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Abstract: Falling is a common problem in the growing elderly population, and fall-risk 

assessment systems are needed for community-based fall prevention programs. In 

particular, the timed up and go test (TUG) is the clinical test most often used to evaluate 

elderly individual ambulatory ability in many clinical institutions or local communities. 

This study presents an improved leg tracking method using a laser range sensor (LRS) for a 

gait measurement system to evaluate the motor function in walk tests, such as the TUG. 

The system tracks both legs and measures the trajectory of both legs. However, both legs 

might be close to each other, and one leg might be hidden from the sensor. This is 

especially the case during the turning motion in the TUG, where the time that a leg is 

hidden from the LRS is longer than that during straight walking and the moving direction 

rapidly changes. These situations are likely to lead to false tracking and deteriorate the 

measurement accuracy of the leg positions. To solve these problems, a novel data 

association considering gait phase and a Catmull–Rom spline-based interpolation during 

the occlusion are proposed. From the experimental results with young people, we confirm  
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that the proposed methods can reduce the chances of false tracking. In addition, we verify 

the measurement accuracy of the leg trajectory compared to a three-dimensional motion 

analysis system (VICON). 

Keywords: gait measurement; timed up and go; laser range sensor; Kalman filter; data 

association; spline-based interpolation 

 

1. Introduction 

Falling is a leading cause of unintentional injury and death in the elderly [1,2] and can also result in 

impaired mobility, disability, fear of falling and reduced quality of life [3–5]. Unsurprisingly, the 

prevention of falls in the elderly is a public health priority in many countries across the world [6–8]. 

Falling is a common problem in the growing elderly population, and there is a need for effective and 

convenient fall-risk assessment tools that can be used in community-based fall prevention programs. 

There are many tests that assess the motor function of the elderly. In particular, the timed up and go 

test (TUG) is the clinical test most often applied to evaluate elderly individual ambulatory ability in 

many clinical institutions and local communities [9]. It is also listed as one of the main measurement 

tests in a guide to physical fitness for the elderly [10]. In the TUG, as shown in Figure 1, a participant 

rises from a chair, walks three meters, turns around a marker, walks back to the chair and sits down. 

The participant is instructed to perform the TUG at maximum walking speed. To evaluate the fall risk 

of the participant, walking parameters, such as walking speed (m/s), cadence (step/s), stride length (m), 

step length (m) and step width (m), are used. To measure these walking parameters for the evaluation 

of the risk of falling from the TUG, a measurement system that can measure the trajectory of both legs 

across several meters is required. 

 

Figure 1. Appearance of the timed up and go test (TUG) measurement in actual 

community health centers. 

In many cases, force plates [11,12] or three-dimensional motion measuring devices, such as the 

VICON system [13,14], have been used to measure the walking parameters with high reliability. 

However, because of their cost, scale and lack of convenience, it is difficult to install these devices in 

community health centers. Therefore, as shown in Figure 1, since the measurement of the effects of 
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this training is carried out by observation using a stopwatch in actual community health centers, it is 

difficult to measure the walking parameters for fall-risk assessment of the participant. 

Much research has used wearable IMUs for assessing clinical tasks [15–18]. As a non-contact 

measurement system, an ultrasonic sensor, a laser range sensor (LRS) [19] or an RGB-depth sensor, such 

as the Microsoft Kinect [20], can be used. These devices are comparatively small and inexpensive. 

Several methods of tracking people’s center of gravity using these devices have been proposed [21–26]. 

In [21], a sonar-sensor-based walking human detection method has been proposed. In [22], a pedestrian 

tracking system using multiple mobile robots equipped with an LRS at the trunk height has been 

proposed. In [23,24], people tracking with the sample-based joint probabilistic data association filter for 

mobile robot navigation has been proposed. In [25], a people detection and tracking method using an 

LRS and a camera has been proposed. To detect humans, the LRS was installed at shin height, and the 

leg detection method based on three observed leg patterns from LRS data has been proposed. In [26], a 

robust multi-person tracking based on the histograms of oriented gradients, like classification using the  

