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Abstract: The further development of X-ray pulsar-based NAVigation (XNAV) is hindered 

by its lack of accuracy, so accuracy improvement has become a critical issue for XNAV.  

In this paper, an XNAV augmentation method which utilizes both pulsar observation and 

X-ray ranging observation for navigation filtering is proposed to deal with this issue. As a 

newly emerged concept, X-ray communication (XCOM) shows great potential in space 

exploration. X-ray ranging, derived from XCOM, could achieve high accuracy in range 

measurement, which could provide accurate information for XNAV. For the proposed 

method, the measurement models of pulsar observation and range measurement observation 

are established, and a Kalman filtering algorithm based on the observations and orbit 

dynamics is proposed to estimate the position and velocity of a spacecraft. A performance 

comparison of the proposed method with the traditional pulsar observation method is 

conducted by numerical experiments. Besides, the parameters that influence the 

performance of the proposed method, such as the pulsar observation time, the SNR of the 

ranging signal, etc., are analyzed and evaluated by numerical experiments. 

Keywords: XNAV augmentation; X-ray communication; X-ray ranging; X-ray detector; 

measurement model 
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1. Introduction 

Being an autonomous navigation method applied for solar system and beyond, XNAV (X-ray 

pulsar-based NAVigation) has been a hot research area during the past ten years. Multiple aspects of 

XNAV, including Time of Arrival (TOA) measurement [1–3], time transfer [4–6], ambiguity 

resolution [7–9], filtering algorithms [10,11] etc., have been studied to verify the feasibility of XNAV. 

The theoretical positioning accuracy of XNAV is 10 m. Currently, the available accuracy of XNAV is 

about several hundred meters, which is far from the designed accuracy [7]. The gap is caused by 

various factors, including the inaccuracy of the noise model, the relativistic effects, the limitations of 

current X-ray detectors, the ephemeris error, etc. The limited available accuracy greatly hinders the 

application of XNAV, therefore, how to improve the positioning accuracy of XNAV under current 

conditions has become a critical and urgent issue. 

The main solution of improving XNAV accuracy is to obtain extra information from the available 

navigation systems or multiple space sources. Reference [12] provided an integration of XNAV with a 

strap-down inertial system (SINS), which provides higher accuracy and requires shorter filtering 

period, but the SINS error accumulation would affect the performance of the integrated system, 

especially for long-duration missions. Another main method to augment XNAV is by observing stars, 

planets, or asteroids. In the solar system, the Sun is an obvious and readily available source for 

observation, which is used in XNAV augmentation. In Reference [13], a Sun sensor was utilized to 

observe the line-of-sight vector towards the Sun and the line-of-sight vector was integrated with X-ray 

pulsar observation to achieve autonomous navigation in Halo orbit. Reference [14] also utilized the 

line-of-sight vector of the Sun as the observation variable and adopted a residual orthogonal unscented 

Kalman filter (ROUKF) for navigation filtering. Planets are also common observation targets in the 

navigation of satellites that orbit around a central body. Accurate navigation is realized by combining 

the pulsar observation and the central body observation that is achieved by a star sensor [15,16]. This 

method of observing a central body has the obvious disadvantage of a limited application range. The 

method can only be used near the central body. For specific missions, asteroids are used to improve 

XNAV performance. For example, in Reference [17], the images of asteroids, captured by a navigation 

camera, were combined with pulsar observation to realize navigation in an interplanetary cruise. This 

method would have a great dependence on the quality of the asteroid images. Though utilizing the 

observation of space sources to improve XNAV has shown some potential, both the integration method 

using a Sun sensor and the augmentation method with central body observation or asteroid observation 

share the same flaw in that the star sensors have a limited accuracy and easily suffer from interference by 

noise. Thus, the improvements of XNAV based on the abovementioned methods are limited. 

