the descriptor generation. Although substantial 

improvements were achieved, the processing speed was still unable to match key point detection.  

As such, the current research introduces a hardware-friendly descriptor. 
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The RPB descriptor has three major stages. Firstly, according to the sample pattern, it reads out all 

the grid values for later use. It contains two channels: the grey value and the gradient norm. The main 

orientation is estimated using the grid values of the outermost layer in the first channel. Secondly, 

invariance to rotation is achieved by reordering the sample values according to the main direction. 

Thirdly, pseudo-random pairs are selected for comparison. The two key features that focus on 

simplification of rotation invariance are as follows: 

Sample Pattern: The RPB descriptor employs a novel sample pattern of polar arrangement for rotation 

invariance through reordering and less random memory access. Figure 3a shows the three layers of the 

sample pattern. The arrangement of each layer is similar to DAISY [25] and has various radiuses and 

distances from the center point. For each layer, there are sixteen grids on the circle that matches the 

number of discrete angles for reordering. 

 

Figure 3. (a) Sample pattern containing three layers, where each layer has 17 sample  

grids with polar arrangement; (b) Pairs used for main orientation estimation based on the 

outermost layer. 

Main Orientation: The RPB descriptor adopts a simplified gradient method similar to BRISK [26] 

for rotation invariance. Equation (4) shows that the angle vector, A, is estimated through the sum of 

gradients of specific pairs in the set P. The two-dimensional vector, p, contains the grid coordinates and 

I(p) is the grey value of the first channel. The sixteen selected pairs are symmetrically distributed to 

avoid a division operation (Figure 3b): 

( , )

( ) ( ) ( )
i j

i j i j

p p P

A p p I p I p


      
(4) 

Based on the hardware-oriented optimization, the RPB descriptor reduces both the memory burden 

and computational complexity. In terms of memory usage, random access decreases by 68.7% (650 to 

240 per key point). Based on the integral image, the polar sample pattern changes most of the random 

access into regular access. In addition, the proposed main orientation estimation method does not add 

extra access to the integral image memory, thereby removing approximately 40% of the memory burden. 

Also, the optimized method to estimate the main orientation significantly decreases computations, 

especially in the triangle computation (Table 1). For robustness, the RPB descriptor achieves similar 

matching accuracy compared with the original algorithm; however, accuracy is slightly less in the 

rotation and brightness tests (See Section 4.1). 

 

(a) (b) 
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Table 1. Comparison of operations to estimate main orientation. 

Operations Proposed 
Original 

(SURF-Like) 

BRISK 

(OpenCV) 

Extra Random Access 0 218 240 

Trigonometric Function 1 452 1 

Addition/Subtraction 80 1746 4350 

Multiplication 32 452 1741 

Lookup Tables 32 109 3480 

3. Proposed Hardware Architecture 

This section introduces details of the hardware architecture based on the optimized AKAZE feature. 

The proposed system consists of three main functional parts (Figure 4). In order to achieve high 

throughput with a reasonable hardware cost, three techniques (OSA, B-DTCNN and PRB) are utilized 

in the design. 

 

Figure 4. (a) Proposed OSA architecture with three main stages due to the sublevels’ process 

in pyramid; the different octaves are processed in series with various pixels processed in 

parallel in each module for efficiency; (b) Typical block diagrams of a nonlinear filter 

module and detection module used to illustrate timing design. 
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3.1. Octave-Serial System Architecture 

This section introduces the OSA system architecture (Figure 4). A two-dimensional pipeline array is 

applied to make full use of computational similarities among the different octaves. The OSA architecture 

is able to reduce hardware resources as well as provide additional flexibility to image size and  

speed-precision tradeoffs in real-time. 