RGB-depth data, has been proposed. To measure the walking parameters, the system has to track both 

legs and obtain their positions. Several methods to obtain the posture and the lower limbs of a pedestrian 

based on the RGB-depth data have also been proposed [27–30]. To measure walking parameters in 

several meter walk tests, such as the TUG, the sensor must be able to obtain high accuracy distance data 

over a wide range. In this study, we develop a gait measurement system using an LRS, one of  

the non-contact measurement systems, because it is necessary to assess many participants in a short 

time in actual community health centers. The LRS is a comparatively small and inexpensive device 

and can obtain highly accurate two-dimensional distance data over a wide range. To measure the 

walking parameters, the LRS is installed at shin height, and the system detects and tracks both legs of 

the participant. A method used to track both legs and to measure walking parameters based on the LRS 

data has been proposed and verified in straight walk tests [31,32]. Previously, we proposed a leg detection 

method with five observed leg patterns and global nearest neighbor (GNN)-based [33] data association 

considering the state of each leg [34] to reduce losing track of the leg and the false tracking for  

several meter walk tests, such as the multi-target stepping task. In [34], since the sampling time is 

sufficiently shorter than the gait cycle time, a constant velocity motion model is given. In [35], a biped 

walking model with a walking frequency has been proposed. In the biped walking model, a constant 

velocity motion model is given for both legs’ tracking. In [36], four gait phases assuming the 

acceleration and deceleration on the swing leg were defined, and a simplified acceleration motion 

model based on the gait phases has been proposed. Since participants attempt to perform the TUG at 

maximum walking speed, the change of the leg speed in the TUG is generally larger than in normal 

walking. Therefore, in this study, an acceleration model taking gait phase into account [36] is used. 

Particularly during the turning motion in the TUG, both legs might be close to each other, and one 

leg might be hidden from the sensor. In addition, the moving direction of the leg changes rapidly 

because of the turning motion. Furthermore, LRS distance data are likely to be disturbed during the 

turning motion, and the observed leg positions might not be correctly calculated using the leg patterns. 

Figure 2 shows the leg trajectories measured by the LRS system and the VICON system. As shown in 

Figure 2a, these situations are likely to lead to false tracking via switching of the left and right legs. 

Moreover, if the leg is unobservable from the LRS, the leg position is obtained as the position 

predicted based on the state equation of the Kalman filter. In the turning motion, the time that a leg is 
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hidden from the LRS is longer than that in straight walking, and the moving direction of the leg rapidly 

changes. As shown in Figure 2b, the situation is likely to lead to deterioration in the measurement 

accuracy of the leg positions. To improve leg tracking in these situations, a novel data association 

considering gait phase and a Catmull-Rom spline-based [37] interpolation during the occlusion  

are proposed. 

 

Figure 2. Top view of the leg trajectories and the problems to be solved for the TUG 

measurement. (a) False tracking. (b) Deterioration of the measurement accuracy during  

the occlusion. 

To verify the effectiveness of the proposed method, experiments with seven young people were 

carried out. The trajectory of both legs at the LRS height acquired by the proposed system were 

compared to the result measured using a three-dimensional motion analysis system (VICON). 

2. System Overview 

2.1. Configuration 

Figure 3a shows a proposed gait measurement system for the TUG. The system consists of an LRS, 

a personal computer, a marker and two calibration poles. As shown in Figure 3a, three TUG  

phases (forward, turning and return phases) are defined to verify the measurement accuracy in each 

TUG phase.  

 

Figure 3. Gait measurement system using an LRS for the TUG. (a) System configuration. 

(b) Image of the LRS scan data. 
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In the system, the LRS is installed at shin height (0.27 m in our experimental system) and captures 

distance data by scanning a single laser beam in a horizontal plane, as shown in Figure 3b. In this 

study, as shown in Figure 4, the UTM-30LX (Hokuyo Automatic Co, Ltd., Osaka, Japan [19]) was 

used. Table 1 shows the specification of the UTM-30LX. The UTM-30LX has a scanning range from 

−135°–135° in steps of 0.25° (0° is in the front of the device), and one scan is completed in  

0.025 s (40 Hz). The UTM-30LX was attached to the personal computer using a USB 2.0 port. In this 

study, the personal computer was a Panasonic Let’s note LX3 with a 2.1-GHz Intel Core i7-4600U 

processer. The raw scan data provided by the device contain 1081 distance data expressed in 

millimeters and represented using 18 bits with a total of 3243 bytes per scan. 

 

Figure 4. Appearance of the UTM-30LX. 