In this paper, we propose an augmentation method for XNAV based on X-ray communication 

(XCOM), which utilizes accurate X-ray ranging as the extra observation to improve the XNAV 

accuracy. XCOM is a newly emerged concept for deep space communication [18], which utilizes 

X-rays as the transmission medium. Being high energy light and not being affected by electrical and 

magnetic field [19], X-rays show fine space propagation performance. The idea of X-ray ranging is 

derived from XCOM. In our previous research, we have introduced X-ray ranging and presented a 

detailed performance analysis [20]. Compared with available augmentation methods, X-rays could 

provide accurate range measurements, which could serve as the observation variable in XNAV. In other 
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words, by both X-ray pulsar observation and X-ray ranging measurement, the position and velocity of a 

spacecraft could be estimated by a Kalman filtering algorithm. Actually, there is much more potential in 

combining XNAV with XCOM. Besides accurate range measurement, XCOM-based simultaneous 

communication and ranging could also provide communication services [21]. As is known to all, the 

phase revolution model is of great importance in estimating TOA in XNAV and should be updated 

periodically [6]. With XCOM-based simultaneous communication and ranging, the phase revolution 

model could be updated in a timely fashion, which would benefit deep space missions far from the 

Earth. In a word, XCOM could not only provide the accurate observation variable needed for XNAV 

augmentation, but also a communication service for the transmission of key information. XCOM 

would be a great supplement for XNAV and provide the possibility of integrated X-ray navigation and 

communication for future deep space explorations. 

2. Experimental Section 

2.1. Coordinate Systems 

To calculate the accurate TOA, the time measurement should be conducted in an inertial coordinate 

frame. For pulsar observations, the solar system barycenter (SSB) frame is the preferable coordinate. 

The SSB frame is also called the International Celestial Reference Frame (ICRF), which is an inertial 

reference system that uses the solar system barycenter as the center of the frame [22]. 

When in the vicinity of Mars, the Mars-centered coordinate system should be utilized. The 

fundamental Mars-centered inertial coordinate system is the Mars-centered Earth Mean Equator and 

Equinox of Epoch [23]. This coordinate is formed by moving the Earth Mean Equator and Equinox of 

Epoch reference system from the Earth center to the Mars center. The Earth Mean Equator and 

Equinox of Epoch reference system is defined as follows: (1) the reference plane is set to be the Earth 

mean equator; (2) the reference direction is set to be the vernal equinox of the Earth; (3) the J2000.0 

epoch is selected as the reference epoch. Another commonly used Mars-centered inertial reference 

system is the Mars-centered Mars Mean Equator and Equinox of Epoch, which is derived from the 

Mars-centered Earth Mean Equator and Equinox of Epoch. The Mars-centered Mars Mean Equator 

and Equinox of Epoch is defined as follows: (1) the reference plane is the Mars mean equator  

of J2000.0; (2) the reference direction is the ascending node of the Mars mean equator relative to the 

Earth Mean Equator; (3) the reference is set to the J2000.0 epoch. Currently, the Mars-centered Mars 

Mean Equator and Equinox of Epoch is the most popular reference system in Mars research. 

2.2. Orbit Dynamics 

We define the system state vector as T T T T[ , ] [ , , , , , ]x y zx y z v v v= =X r v , in which T[ , , ]x y z=r  defines the 

position of the spacecraft relative to the Mars center and T[ , , ]x y zv v v=v  describes the velocity.  

Let ( )f ⋅  denote the description function of the spacecraft dynamics. Then, the spacecraft state can be 

expressed as: 

( ( )) ( )f t tX = X + w  (1)
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where ( )tw  is the process noise. Let X(t)  be the optimal estimation of the system state and define 

( ) ( )t tδX = X - X . 