The number of octaves directly affects matching accuracy. However, multiple octaves result in extra 

hardware costs. In [11,13,23], similar functional modules, such as key point location and the descriptor 

generation module, are repeated in parallel to process data in the second or third octave. The current 

analysis shows that multiple octaves does not significantly increase throughput. For example, the second, 

third and fourth octave only add 25%, 6.25% and 1.56% extra pixels, respectively. Therefore, processing 

octaves in series significantly reduces hardware costs with only a minimal sacrifice in speed. 

Figure 4a depicts the whole OSA architecture, which can be considered as a two-dimensional pipeline 

array. The vertical pipeline constructs a scale pyramid through cascaded nonlinear filters. It continuously 

reads in the stream of the original or down-sampled image and sends four sublevels within one octave 

to the next stages. There are four horizontal pipelines and each processes one sublevel: (1) locate key 

points based on the Hessian response of adjacent levels, which sequentially searches space and scale 

extremes; (2) generate descriptors depending on the local integral image. Figure 5 shows the processing 

flow. Unlike the general block-wise scheme, this block-partitioning scheme penetrates into the inner 

scale pyramid. The image data of the different octaves are divided into several trunks (Figure 5a) and 

combined in a ribbon-like form for processing (Figure 5b). The accelerator moves to process one chunk 

in the next octave (in the memory) after finishing two chunks in the current octave. In this way, the 

proposed system processes the data of different octaves in series on the same hardware. Figure 5c is an 

example of a two-octave pyramid in which there are four sublevels within one octave and each sublevel 

is processed by one horizontal pipeline. Also, overlap between the adjacent chunks can be added. 

Furthermore, the off-chip memory can cache one more down-sampled trunk if the key points near the 

block border (approximately 15–20 pixels) are necessary in practice; otherwise, these points are ignored 

in the descriptor generation stage. The timing sequence is as follows. Most of the modules, such as linear 

filter (Gaussian, Sobel and Hessian) and detection, are capable of processing three pixels per cycle. 

However, the B-DTCNN and descriptor modules are bottlenecks in the structure. In the current design, 

the B-DTCNN processing ability is 1.64 pixels per cycle, which determines the system throughput (see 

Section 3.2). For each descriptor module, 51 cycles are required to generate a descriptor. Through the 

buffer and discarding schemes, the descriptor module does not stall the pipeline (see Section 3.3). Due 

to the loop-processing scheme, the whole system can run at 127 (200 M × 1.64/(1920 × 1080 × 1.25)) 

fps in full HD, with two octaves in pyramid. 

The OSA architecture has two main advantages. Firstly, an OSA-based system provides considerable 

flexibility in image size, precision and power consumption. Due to the block-wise method, the system 

proposed can easily process images in different resolutions such as 720 p, 1080 p and 4 K. The OSA-based 

system is more robust to image scale change due to the handling of multiple octaves. The power 

consumption can be reduced by approximately 25% when shutting off the last horizontal pipeline. 

Secondly, having a similar hardware cost, the system provides an extra 54% throughput compared with 

previous works [11,13,24]. Due to the change from octave-parallel order to octave-serial order, the 
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similar hardware cost provides a higher degree of pixel-level parallelism within one octave. When the 

pixel-parallelism degree doubles, the second and third octave only yield 25% and 6.25% extra pixels 

processing, respectively (due to the octave-serial order). Hence, the processing speed sharply increases. 

Moreover, due to its design flexibility, other feature extraction algorithms, such as SIFT, can be mapped 

to the proposed architecture. The architecture also provides efficiency and flexibility to algorithms that 

use linear filters to construct pyramid. Although the OSA architecture greatly accelerates key point 

detection, the throughput is still limited by the descriptor generation module and the nonlinear filter 

module. These challenges are addressed in the following sections. 

 

Figure 5. (a) Block-partitioning scheme in a nonlinear scale pyramid; (b) Specific order to 

process octaves in series, where different blocks in multi-octaves are divided and combined 

in a ribbon-like form to fit the octave-serial system architecture; (c) An example of a  

two-octave pyramid. 