Table 1. Specifications of the UTM-30LX. 

Parameters Values 

Laser Wavelength 905 nm, Class 1 

Power Source 12 V ± 10% 

Current Consumption 0.7 A, max 1.0 A 

Detection Range 0.1–30 m, max 60 m 

Measurement Accuracy 
0.1–10 m: ±0.03 m 
10–30 m: ±0.05 m 

Scan Angle 270° 

Angular Resolution 0.25° (360°/1440) 

Scan Time 25 ms (40 Hz) 

Interface USB 2.0 

Weight 0.233 kg 

2.2. Algorithm 

As shown in Figure 5, the system consists of three main processes. In the calibration process before 
TUG measurement, the system measures the leg width lw  of the participant at shin height and aligns 

the field and the LRS using two poles as described in [38]. In the TUG measurement process, the 

system scans and saves LRS distance data. In the gait analysis process, after the participant finishes the 
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TUG, the system detects the legs using the saved LRS scan data and tracks both legs using the Kalman 

filter, taking into account the gait phase and interpolation based on the Catmull–Rom spline during the 

occlusion. Section 3 presents the detail of the human walking model for the Kalman filter. Section 4 

presents the leg detection. Section 5 presents the detail of the leg tracking taking into account the gait 

phase and interpolation based on the Catmull–Rom spline during the occlusion. 

 

Figure 5. Algorithm of the gait measurement system using a laser range sensor (LRS) for 

the TUG. 

3. Human Walking Model 

During normal human walking, one leg swings by pivoting on the other one. The role of each leg 

alternates by landing and moving in shifts in a rhythmic pattern. Zhao and Shibasaki proposed a 

simplified acceleration walking model for steady walking [36]. At the start and end of the TUG, the 

participant is stationary. To take into account the stationary state, as shown in Figure 6, an extended 

walking model, including the state where both legs are in the stance phase and swing phase, is 

proposed. Six gait phases are defined as follows. Phase 0 is the state where both legs are in the stance 

phase. Phase 1 is the state where the left leg is accelerating in the swing phase and the right leg is in 

the stance phase. Phase 2 is the state where the left leg is decelerating in the swing phase and the right 

leg is in the stance phase. Phase 3 is the state where the left leg is in the stance phase and the right leg 

is accelerating in the swing phase. Phase 4 is the state where the left leg is in the stance phase and the 

right leg is decelerating in the swing phase. Finally, Phase 5 is the unlikely state in human walking 
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where both legs are in the swing phase. The gait phase can be identified based on the positional 

relationship between the legs and velocity. 

 

Figure 6. A simplified human walking model. 

3.1. State Equation of the Kalman Filter 

Leg position and velocity is estimated using the Kalman filter with an acceleration motion model 

considering the gait phase. The discrete time model of leg motion is given as follows: 

( )1 1 1 ,f f f f
k k u k k f L R− − −= + + Δ =x Ax B u B x  (1)

where 

2

2

1 0 0 2 0

0 1 0 0 2
,

0 0 1 0 0

0 0 0 1 0

u

t t

t t

t

t

Δ  Δ 
  Δ Δ  = =
   Δ
   Δ   

A B = B  and 
Tf f f f f

k k k k kx y x y =  x   . 

( ), :f f f
k k kx y = p  is the estimated position and ( ), :f f f

k k kx y = v   is the estimated velocity of the leg  

( ,f L R= , where L and R indicate the left and right legs, respectively). 
Tf f f

k k kx y =  u    is the 

acceleration input vector corresponding to the gait phase. k k
Tx yf

k n n Δ =  x    is the acceleration 

disturbance vector, which is assumed to be zero mean and has a white noise sequence with covariance 
Q . tΔ  is a sampling time. Then, the measurement model is as follows: 

f f
k k k= +y Cx w  (2)

where 
1 0 0 0

0 1 0 0

 
=  
 

C . k k
Tx y

k n n =  w  is the measurement noise, which is assumed to be zero 

mean and has a white noise sequence with covariance R . 
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3.2. Gait Phase Identification 

From validation compared with a force plate [38], it is possible to identify the gait phase (in the 

stance phase or swing phase) considering the speed of both legs in human walking. The condition 

where the right leg is in the stance phase is: 

_
R L R
k k k st thv< ∨ <v v v  (3)

The condition where the right leg is in the swing phase is: 

_
R L R
k k k sw thv> ∨ >v v v  (4)

where _st thv  and _sw thv  are the thresholds of the maximum speed in the stance phase and the minimum 

speed in the swing phase, respectively. The gait phase of the left leg is identified in the same way. 