Take the Taylor expansion of Equation (1) with respect to ( )tX , and we have: 

( )
( ( )) ( )

f
f t t

∂= + δ +
∂ X=X

X
X X X w

X 

   (2)

where the high-order terms are ignored. Then, there is: 

( )
( )

( ) ( )

f
t

F t t

∂δ = δ +
∂

= δ +
X=X

X
X X w

X

X w




 (3)

If the process noise is ignored, ( ( ))f tX  can be expressed by the velocity, v , and the  

acceleration, a : 
T

T T T

( ( )) [ ]

            [ , ]

f t =
=

T TX r , v

v a

 
 (4)

Then, ( )F t  can be expressed as: 

3 3 3 3

( )

       

F t
=

× ×

 ∂=  ∂  

 
 = ∂ ∂ 
 ∂ ∂ 

X X

X=X

v

aX

0 I

a a

r v





 (5)

where I  is the unit matrix. 

The decentralized form of Equation (3) can be written as: 

( )k k k tδ = δ +X Φ X w  (6)

where kΦ  is the state transition matrix that satisfies: 

0 0

0 0

( , ) ( ) ( , )

( , )
k k kt t F t t t

t t

 =


=

Φ Φ

Φ I


 (7)

Generally, kΦ  can be calculated by the Runge-Kutta (RK) method [24]. Considering the 

perturbations, the acceleration of a spacecraft orbiting the Mars, a , can be written as: 

0

3

p

M pr

= +

= −μ +

a a a

r
a

 (8)

where 0a  is the gravitational acceleration of the Mars, pa  is the acceleration caused by various 

perturbation sources, Mμ  is the gravitational constant of the Mars, and || ||r = r . The perturbation 

sources of Mars orbit include the non-spherical perturbation, the third-body perturbation, the solar 

radiation pressure perturbation, and the atmosphere drag perturbation, etc. For the high Mars orbits, the 

main perturbation sources are the non-spherical perturbation and the third-body perturbation. Other 

perturbations, such as the atmosphere effect, the solar radiation pressure, etc., are ignored for the high 

orbit case. 
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The non-spherical perturbation is caused by the irregularity of the mass distribution and the shape 

of Mars. The gravitational potential function of Mars can be expressed as [24]: 

( )
0 0

(sin ) cos( ) sin( )
ll

M
lm lm lm

l m

R
U P C m S m

r r

∞

= =

μ  = ϕ λ + λ 
 

  (9)

where ( )nmP ⋅  is the n-order m-degree associated Legendre function, R is the average radius of Mars, r  

is the distance of the spacecraft relative to the Mars center, λ  is the longitude of the spacecraft, ϕ  is 

the reduced latitude. lmC  and lmS  are the gravitational potential parameters that reflect the mass 

distribution of Mars, whose values can refer to the Goddard Mars Model: GMM-2B [25]. The 

acceleration can be expressed as: 

U= ∇r  (10)

where ∇  is the gradient computation. Define the zonal harmonic terms, lJ  as: 

0l lJ C= −  (11)

Other gravitational potential parameters are named as the sectorial harmonic terms ( m l< ) and the 

tesseral harmonic terms ( m l= ). 2J  perturbation is the main part of the non-spherical perturbation. 

Thus, the acceleration caused by the non-spherical perturbation can be expressed as: 

2 2

23 2

2 2
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2 2
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 
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      
   μ   − + −          

a  (12)

The third-body perturbation is caused by the gravitational force from other celestial bodies, mostly 

from the Sun and the Earth. The third-body acceleration, denoted by third body−a , could be expressed as: 

3 3 3 3

sp eps e
third body s e

sp s ep er r r r−

   
= −μ − − μ −      

   

r rr r
a  (13)

where sμ  is the gravitational constant of the Sun, eμ  is the gravitational constant of the Earth, sr  is 
the position vector of the Sun in the Mars inertia coordinate, spr  is the position vector of the Sun 

relative to the spacecraft, er  denotes the position vector of the Earth in the Mars inertia coordinate, 
and epr  is the position vector of the Earth relative to the spacecraft. Based on the aforementioned 

analysis, the perturbation acceleration can be calculated as: 

sphericalp non third body− −= +a a a  (14)

2.3. Measurement Models 

As for the proposed XNAV augmentation method, both the pulsar signal and the range 

measurement obtained based on XCOM are observed. In this section, the observation equations  

are established. 
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2.3.1. Pulsar Timing Observation 