3.2. Block-Serial DTCNN 

This subsection presents a substructure named B-DTCNN that significantly decreases memory 

demands brought about by the nonlinear pyramid construction. An analysis of the relationship between 

the Gaussian convolution and nonlinear diffusion provides a block-wise serial strategy. The strategy 

adopts elastic overlap between blocks in order to gain a better trade-off between accuracy and hardware 

costs. Finally, the corresponding hardware structure is presented, which contains a Ping-Pong structure 

to accelerate throughput. 

The DTCNN architecture [27] is used to construct the pyramid because of its local connection and 

parallelism. Due to frame-level data dependency in iterative filters, the intermediate data cache results 

in a significant memory demand (see Section 2.2). Therefore, it could only use block level rather than 

whole image processing. Furthermore, the nonlinear pyramid requires a series of images at different  

run-time stages. In [28], a sequential DTCNN architecture was proposed based on FPGA. The computing 

task of pixels in an iteration was mapped to one cell where the images at different run-times could be 

easily passed to the next stage. However, the buffers between the different stages resulted in long latency 

and memory costs. Inspired by the above design, this paper proposes a B-DTCNN, in which pixels within 

a block are processed in parallel. 
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The removal of frame-level dependency is based on the following analysis. When the flow function, 

g, becomes a constant function, an anisotropic diffusion Equation (5) evolves to linear diffusion  

Equation (6) and the nonlinear scale pyramid becomes a Gaussian scale pyramid: 

( (| |) )
I

div g I I
t


  


 (5) 

( )
I

div I
t


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
 (6) 

The linear diffusion equation can be solved two ways. One way is the Gaussian template convolution 

with the original images, where the evolution time, t, is mapped to the scale parameter, σ, in Equation (7). 

The other way is a numerical scheme identical to anisotropic diffusion (such as an explicit scheme). The 

first solver shows that the longer the distance between the pixel and center, the less it contributes to the 

result; the corresponding pixels have little impact when the distance is more than a given threshold. 

Moreover, the threshold distance is proportional to the evolution time, e, in each stage: 

21
, 0,1,2...

2
i it i   (7) 

The block layout (Figure 6) has three key parameters: overlapping pixels, O, which directly affect 

diffusing accuracy; block width, W; and block height, H, all of which determine the hardware cost and 

system throughput. In general, the mean square error (MSE) is used to evaluate the difference between 

the original pyramid, I, and the optimized I′(O, W, H). 

: ( , '(O,W,H))DistortionDiffusin Eg MS I I  (8) 

 

Figure 6. A block-serial scheme in B-DTCNN where the frame-level data dependency is 

deconstructed to block-level one. The blocks of different stages choose elastic overlapping 

pixels due to time steps for different trade-offs between accuracy and hardware costs because 

the block configure determines the size of the PE arrays. 

Figure 7 shows data flow and hardware implementation. From the view of PE array, two symmetric 

register arrays are used to construct a Ping-Pong structure (Figure 7a). In each iteration, the ALU array 

executes the arithmetic operation and exchanges the internal temporary data with one register array when 

the other register array switches data with the external modules. Inside a PE, there are four registers to 

cache grey values and nonlinear coefficients of two channels separately and to communicate data with PEs 

in North, South, East and West (NEWS) directions (Figure 7d). Each iteration requires four cycles. After 

several iterations, the block of data is sent to the next stage for further processing. The speed of the 

nonlinear filter block is determined by the number of iterations and the size of the processing array, 
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which further determines the throughput of the vertical pipeline. For the timing consideration, Figure 7b 

shows an example of the B-DTCNN module in the first nonlinear filter (5 × 9 array). Due to the diffusion 

parameter, it only has one overlapping pixel. Therefore, it requires 12 cycles (3 iteration) and outputs 21 

(3 × 7) pixels. The speed is 1.75 (21/12) pixels/cycle. For each row, “padding” pixels are used on the 

border and idle cycles are used to synchronize the other two nonlinear filters. Hence, the unified 

processing speed is 1.64 pixels/cycle. 
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Figure 7. (a) Data flow of the Ping-Pong operations. The arithmetic operations and data 

preparation are done in parallel; (b) Typical timing sequence to process one block;  

(c) Diagrams of B-DTCNN array in which PEs are connected in North, South, East and West 

(NEWS) directions to communicate data during iterations; (d) Inner structure of each PE 

that caches coefficient values and gray values of two channels in local registers. 