Then, the gait phase is identified considering the relative positional relationship of both legs and 

velocity. First, if both legs are in the stance phase, the gait phase is identified as Phase 0. Second, if the 

left leg is in the swing phase and the right leg is in the stance phase, the gait phase is identified based 

on the inner product of the velocity vector of the left leg and the relative position vector of the right leg 

from the left leg: 

( )R L L
k k k− ⋅p p v  (5)

If Equation (5) has a positive value, the gait phase is identified as Phase 1. Otherwise, the gait phase 

is identified as Phase 2. If the left leg is in the stance phase and the right leg is in the swing phase, the 

gait phase is identified in the same way. Finally, if both legs are in the swing phase, the gait phase is 

defined as Phase 5. 

4. Leg Detection 

The observed leg positions ( )1, ,j
k j J= ⋅⋅⋅y  are calculated based on the leg width lw  and five 

observed leg patterns [34].  
First, to calculate the leg positions, the system searches for edges ( )1, ,h

m ke m M= ⋅⋅⋅  from the LRS 

scan data using the following equation: 

1 2i i ll l w+− >  (6)

where il  is the i-th laser-scanned distance data from the right of an LRS. Moreover, the detected edges 

are identified by 1, 1B F
m me i e i+= = +  when 1i il l +>  and 1, 1F B

m me i e i+= = +  when 1i il l +<  ( ,h F B= , where 

F and B indicate the forward and backward edges, respectively). kM  is the total number of detected 

edges at time step k . 
Then, the system calculates the observed leg positions ( )1, ,j

k j J= ⋅⋅⋅y  considering five observed leg 

patterns based on their spatial relationship and the width ew  between the edges. As shown in Figure 7, 

the five observed leg patterns are SL (single leg), LT (legs together), FS_O (forward straddle 

observable), FS_U (forward straddle unobservable) and UO (unobservable). 
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Figure 7. Leg detection using five observed leg patterns [34]. (a) single leg (SL) pattern;  

(b) legs together (LT) pattern; (c) forward straddle observable (FS_O) pattern; (d) forward 

straddle unobservable (FS_U) pattern; (e) unobservable (UO) pattern. 

5. Leg Tracking 

This study presents an improved leg-tracking method using a novel data association taking into 

account periodic gait phase changes and the Catmull–Rom spline-based [37] interpolation during  

the occlusion. 

5.1. Prediction 

As shown in Figure 8, based on the model of leg motion, the system predicts the position of the 

tracked leg by: 

( )/ 1 / 1 1/ 1 1ˆ ˆ ˆf f f f
k k k k k k u k− − − − −= = +y Cx C Ax B u  (7)

where / 1ˆ f
k k−x  and 1/ 1ˆ f

k k− −x  are the a priori state estimate at time step k  and the a posteriori state 

estimate at the time step 1k − . In addition, a priori covariance matrix / 1
f

k k−P  is calculated by:  
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/ 1 1/ 1
f f T T

k k k k− − −= +P AP A QBQ  (8)

where 1/ 1
f

k k− −P  is the a posteriori covariance matrix at the time step 1k − . 

 

Figure 8. Data association with gates. 

5.2. Data Association Considering Gait Phase 

As shown in Figure 8, to eliminate unlikely observation-to-track associations, a validation region 

(gate) is constructed around the predicted position [39]. The simplest and most widely-spread approach 

for data association is GNN [33]. In the GNN data association, if observations are included in the gate, 

the observation-to-track association is always executed. However, during the turning motion in the 

TUG, both legs might be close to each other, and one leg might be hidden from the sensor. 

Furthermore, LRS distance data are likely to be disturbed during the turning motion, so the observed 

leg positions might not be correctly calculated using the leg patterns. In these situations, the gate is 

likely to include other leg’s observation or misdetections. These situations are likely to lead to false 

tracking using the GNN data association. To deal with these situations, we propose a novel data 

association taking into account periodic gait phase changes.  