Pulsar signals are pulsed period signals with high stability. At the Solar System Barycenter (SSB), a 

pulsar phase revolution model is established based on the long-duration pulsar observation, which can be 

utilized to predict the Time of Arrival (TOA) of pulsar pulses at SSB [26]. By observing the TOA of the 

pulsar signals and comparing the TOA with the time predicted by the phase prediction model [27,28], 

one can obtain the position of the spacecraft [7]. As the TOA is observed at the spacecraft, it should 

transferred to Solar System Barycenter (SSB) [7]. During the time transfer, both the geometric effect 

and other effects, for example, the relativistic effects, should be taken into account. The principle of 

the time transfer is indicated in Figure 1, where b  is the vector pointing from the Sun center to SSB, 

SSBr  is the position of the spacecraft relative to SSB, MSSBr  is the position of the Mars center relative to 

SSB, and in  is the light-of-sight of pulsar signal for the i th observed pulsar. SSBr  can be calculated 

by SSB MSSB= +r r r . 

Let obst  be the pulse time of arrival at the spacecraft and SSBt  be the time of arrival at SSB for the 

same pulse. Then, the simplified time transfer expression of high orders can be presented as [7]: 

( ) ( )( ) ( )2 2

0

3

1
         + 2 2

2

2
         ln 1

i SSB
SSB obs

i SSB SSB i i SSB SSB

s i SSB SSB

i

t t
c

r
cD

r

c b

μ

⋅= +

 ⋅ − + ⋅ ⋅ − ⋅ 

⋅ ++ +
⋅ +

n r

n r n b n r b r

n r

n b

 
(15)

where 0D  is the range between the barycenter of the Sun and the pulsar, c  is the speed of light, 

|| ||SSB SSBr = r , and || ||b = b . 

Based on Equation (15), the pulsar observation can be expressed as: 

( ) ( ) ( ) ( )2 2

0

2

( ) ( ) ( )

1
   + 2 2

2

2
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   ( , ) ( )
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n r n r n b n r b r

n r

n b

X

 (16)

where ( , )h tX  is a nonlinear function of X , i  denotes the i th pulsar that is observed and iv  is the 

observation noise, which is generally modeled as a white Gaussian noise.  
As defined previously, r  satisfies SSB MSSB= +r r r . Define T T TX = [r , v ]    be the estimation of the 

system state. Then, the measurement residual can be defined as: 

( ) ( , )

 ( , ) ( , )

( , )
( )

p y t h t

h t h t

h t
v t

= −

= −
∂= δ +

∂ X=X

z X

X X

X
X

X 



  
(17)

In Equation (17), the first order approximation of ( , )h tX  is utilized, i.e.:  

( , )
( , ) ( , ) ( ) ( )

h t
h t h t t

∂= + ⋅ − + ε
∂ X=X

X
X X X X

X 

   (18)
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where ( )tε  are the high-order terms that are ignored.  

As the estimation of the state is T T TX = [r , v ]   , we have: 

( ) ( )( ) ( )

SSB SC

SSB

2 2
SSB SSB SSB SSB
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2
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 

 (19)

where SSB MSSB= +r r r  . Then, the measurement residual can be written as: 
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(20)

where pH  is the pulsar observation matrix defined as: 
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T
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1
+

2
+

0

0

0

i i SSB i SSB i i
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i

s SSB

p i SSB SSB i
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   (21)

and v  is the pulsar observation noise. The decentralized form of Equation (20) can be expressed as:  

, ,p k p k k kδ= +z H X v  (22)

As to the pulsar timing observation, the observation noise is related to the pulsar parameters: 

(1 ) ( )

(1 )

x f obs

x x f obs x f obs

x f obs

x x f x f

F Ap t
SNR

B F p At d F Ap t

F p At

B F p d F p

=
 + − + 

=
 + − + 

 (23)

1
2

iv

W

SNR
σ =  (24)

where 
ivσ  is the standard variance of the timing measurement noise, xF  is the flux intensity, XB  is the 

background radiation flux, fp  is the pulsed fraction that defines the percentage of the source flux that is 
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pulsed, obst  is the observation interval, A  is the detector area, and d  is the duty cycle defined as 

/d W P=  with W  being the width of the pulse and P  the pulse period. 

