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Abstract: The abilities of multispectral LiDAR (MSL) as a new high-potential active 

instrument for remote sensing have not been fully revealed. This study demonstrates the 

potential of using the spectral and spatial features derived from a novel MSL to 

discriminate surface objects. Data acquired with the MSL include distance information and 

the intensities of four wavelengths at 556, 670, 700, and 780 nm channels. A support 

vector machine was used to classify diverse objects in the experimental scene into seven 

types: wall, ceramic pots, Cactaceae, carton, plastic foam block, and healthy and dead 

leaves of E. aureum. Different features were used during classification to compare the 

performance of different detection systems. The spectral backscattered reflectance of one 

wavelength and distance represented the features from an equivalent single-wavelength 

LiDAR system; reflectance of the four wavelengths represented the features from an 

equivalent multispectral image with four bands. Results showed that the overall accuracy 
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of using MSL data was as high as 88.7%, this value was 9.8%–39.2% higher than those 

obtained using a single-wavelength LiDAR, and 4.2% higher than for multispectral image.  

Keywords: LiDAR; multispectral; object classification; support vector machine 

 

1. Introduction 

Passive detection techniques have been widely used in various remote-sensing applications, such as 

discriminating surface objects [1,2], with marked success. However, these passive techniques also present 

certain flaws. For example, passive detection is influenced by the illumination conditions, shadows, 

obscuration by clouds, etc. They also cannot easily derive accurate three-dimensional information. 

Introduction of Light Detecting and Ranging (LiDAR) to remote sensing several decades ago revealed 

characteristics that could overcome some limitations of passive detecting techniques. As an active  

remote-sensing method, LiDAR measures distance by illuminating a target with a laser and performs  

high-precision range measurements regardless of the illumination situation. These characteristics have 

enabled the single-wavelength LiDAR to be applied in terrain detection [3] and tree height estimation [4], 

among others. However, the traditional LiDAR is limited by a lack of spectral information.  

The concept of the multispectral LiDAR (MSL) system was previously proposed to strengthen the 

ability of LiDAR to acquire spectral data. This novel system can measure distance and return laser 

intensities at various wavelengths for each detected point. Several demonstration systems have been 

introduced in recent years. Woodhouse et al. [5], for example, developed a multispectral canopy LiDAR 

system using a single tunable laser to measure plant physiology through the normalized difference 

vegetation index (NDVI) and photochemical reflectance index (PRI). Wei et al. established a MSL 

prototype that makes measurements at four wavelengths [6]; this system is used in the present study. 

Hakala et al. [7–9] developed a MSL system that utilized supercontinuum lasers to make measurements at 

eight optimized wavelengths for vegetation. There were also some designs of space-borne MSL [10]. Data 

obtained from such systems can be used to describe the minute spectral and spatial characteristics of the 

detected objects. Thus, superiority of MSL for objects discrimination could be expected.  

The applications of MSL mainly focused on measurements of plant properties, such as chlorophyll 

and moisture content, or separation of canopy from ground returns [11–14]. MSL research and 

application for object discrimination is rare. Some studies have performed classification to demonstrate 

the potential of MSL. For instance, a virtual active hyperspectral LiDAR consisting of two scanners 

functioning separately at the same position was demonstrated to allow classification of needles, branches, 

and background [15]. Airborne dual-wavelength LiDAR data acquired by two separate systems from two 

flights with an interval of three months have been used in land-cover classification [16].  

Unfortunately, these studies could not be strictly considered MSL data application because the data 

were acquired at different times and subject to problems of integration and synchronization. 

Fortunately, several studies based on real simultaneous MSL systems in object discrimination have 

been conducted. Spruce and pine trees were classified with an active hyperspectral LiDAR system 

using either an individual feature or combinations of two features [17]. LiDAR measurement of 

spectral information has been performed to detect artificial and natural targets based on the K-mean 
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method [18]. However, as classification of the above-mentioned studies was solely based on spectral 

information, little attention has been paid to range information. Thus, the full abilities of MSL systems 

in discriminating objects cannot be completely described.  

An MSL system that emits laser pulses of four wavelengths (556, 670, 700, and 780 nm) was adopted in 

the present study to monitor indoor objects. The aim of this study is to investigate the added value of more 

intensity information of MSL for target detection compared with single-wavelength LiDAR, and on the 

other hand, the value of spatial information of MSL for object-type discrimination compared with 

multispectral image with the same bands. After briefly describing the employed MSL system and data, data 

preprocessing methods were presented. Then, using features from MSL, a support vector machine (SVM) 

was utilized to separate objects in the experimental scene into seven types: white wall, ceramic pots, 

Cactaceae, carton, plastic foam block, and healthy and dead leaves of E. aureum. With the classification 

result of four equivalent single-wavelength LiDAR systems, an equivalent multispectral image with four 

bands and MSL data, the accuracy assessments were obtained and their performances were discussed.  