The following cost function is defined for all observation-to-track associations: 

, , , (0 ,0 , )a b L a R bc d d a J b J a b= + ≤ ≤ ≤ ≤ ≠  (9)

The element ,f jd  of the cost function is the matching cost between the predicted position / 1ˆ f
k k−y  of 

the tracked leg and the j-th observed position j
ky  and has the following values: 

, / 1
,

/ 1

ˆis in the gate of

ˆis not in the gate of or 0

j f
f j k k k

f j j f
max k k k

if
d

d if j

λ −

−


=  =

y y

y y
 (10)

where 0j =  indicates a false alarm. ,f jλ  is the Mahalanobis distance and is calculated as follows: 

( ) ( ) ( )-1

, / 1 / 1ˆ ˆ
Tj f f j f

f j k k k k k k kλ − −= − −y y S y y  (11)

where f
kS  is the covariance of the innovation ( )/ 1ˆj f

k k k −−y y : 

/ 1
f f T
k k k −= +S CP C R  (12)

Then, j
ky  is in the gate of / 1ˆ f

k k−y  according to: 
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2
,f j Gλ <  (13)

where G  is a gate and can be determined from the chi-square ( )2χ  distribution with two degrees of 

freedom in the system.  

In all observation-to-track associations, the filtering process of the Kalman filter is performed and 

the gait phase is identified. The association whose cost function is minimized is selected from among 
the associations whose gait phase is unlikely to change from time step 1k − . The unlikely changes of 

gait phase in human walking are as follows: 

 Phase 0 to Phase 5, 

 Phase 1 to Phases 0, 3, 4 and 5, 

 Phase 2 to Phases 1, 4 and 5, 

 Phase 3 to Phases 0, 1, 2 and 5, 

 Phase 4 to Phases 2, 3 and 5. 

5.3. Correction 

If the corresponding observation f
ky  exists, a filtering (correction) process of the Kalman filter is 

performed. A posteriori state estimate /ˆ f
k kx  is calculated by: 

( )/ / 1 / 1ˆ ˆ ˆf f f f f
k k k k k k k k− −= + −x x K y Cx  (14)

where f
kK  is a Kalman gain: 

( ) 1

/ 1 / 1
f f T f T
k k k k k

−

− −= +K P C CP C R  (15)

Then, a posteriori covariance matrix /
f

k kP  is calculated by: 

( )/ / 1
f f f

k k k k k −= −P I K C P  (16)

If no corresponding observation exists (UO leg pattern), the correction is not performed. The  

a posteriori state estimate and covariance matrix are set to the a priori state estimate and covariance 

matrix, and the system continues the tracking. 

5.4. Catmull–Rom Spline-Based Interpolation during the Occlusion 

If the leg is unobservable from the LRS, the leg position is obtained as the position predicted based 

on the state equation of the Kalman filter. In the TUG turning phase, the time that a leg is hidden from 

the LRS is longer than that in the TUG straight walking (forward and return) phase, and the moving 

direction of the leg is changed. As shown in Figure 2b, the situation is likely to lead to deterioration in 

the measurement accuracy of the leg positions. To deal with the situation, a spline-based interpolation 

during the occlusion is proposed. 

First, in the proposed interpolation, the observations during the occlusion are calculated virtually 

based on the Catmull–Rom spline to obtain a smooth trajectory from the four passing points [37]. As 
shown in Figure 9, if the uoN -steps leg positions from time step k  to 1uok N+ +  are unobserved, 
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vertical observations 1'k +y  to '
uok N+y  are calculated using four observations 

bok N−y , ky  before the 

occlusion and 1uok N+ +y , 1uo aok N N+ + +y after the occlusion: 

( )

2 3

1

1

0 2 0 0

1 0 1 01
1

2 5 4 12

1 3 3 1

1, ,
1

bo

uo

uo ao

k N

k

k i
k N

k N N

uo
uo

i
i N

N

τ τ τ

τ

−

+
+ +

+ + +

  
  −   ′  =     − −
  − −     

= =
+

y

y
y

y

y



 (17)

 

Figure 9. Vertical observations during the occlusion are calculated by the Catmull–Rom spline. 

Then, to consider the human walking model, the prediction and filtering (correction) process of the 
Kalman filter are performed again using the vertical observations from time step k , and all state 

parameters are updated. Improvements of not only the measurement accuracy during the occlusion, but 

also the leg tracking performance can be expected by the proposed interpolation. 