Pulsar

Sun

SSB Mars

Spacecraft

 

Figure 1. Pulsar timing observation scheme. 

2.3.2. Range Observation Based on XCOM  

XCOM is a revolutionary concept in deep space exploration, which utilizes X-ray to convey 

information [29]. As X-rays are high-energy light and have little attenuation in vacuum, they are 

suitable for deep space exploration. Besides, X-ray detectors can be quite small and energy-saving, 

which makes them suitable for long distance and long duration missions. 

In this paper, the range between the spacecraft and a known location near the Earth is utilized as an 

observation to improve the performance of XNAV. For the range measurement, an X-ray circularly 

polarized ranging method based on XCOM has been proposed in our previous research, which will be 

illustrated in what follows. 

Based on the idea of XCOM, we propose a circularly polarized ranging method (XCPolR) [20]. The 

proposed method utilizes circularly polarized X-ray as the ranging signal. The generation and detection 

of X-ray polarization signal can refer to the related references [30–33]. The polarized ranging signal 

can be expressed as: 

{ }( ) ( , , (r( ))) , ,i x ys t A A t i N i M= Ψ ∈ <S  (25)

where r( )t  is the ranging signal, M  is the length of the ranging signal, ( )kΨ  determines the 

polarization states to be either the left-hand circular polarization state or the right-hand circular 

polarization state. ( )kΨ  is defined as:  

2 2 1
( ) Z

/ 2 2 0

n k
k n

n k

π + π =
Ψ = ∈−π + π =

/
 (26)

When 1k = , ( )kΨ  represents the left-hand polarization state. Otherwise, it is the right-hand 

polarization state. ( )i ⋅S  is the Stokes parameter used to describe the polarization states, which is 

defined as: 
T

0 1 2 3( , , ) [S ,S ,S ,S ]x yA A δ =S  (27)
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
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 (28)

where ( , )iA i x y=  is the intensity of the light vector components and δ  is the phase error between the 

two orthogonal light vector components. These three parameters can be found in Figure 2. As shown in 

Figure 2, the two orthogonal light vector components, xE  and yE , are defined as: 

y

cos( )

cos( )
x x x

y y

A t

A t

= ω + φ
 = ω + φ

E

E
 (29)

where ( , )i i x yφ =  are the phases of the components, and ω  is the angular frequency. 

In essence, the X-ray range measurement is a two-way measurement, whose procedure can be 

summarized as:  

(1) At the emitter, modulate the X-ray signal with the binary ranging code using the circular 

polarization modulation and send the modulated X-ray signal to the receiver. 

(2) Through the propagation in space channel, the X-ray ranging signal is received by the receiver 

and the signal is demodulated to recover the binary ranging sequence. 

(3) Regenerate the downlink signal based on the recovered uplink signal and modulate the 

regenerated signal with the circular polarization modulation. Then, the downlink signal is sent 

back to the emitter.  

(4) Receive the downlink signal at the emitter and demodulate the signal. Correlate the received 

signal with the local ranging sequence to obtain the two-way time delay. The two-way range 

can be calculated based on the elapsed time.  