 

Figure 8. Error between the diffused images using two kinds of iterations (full-frame 
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The pyramid distortion dramatically decreases when the overlapping pixels increase (Figure 8).  

In general, the overlapping pixels are set to more than 2σ to minimize the error (in the order of 10−5), 

which conforms to the solver of the Gaussian convolution (where the radius of the Gaussian template is 

always 2σ ~ 3σ). In the current hardware design, the memory demand decreases by approximately 80% 

compared with the design in [28]; furthermore, there is only 13.7% redundant pixel computation in the 

image boundary. 

3.3. Robust Polar Binary Descriptor Module 

This subsection introduces the descriptor generation module. The structure is based on the proposed 

hardware-friendly RPB binary descriptor. The hardware/software co-design successfully reduces the 

random memory access number and adjusts the access order. Hence, the RPB descriptor can be mapped 

to a three-stage pipeline. Finally, this module is able to generate the descriptor at relatively high speeds. 

Figure 9c shows that the descriptor generation module primarily consists of a three-stage pipeline in 

the hardware. Firstly, two channels of one sublevel (Figure 9a) are used to construct the integral image 

and both results are combined. This operations reduce the memory random access. The memory block 

consists of four partitions to further speed up the random access, especially for the integral image [23]. 

Also, the circular data dependency around a key point results in significant memory demand. Therefore, 

the integral images are compressed. One way is through module-N arithmetic based on [29]. The other 

way is through general rounding and saturation operations with minimal accuracy loss. Secondly, all the 

grid values are read out and then buffered in cache. The main orientation is estimated based on the first 

sixteen grid values. Thirdly, the rotation invariance is achieved by reordering the sixteen grid values in 

each layer. Then, comparisons are performed in order to generate the final binary descriptor (Figure 9c). 

The following analysis shows that the proposed structure has strong robustness against random memory 

scatter access. The whole process can be treated as a three-stage pipeline. The most time-consuming 

stage is to read the sample grid from memory. The operation requires 51 cycles. The average speed to 

feed a row in memory for an integral image is 156 cycles. The key points are abandoned when the 

number of points exceeds 10 in three continuous rows (each containing 256 pixels) within one sublevel. 

According to the test on the Oxford datasets, the extreme case does not occur. Within one sublevel, the 

average number of key points in each row is less than one. Therefore, the descriptor generation module 

speed matches the detection speed in most cases. 

Due to the co-design of hardware and software, the descriptor generation module achieves real-time 

performance. The optimized method to estimate the main orientation enables the process to be pipelined. 

The memory burden is reduced by the integral image and the novel sample pattern. The random access 

is further accelerated by the embedded memory partition scheme for the integral images. For the whole 

architecture with four modules, the peak generation speed is 12.5 cycles per key point, which matches 

the detection speed in most cases. 
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Figure 9. (a) An example of the input sublevel with key points detected; (b) An example of 

the binary descriptors in which each grid represents eight binary bits; (c) Block diagram of 

descriptor generation module containing three main stages: integral image build, grid value 

read-out with main orientation estimation, and grid values comparison. 

4. Simulation and Verification 

In this section, the performance of the optimized AKAZE is tested using detector repeatability and 

matching accuracy metrics. The hardware implementation details are also presented (focusing on system 

throughput and hardware cost). 