5.5. Acceleration Input Estimation 

In Phase 0, where both legs are in the stance phase, the acceleration input vector f
ku  is: 

,L R
k k= =u 0 u 0  (18)

In Phase 1, where the left leg is accelerating in the swing phase and the right leg is in the stance phase, 
f
ku  is: 

,L L L L R
k k k k kg= =u v v u 0  (19)

Then, in Phase 2, where the left leg is decelerating in the swing phase and the right leg is in the stance 
phase, f

ku  is: 

,L L L L R
k k k k kg= − =u v v u 0  (20)

f
kg  is the acceleration function that is calculated as the average of the norm of the acceleration vector 

( ), :f f f
k k kx t y tΔ Δ = a   in the swing phase of the previous acN  steps. In Phases 3 and 4, f

ku is calculated 

in the same way.  
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6. Experiments 

6.1. Experimental Conditions 

To verify the effectiveness of the proposed method, seven young volunteers (six men, one woman, 

mean age 23.0 ± 1.9 years) were recruited as participants for this study. Each participant performed the 

TUG four times (a total of 28 trials). The leg trajectory measured using the proposed system was 

compared to those measured using a three-dimensional motion analysis system (VICON) with  

seven cameras.  

Figure 10a shows the field of the TUG. The field coordinate of the proposed system was fixed to 

that of VICON by using two poles. As shown in Figure 10b,c, VICON markers were attached to 16 

places on the lower limbs of the participant, and the plug-in-gait model [14] was used for motion 

analysis. In VICON analysis, the leg trajectory was calculated as the trajectory at the LRS height. The 

sampling time of the VICON system was 5.0 ms (200 Hz). To verify the measurement accuracy of the 

proposed system, the leg trajectory measured by the proposed system was compared to those measured 

using the VICON system.  

 

Figure 10. (a) Environmental field. (b) VICON markers were attached to the participant. 

(c) VICON analysis with the plug-in-gait model. 

Table 2. Proposed system parameters. 

Parameters Values 
Sampling Time tΔ  25 ms (40 Hz) 

Motion Covariance Q  ( )2 2diag 15.0 ,15.0  

Observation Covariance R  ( )2 2diag 0.04 ,0.04  

Threshold of the Speed in the Stance Phase st thv  0.47 

Threshold of the Speed in the Swing Phase sw thv  0.93 

Gate G  (Probability 0.999GP = ) 13.82 

Number of Steps for the Acceleration Function acN  40 

Table 2 shows the values of the proposed system parameters. To verify the effectiveness of the 

proposed leg tracking method with the data association considering gait phase and the Catmull–Rom 

spline-based interpolation during the occlusion, three methods, labelled 1–3 (see Table 3 for 

definitions), were used. In Method 1, GNN data association [33] was used. In Methods 2 and 3, the 
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proposed data association considering the gait phase was used. In Method 3, the proposed interpolation 

during the leg occlusion was used.  

6.2. Experimental Results 

To measure the walking parameters, the system should track both legs without false tracking via 

switching of the left and right legs and identify the stance phase to calculate foot contact positions. In 

this study, successful leg tracking was defined as the system tracking both legs without false tracking 

and identifying the stance phase correctly. Figure 11 shows the leg tracking results of false tracking 

and the failure of the stance phase identification.  

 

Figure 11. Leg tracking results of false tracking and the failure of the stance phase 

identification. (a) False tracking via switching of the left and right legs during turning 

motion with Method 1. (b) False tracking during walking back to the chair with Method 2  

(c) Failure of the stance phase identification during the turning motion with Method 2. 

Table 3 shows the leg tracking success rate (tracking success number/total 28 trials) and the number 

of false tracking and failures of the stance phase identification of each method. As shown in Table 3, 

the tracking success rate of the comparison method with the GNN data association (Method 1) was 

50.0% (14/28). In Method 1, the false tracking was likely to occur during the turning motion, as shown 

in Figure 11a. In addition, the failure of the stance phase identification occurred during the turning 

motion, as shown in Figure 11c. Secondly, the tracking success rate of the proposed data association 

considering the gait phase (Method 2) was 89.3% (25/28). Method 2 reduced the amount of false 

tracking during the turning motion. As shown in Figure 11b, the occlusion and changing moving 

direction also occurred at the end of TUG (during walking back to chair) and led to false tracking. The 
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failure of the stance phase identification also occurred during the turning motion. Finally, the tracking 

success rate of the proposed method with data association considering gait phase and interpolation 

(Method 3) was 96.4% (27/28). From the experimental results, it was confirmed that the proposed leg 

tracking method with data association considering gait phase and the Catmull–Rom spline-based 

interpolation could reduce the amount of false tracking. Then, we verify the effectiveness of the 

proposed data association and interpolation in Sections 6.3 and 6.4.  