Let the coordinates of the known location near the Earth be T
0 0 0 0[ , , ]r x y z=  and D  be the range 

measured by XCOM based XCPolR. Then, the range measurement can be expressed as: 

0|| ||D = −r r  (30)

The estimated range measurement can be defined as:  

0|| ||D = −r r   (31)

Then, the observation residual can be written as: 

T

r r

r

r r

D D v

v
r

v

= − +

≈ δ +

= δ +

z

r
r

H X






 (32)

where || ||r = r , and rH  is the range observation matrix defined as:  

T

0 0 0r r

 
=  
 

r
H




 (33)
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and rv  is the ranging jitter. According to the analysis in Reference [20], the ranging jitter mainly 

comes from the acquisition of the ranging signal. The ranging jitter can be evaluated by the standard 

variance of the delay measurement error expressed by: 

0

2

2 4 2

8

r

rc

rccor

rc

cor

c

T Nc

PT

cT

SNRT

τσ
σ =

= ⋅ ⋅

=

 (34)

where rcT  is the duration of one slot of the ranging signal, 0 / 2N  is the two-side power spectral 

density of the noise in ranging signal, rcP  is the power of the clock component of the ranging signal, 
rcω  

is the angular frequency of the ranging clock component, and corT  is the correlation time when the 

ranging signal is acquired. The Signal-to-Noise Ratio of the ranging signal, SNR, is defined as: 

0

2 rcP
SNR

N
=  (35)
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Figure 2. Polarized light. 

2.4. Kalman Filtering Algorithm for State Estimation 

As for the proposed method, both the pulsar timing observation and the range measurement are 

considered in the position determination of a spacecraft. In previous sections, the pulsar timing 

observation and the range measurement have been analyzed. Here, we would like to establish the 

observation equation based on the pulsar observation and the range measurement. 

Assume two pulsars are observed and one range measurement is conducted. The observation 

equation can be established as:  
TT T T

1 2, ,p p r = δ + 
= δ +

Z H H H X V

H X V
 (36)

where T
1pH  and T

2pH  are the pulsar observation matrices defined by Equation (21), and V  is the 

observation noise. The covariance matrix of the observation noise is defined as: 
T 2 2 2

1 2( ) ( , , )rE diag= = σ σ σR VV  (37)

where ( 1, 2)i iσ =  is the pulsar timing observation noise related to pulsar parameters and rσ  is the 

ranging jitter determined by Equation (34). 
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Based on the state transition equation and the observation equation, the Kalman filtering process 

could be established: 

(1) State prediction 

As indicated by the state transition equation, the one-step state prediction can be expressed as:  

+1
ˆ

k k k k= +X Φ X w  (38)

where kΦ  is the state transition matrix, kX  is the optimal estimation of the system state at k , and 

1
ˆ

k +X  is the one-step prediction of the system state at +1k . kw  is the process noise whose covariance 

matrix is defined as T( )k kE=wQ w w . 

The covariance matrix of the prediction error, 1
ˆ

k +P , can be written as:  

T
1

ˆ
k k k k+ = + WP Φ P Φ Q  (39)

where kP  is the covariance matrix of the prediction error at k . 

(2) Filtering gain calculation  

The filtering gain can be calculated as 

T T 1
1 1 1

ˆ ˆ( )k k k
−

+ + += +K P H HP H R  (40)

(3) Estimate the system state 

The optimal estimation of the state at 1k + , denoted by +1kX , can be calculated by 

+1 +1 1
ˆ

k k k += +X X K Z  (41)

where +1
ˆ

kX  is the predicted state. 

(4) Update the prediction error covariance 
T T

1 1 1 1 1 1
ˆ( ) ( )k k k k k k+ + + + + += − − +P I K H P I K H K RK  (42)

3. Results and Discussion 

3.1. Simulation Conditions 

The area of the X-ray detector is set to 10,000 cm2 and the background flux intensity is set to be 

0.0050 ph/cm2/s. The parameters of the pulsars used in the simulation are listed in Table 1.  

The initial error is set to: 

[ ]T
800  m,  800 m,  800  m,  4  m s ,  4  m s,  4  m sδ =X  (43)

The covariance matrix of the process noise is set to: 
T2 2 2 2 2 2(0.5 m) , (0.5 m) , (0.5 m) , (0.1 m s) , (0.1 m s) , (0.1 m s) =  wQ  (44)

The initial covariance matrix of the prediction error, 0P , is set to: 

T2 2 2 2 2 2(800 m) , (800 m) , (800 m) , (4  m s) , (4  m s) , (4 m s) =  P  (45)

The covariance matrix of the observation noise is calculated based on Equations (24)  

and (34), respectively. 
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The accurate orbits are simulated by the Satellite Tool Kit (STK), which is a professional software 

for simulating the design, test, and operation of space missions. The High-Precision Orbit Propagator 

(HPOP) is utilized to generate the Mars orbit in this paper. The parameters of the designed orbit are set 

as follows: (1) the orbit is a circular orbit with a radius of 46,792.48 km; (2) the orbit inclination is 

45°. For simplicity, this orbit is named as “Orbit 1”. 