4.1. Feature Accuracy 

Firstly, a brief introduction to the test configuration is provided. The pyramid parameter is selected 

due to the flexibility with octaves that result from the proposed architecture. There are two octaves, each 

with four sublevels. In the benchmark, fixed-point precision is adopted in the optimized AKAZE with 

various bit widths in the different stages (while maintaining the original floating-point precision in the 

original one). In order to assess the accuracy of the different transformations, image sets from the Oxford 

datasets are adopted for algorithm evaluation. The benchmark criteria is introduced below. The 

repeatability [30] is selected to measure the ability of the detector to extract repeatable key points. The 

overlap error is less than 0.4. A third-part framework [31], used in [32], is applied to evaluate the 

descriptor. In the benchmark, matching accuracy is mainly used to show the robust quality of the key 

points, which combines the detector and descriptor. 

Figure 10 shows the feature-matching results that more intuitively demonstrate the simulation results. 

Quantitative results are provided for comparison (Figure 11 and Table 2). The results show that the 

optimized algorithm obtains similar performance compared with the original AKAZE algorithm. Table 2 

indicates that, on average, the matching accuracy of the proposed feature only marginally drops 

(approximately 1%–2%). Figure 11 also shows these results. The matching accuracy in the rotation 

change drops a little at the boundary of each discrete angle for the proposed RPB descriptor (Figure 11i). 

Also, there are significant changes in brightness when the accuracy declines (Figure 11j) because of the 

constant contrast factor, k, in Equation (1) rather than an adaptive one as in the original AKAZE. The 
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scaling change improvement can be attributed to the adjustment of the scale parameter in the second 

octave. The chosen scale parameter is similar to SIFT. 

(a) Trees (b) Leuven

(c) Bark (d) Ubc

(f) Bikes (f) Boat

(h) Graf (i) Wall  

Figure 10. Feature matching results. 

Table 2. Comparison of average matching accuracy. 

  Brightness Gaussian Viewpoint Rotation Scaling 

Boat 
AKAZE 87.47% 93.29% 78.53% 95.51% 83.03% 

Proposed 83.70% 93.78% 78.95% 93.99% 82.30% 

Trees 
AKAZE 88.97% 89.45% 72.66% 90.74% 80.26% 

Proposed 88.07% 92.77% 76.75% 92.57% 82.55% 

Bikes 
AKAZE 90.03% 95.34% 77.17% 91.01% 82.89% 

Proposed 88.03% 94.69% 76.81% 88.32% 81.76% 

Bark 
AKAZE 93.24% 95.92% 76.80% 92.14% 86.18% 

Proposed 90.88% 95.20% 76.53% 93.66% 84.37% 

Graf 
AKAZE 88.37% 95.96% 77.92% 93.23% 85.00% 

Proposed 84.06% 95.64% 77.65% 91.01% 82.69% 

Leuven 
AKAZE 90.80% 96.36% 78.73% 89.27% 84.83% 

Proposed 89.21% 94.86% 78.86% 85.50% 82.58% 

Ubc 
AKAZE 89.43% 93.25% 79.24% 94.43% 82.33% 

Proposed 88.25% 94.28% 81.48% 91.52% 83.68% 

Wall 
AKAZE 87.98% 89.06% 77.64% 93.05% 82.81% 

Proposed 85.09% 91.68% 76.48% 95.09% 83.58% 
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Figure 11. Comparison of detector repeatability (a–f) and matching accuracy (g–j). 

4.2. Hardware Performance 

The proposed architecture is mapped to hardware using TSMC 65 nm CMOS technology. Due to lack 

of AKAZE-based hardware designs, the current design is mainly compared with state-of-the-art works 

based on SIFT or SURF, which have similar workflows (see Table 3). Figure 12 shows a comparison of 

hardware costs. Figure 13 shows the layout of the die, which is generated by the integrated circuit 

compiler (ICC). Table 4 provides a summary of the hardware resources. 
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The multiplication and addition are taken into account for the measurement of peak performance [33]. 