Table 3. Definitions and leg tracking results of each method of a total of 28 trials. 

 Method 1 Method 2 Method 3 (Proposal)

Data Association Considering Gait Phase No Yes Yes 

Catmull–Rom Spline-based Interpolation No No Yes 

Number of 
False Tracking 

During Turning Motion 12 0 0 

During Walking Back to Chair 0 2 1 

Number of Failure of the Stance Phase 
Identification During Turning Motion 

2 1 0 

Tracking Success Rate 50.0% (14/28) 89.3% (25/28) 96.4% (27/28) 

6.3. Effectiveness of the Data Association Considering the Gait Phase 

 

Figure 12. Leg tracking result in a situation where the left leg was temporarily hidden and 

LRS distance data were disturbed. (a) Method 1: global nearest neighbor (GNN) data 

association. (b) Method 2: data association considering gait phase. 



Sensors 2015, 15 22466 

 

 

As shown in Table 3, false tracking was likely to occur during the turning motion in the TUG.  

Figure 12 shows the example of the leg tracking results of Methods 1 and 2 in the situation where the 

left leg was temporarily hidden from the LRS and LRS distance data were disturbed during the turning 

motion. As shown in Figure 12, the left leg was hidden by the right leg at time t = 6.704 and the left 

gate expanded. Then, two observed leg positions were detected at time t = 6.729. However, the 
observed position 1

ky  was a misdetection because of the disturbed distance data. In the GNN data 

association (Method 1), if the observed position was included in the gate, the observation-to-track 

association was always executed. Therefore, in this situation, false tracking via switching of the left 

and right legs occurred. However, in the proposed data association (Method 2), taking into account 
periodic gait phase changes, a 1

ky -to-left leg and 2
ky -to-right leg association was identified as a false 

alarm because a gait phase change from three to two was unlikely in human walking. Then, the system 

successfully tracked both legs without false tracking at time t = 6.879. As shown in Table 3, the 

tracking success rate of the proposed data association (Method 2) was improved compared to that of 

Method 1. It was confirmed that the proposed data association could reduce the amount of false 

tracking during the turning motion in the TUG. 

6.4. Effectiveness of the Catmull–Rom Spline-Based Interpolation 

Figure 13 shows the example of the leg tracking results of Methods 2 and 3 in the situation where 

the left leg was hidden from the LRS. Table 4 shows the occlusion rate (unobservable time steps/total 

time steps) and RMSE (root mean squared error) of the leg trajectory at the LRS height compared to 

VICON analysis in each TUG phase of the tracking success data of Methods 2 and 3. If the leg was 

unobservable from the LRS, the leg position was obtained as the position predicted based on the state 

equation of the Kalman filter. As shown in Table 4, particularly in the TUG turning phase, the time 

that a leg was hidden from the LRS was longer than that in the TUG straight walking (forward and 

return) phase, and the moving direction of the leg was rapidly changed. Therefore, as shown in Table 4 

and Figure 13a, the measurement accuracy of the left leg was deteriorated in the TUG turning phase. In 

addition, as shown in Figure 13a, the deterioration of the measurement accuracy during the occlusion 

leads to the failure of the stance phase identification. 

 

Figure 13. Leg tracking result in a situation where the left leg was hidden. (a) Method 2: 

without interpolation. (b) Method 3: with interpolation. 
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Table 4. Occlusion rate and RMSE of the leg trajectory in each TUG phase of the tracking 

success data of Methods 2 and 3. 