The position error and velocity error can be evaluated by the following equations: 

T_ ( ) ( )

_ ( )

delt r

delt v

 = − −

 = − −

T

r r r r

r r) (r r

 

   
 (46)

Table 1. Pulsar parameters. 

Pulsars Period/(s) 
Right 

Ascension/(Rad) 
Declination/(Rad) 

Flux 

Intensity/(ph/cm2·s) 

Pulse 

Width/(s) 

Pulsed 

Fraction/(%) 

B1937 + 21 1.558e − 3 5.1472 0.3767 4.99e − 5 3.82e − 5 86 

B1821 − 24 3.050e − 3 4.8194 −0.4341 1.93e − 4 5.50e − 5 98 

B0531 + 21 3.339e − 2 1.45967 0.384688 1.54 3.0e − 3 70 

3.2. State Estimation Based on Kalman Filtering 

In this section, the Kalman filtering results obtained based on the proposed method are presented 

and comparisons are made between the proposed method and the traditional pulsar observation method 

that estimates the system state by observing three pulsars. 
The Mars orbit used in the simulation is Orbit 1, whose parameters has been given in Section 3.1. 

The filtering interval is set to 100 s and the pulsar timing observation interval is set to 800 s. The first 

two pulsars listed in Table 1 are utilized to achieve pulsar timing observation. The SNR of the ranging 

signal is set to be 0 dB and the slot duration, rcT , is set to be 1e−7 s. Figure 3 presents the state 

estimation results of the proposed method. It can be seen from the figures that the position and velocity 

error can converge to a low level, which demonstrates the feasibility of the proposed method. 

The comparison between the proposed method and the traditional method with only pulsar 

observation are conducted. For the proposed method, the range measurement, together with the timing 

observation of the first two pulsars listed in Table 1 are utilized for the state estimation. For the 

traditional method, all three pulsars listed in Table 1 are utilized for the state estimation. Figure 4 

presents the comparison of the proposed method with the traditional method. Though the proposed 

method shows little superiority in velocity estimation compared with the traditional method, the 

proposed method does show better performance in position estimation under the same condition. The 

mean position estimation error of the traditional method remains at a level of 200 m, while the 

proposed method obtains a mean position error of 124 m. Besides, the standard variance of the position 

estimation error of the traditional method is 102.7 m, which is much larger than that of the proposed 

method whose standard variance is 65 m. This indicates that the proposed method shows better 

stability in the estimation of the position. 
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Figure 3. Position and velocity estimation error of the proposed method. 
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Figure 4. Comparison of the proposed method with the traditional method. 

3.3. Impact of Pulsar Observation Interval on Filtering 

To analyze the influence of the pulsar observation time on the filtering, a numerical experiment is 

conducted. The orbit used in the simulation is Orbit 1. The first two pulsars listed in Table 1 are 

utilized to achieve pulsar timing observation. The SNR of the ranging signal is set to be 0 dB and the 

slot duration is set to 1 7rcT e s= − . The filtering interval is set to be 100 s. 