For the linear filter module, there are 3n − 1 fixed-point operations per pixel, where n is the template 

size. For the B-DTCNN module, there are 17 operations/pixel for every iteration. Each descriptor 

generation module is capable of calculating three key points per row. Hence, the speed to process a key 

point is 0.047 (4 × 3/256) key points per pixel. For each key point, there are 31 operations to estimate 

the main orientation and 306 operations to construct the sample grid. The operations required to generate 

descriptors are 20 (2 + 0.047 × (306 + 31)) operations/pixel. Table 5 provides a summary of the number 

of operations in each stage. In total, the whole structure reaches 181 (127 × 1920 × 1080 × 1.25 × 550) 

GOPS. In order to compare the processing speed, the throughput is normalized to the unit frequency and 

the equivalent gate in which the memory is converted to gate according to TSMC 65 nm technology. 

Figure 12d and Table 3 show that the proposed system is nearly twice as fast as comparable  

state-of-the-art works. Figure 12c shows that the high throughput can be attributed to the proposed RPB 

descriptor, which is no longer the bottleneck in the hardware. 

 

Figure 12. Comparison of hardware cost (a,b) and process speed (c,d). 
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Figure 13. Layout of the proposed AKAZE accelerator. 

Table 3. Comparison of performance. 

 
Reference 

[23] 

Reference 

[34] 

Reference 

[13] 

Reference 

[14] 

Reference 

[15] 
Proposed Proposed 

Approach SURF SURF SIFT SIFT SIFT AKAZE AKAZE 

Pyramid 1 (3, 4) (1, 5) (3, 6) (2, 4) (2, 4) (2, 4) (3, 4) 

Platform ASIC ASIC ASIC ASIC FPGA ASIC AISC 

Frequency 200 MHz 27 MHz 100 MHz 100 MHz 100 MHz 200 MHz 200 MHz 

Memory 3.2 Mb - 5.73 Mb 0.55 Mb 7.8 Mb 2.12 Mb 2.12 Mb 

Gate 0.6 M - 1.32 M 0.7 M - 0.95 M 0.95 M 

Resolution 1920 × 1080 640 × 480 640 × 480 1920 × 1080 512 × 512 1920 × 1080 1920 × 1080 

Speed 57 fps 30 fps 30 fps 30 fps 153 fps 127 fps 121 fps 

Throughput 0.118 G 0.0092 G 0.0092 G 0.062 G 0.040 G 0.263 G 0.251 G 

Throughput per gate 2 

(Pixels/s@1 MGate) 
31.2 M - 1.31 M 49.8 M - 85.9 M 81.8 M 

Throughput per frequency 

(Pixels/s@1 MHz) 
0.59 M 0.34 M 0.092 M 0.62 M 0.40 M 1.3 M 1.2 M 

1 Pyramid parameter is (octaves, sublevels); 2 The memory is converted to gate according to TSMC 65 nm CMOS technology. 

Table 4. Characteristics of the proposed accelerator. 

AKAZE Accelerator 

Process TSMC 65 nm1p10m 

Frequency 200 MHz 

Gate 0.95 M 

Memory 2.12 M bit 

Size 4 mm × 3.3 mm 

Speed 127 fps (1920 × 1080) 
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Table 5. Operations in each stage. 

Stage 
Average Operations 

(Operations/Pixel) 

Nonlinear Pyramid Build 290 

Key Point Location 240 

Descriptor Generation 20 

Total 550 

5. Conclusions 

This paper introduces several algorithm and hardware co-design techniques that can realize  

real-time acceleration for feature extraction. The proposed system maps AKAZE features to a highly 

flexible system architecture OSA. This provides elastic pyramid parameters and also considerably 

reduces hardware costs. Two other techniques, B-DTCNN and RPB, are employed to reduce the memory 

burden, which is the main bottleneck in the hardware design. Based on the above optimizations, the system 

achieves significantly high throughput for full HD images while maintaining similar accuracy to the 

original algorithm. 
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