TUG Phase 

Method 2 (without Interpolation) 
25 Tracking Success Data 

Method 3 (Proposal: with Interpolation) 
27 Tracking Success Data 

Occlusion 
Rate 

RMSE (m) Occlusion 
Rate 

RMSE (m) 

x-direction y-direction x-direction y-direction 

Forward 
3.5% 

(225/6364) 
0.042 0.018 

3.8% 
(264/6912) 

0.042 0.019 

Turning 
11.3% 

(255/2264) 
0.069 0.062 

12.3% 
(304/2462) 

0.055 0.049 

Return 
5.1% 

(344/6686) 
0.053 0.028 

5.5% 
(402/7294) 

0.047 0.025 

Total 
5.4% 

(824/15314) 
0.051 0.032 

5.8% 
(970/16668) 

0.047 0.028 

Table 5 shows the RMSE of the leg trajectory at the LRS height in each leg observation state 

compared to VICON analysis of the success tracking data of Methods 2 and 3. As shown in Table 5 

and Figure 13b, the proposed interpolation improved the measurement accuracy during the occlusion. 

Therefore, as shown in Table 4, the measurement accuracy in the TUG turning phase was improved by 

the proposed interpolation. In addition, as shown in Table 3, the tracking success rate of the proposed 

method with interpolation (Method 3) was improved compared to that of Method 2. It was confirmed 

that the proposed interpolation could also reduce the amount of false tracking. From the experimental 

results, it was confirmed that the proposed interpolation improved leg tracking performance and the 

measurement accuracy of the leg during the turning motion.  

Table 5. RMSE of the leg trajectory in each leg observation state of the tracking success 

data of Methods 2 and 3. 

Leg Observation 
State 

Method 2 (without Interpolation) 
25 Tracking Success Data 

Method 3 (Proposal: with Interpolation) 
27 Tracking Success Data 

Time Steps 
RMSE (m) 

Time Steps 
RMSE (m) 

x-direction y-direction x-direction y-direction 

Observable 14490 0.047 0.027 15698 0.045 0.025 
Unobservable 824 0.102 0.081 970 0.066 0.052 

Figure 14 shows an example of the gait measurement results using the proposed method (Method 3). 

As shown in Table 4, it was confirmed that the proposed method could measure the leg trajectory with 

high accuracy compared to the measurement accuracy of the LRS. 

The gait measurement accuracy and range of the proposed system depend on the measurement 

accuracy and the angular resolution of the LRS. According to the specification shown in Table 1, the 

accuracy expected in a single distance measured with the UTM-30LX is ±0.03 m within a range up to 

10 m and ±0.05 m in the range from 10–30 m. However, the number of measurement points available 

in one leg is relative to the distance from the LRS. As shown in Figure 7, at least three measurement 

points are required for the leg detection. To detect the leg, the relation of three parameters, the leg 
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width lw  of the participant, the angular resolution ϕ  of the LRS and maximum gait measurement 

range maxR , of the proposed system is satisfied as follows: 

3
180max lR w
π ϕ <  (21)

 

Figure 14. Example of the gait measurement results of the proposed method (Method 3). 

In addition, the accuracy of the observed leg position tends to be deteriorated, so that there are few 
measurement points. If lw  is assumed to be 0.10 m, the effective gait measurement range maxR  of 

UTM-30LX is limited to 8.0 m [31]. In this study, we applied the proposed system to the TUG, in 

which a participant walks three meters from the LRS. Moreover, the proposed system can apply to 

other several meter walk tests considering maximum gait measurement range. Therefore, the proposed 

system may be helpful for community-based fall prevention programs. 

7. Conclusions 

This study presents an improved leg tracking method using a laser range sensor (LRS) for a gait 

measurement system to evaluate the motor function in walk tests, such as the timed up and go test 

(TUG). Particularly, during the turning motion in the TUG, the time that a leg is hidden from the LRS 

is longer than that in straight walking, and the moving direction rapidly changes. These situations are 

likely to lead to false tracking and deteriorate the measurement accuracy of the leg positions. To solve 

these problems, a novel data association taking periodic gait phase changes into account and a 

Catmull–Rom spline-based interpolation during the occlusion were proposed. 
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From the experimental results with several young people, it was confirmed that the proposed leg 

tracking method considering gait phase reduced the chance of false tracking. It was also confirmed that 

the proposed interpolation during the occlusion improved leg tracking performance and the 

measurement accuracy of the leg. In addition, we verified the measurement accuracy of the leg 

trajectory compared to a three-dimensional motion analysis system (VICON). 
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