Set the pulsar observation time intervals to be 500 s, 800 s, 1000 s, and 2000 s, respectively, and 

conduct the filtering of the proposed method under different observation time intervals. Then, the 

mean values and standard variances of the position and velocity estimation errors are calculated and 

plotted in Figure 5. Figure 5a presents the impact of observation time intervals on position estimation 

and Figure 5b is the velocity estimation under different observation time intervals. As shown in  
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Figure 5a, with the increasing pulsar observation time intervals, both the mean and standard variance 

of the position estimation error decrease. It can also be observed from Figure 5b that the mean value 

and standard variance of the velocity show a similar tendency with the increasing observation time 

intervals as that of the position estimation. The reason for the phenomenon is that the noise of the 

pulsar observation is closely related to the observation time. As pulsar signals are weak, the observed 

signal is accumulated over a certain duration to strength the pulsar signal. The longer the observation 

time is, the higher the SNR of the pulsar signal is. Thus, long pulsar observation time could mitigate 

the observation noise, and consequently improve the performance of the position and velocity estimation. 
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Figure 5. Influence of observation interval on filtering results. (a) Mean and standard 

variance of position error under different observation intervals; (b) Mean and standard 

variance of velocity error under different observation intervals. 
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3.4. SNR of Ranging Signal on Filtering 

As the range measurement is utilized as the observation variable in the proposed method, the 

accuracy of the range measurement would have an influence on the filtering performance. On the other 

hand, the range measurement accuracy is highly related to the SNR of the ranging signal. Thus, in this 

section, we analyze the impact of the ranging signal SNR on the position and velocity estimation. 

In the simulation, the initial conditions are as follows: (1) the orbit utilizes Orbit 1; (2) the filtering 

interval is set to 100 s and the pulsar observation interval is set to 1000 s, respectively; (3) SNR of the 

ranging signal is set to be −8 dB, 0 dB, 8 dB, respectively. Based on the initial conditions, the filtering 

of the proposed method is conducted, and the results are plotted in Figure 6. As shown in the figure, 

the influence of SNR of ranging signal on position and velocity estimation is minor. This is because of 

the differences in level of noises of the pulsar observation and the ranging measurement. The noise 

level of the range measurement is much lower than that of the pulsar observation. Thus, when the 

noise of the range measurement is influenced by the variation of the SNR of the ranging signal, the 

influence of the change in the range measurement noise is minor because the change is small relative 

to the high level of the pulsar observation noises. 
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Figure 6. Influence of SNR on position and velocity estimation. 

3.5. Filtering Algorithm on Different Orbits 

Different Mars orbits are used in this section to analyze the performance of the proposed method. 

Besides of Orbit 1 introduced in Section 3.1, we introduce another orbit, which is a stationary orbit of 

Mars. Its parameters are as follows: (1) the orbit is a circular orbit with a radius of 20,429.893717 km; 

(2) the inclination of the orbit is 0.014°. For simplicity, this orbit is named as “Orbit 2”. Other 

parameters are set as follows: (1) the filtering interval is set to 100 s and the pulsar observation time is 

set to 1000 s; (2) The SNR of the ranging signal is set to be 0 dB and the slot duration, rcT , is set to be 

1e−7 s; (3) the first two pulsars in Table 1 are utilized for pulsar observation. 

Figure 7 presents the filtering results of the proposed method in different orbits. As shown in Figure 7, 

the performance of the position and velocity estimation on Orbit 1 and Orbit 2 shows much similarity. 
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This indicates that the proposed method applies not only to the high Mars orbits, but also to the 

geostationary Mars orbits. 
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Figure 7. Filtering performance in different orbits. 

4. Conclusions 

The lack of accuracy of XNAV has become a huge obstacle for its further development and 

application. In this paper, a novel XNAV augmentation method is documented, aiming at improving 

the XNAV accuracy. The proposed method utilizes X-ray ranging as the extra observation, together 

with traditional pulsar timing observation, to achieve the position and velocity estimation. The 

performance of the proposed method was verified by numerical experiments. It is demonstrated that 

the proposed method shows better performance than the traditional pulsar observation method in 

position and velocity estimation. Numerical experiments also indicated that the performance of the 

proposed method was influenced by several parameters, such as the pulsar observation interval, the 

SNR of the ranging signal, etc. Two different orbits were utilized to verify the feasibility of the proposed 

method on different types of orbits. 
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