2. MSL System and Data Description 

Wuhan University developed a novel MSL that operates at four wavelengths [6] covering visible 

light (556, 670, and 700 nm) and infrared light (780 nm) to offset the lack of spectral information in 

traditional single-wavelength LiDAR. Two of these wavelengths (670 and 780 nm) are commonly 

used to compute NDVI because they are good measures of the proportion of photosynthetic efficiency. 

The present study is based on this novel system, the properties of which are available in a previous 

paper [6]. The MSL system can be divided into three parts: the laser emitting system, the receiver unit 

and the data-processing system. A schematic of the MSL system is displayed in Figure 1. The working 

principle of the system is as follows: Laser is transmitted from four semiconductor laser diodes and 

then synthesized into a single beam. After transferring to the detected objects, the backscattered 

radiation is received by a Schmidt–Cassegrain telescope and detected by four Photomultipliers 

(PMTs). Range measurement is simultaneously performed by a laser range finder. Thereafter, the 

acquired signals are processed by a computer that returns the backscatter intensities and range of the 

target. The MSL system functions are based on a motorized precision stage to ensure synchronous 

scanning and signal reception. 

 

Figure 1. Schematic of the multispectral LiDAR (MSL) system used in this present study. 
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Although most studies concerning MSL have focused on vegetation detection [5–7,15,17], the 

detected subjects in the present study were not limited to plants. Ordinary objects observed in daily life 

were selected to exhibit the ability of MSL to differentiate objects with various textures; some examples 

of these objects included a white wall, ceramic pots, carton, and plastic foam block. Plants were also the 

subjects in this experiment as the wavelengths of this system cover the “red edge” of the spectral 

reflectance curve of vegetation, which gives the MSL an edge in monitoring plants. Thus, two types of 

common potted plants, namely, Cactaceae and E. aureum were used in the scene. Besides determining 

the different species of vegetation, the ability of MSL to differentiate leaves in diverse growth states was 

also investigated. Thus, a pot of E. aureum with healthy and dead leaves was chosen. 

The test area was approximately 1.4 m × 6.5 m × 0.4 m, and the selected articles were placed before 

a white wall, as illustrated in Figure 2. From left to right, the figure shows two cartons connected 

together on a paper stand, Cactaceae growing in a ceramic pot, and E. aureum growing in another 

ceramic pot. The pots for the plants were of different patterns and shapes. A square plastic foam block 

was placed at the far right of the scene. 

 

Figure 2. Scene employed for the MSL system scanning experiment. From (a) to (g) were 

white wall, ceramic pots, Cactaceae, carton, plastic foam block, and healthy and dead 

leaves of E. aureum, respectively. 

Targets of the scene were placed approximately 6.5 m from the synthetic laser source, and spectral 

acquisition in four wavelengths and three-dimensional scanning were simultaneously performed with 

the detectors spinning 0.05 degree horizontally between two measurement points. A total of  

19,762 scanned points were determined, and the scanning resolution was approximately 0.0181 m. The 

MSL system collected not only the intensities of the reflected echoes but also the distance information 

of every point in the targets by working in a two-dimensional sweeping pattern. 

3. Method 

3.1. Data Preprocessing  

The backscattered signals of laser scanning are influenced by incidence angle, distance factor, etc. 

Based on some previous studies [19–22], detector and distance effects at the entire range scale on 

intensity measurement could be corrected by measurement of the reference panel. The physical 

principles behind the intensity calibration can be seen in [23]. Therefore, the standard reference panel 

was measured with the MSL system before and after the complete MSL scanning process at various 

distances. Given that a white reference panel (Spectralon, Labsphere, Inc., North Sutton, NH, USA, 

reflectance nearly 99%) was used, the spectral backscattered reflectance data of each echo at four 
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wavelengths could be computed and documented for subsequent processing. After the reference table 

correction, the intensities relative to distance were normalized. Calibration of the incidence angle of 

every point was also conducted based on a study of correction methods [21]. Other calibration methods 

have also been developed [20,24,25]. Figure 2 shows that a large area of white wall was present in the 

scene. Considering that the intensity of hits on the white wall was close to that of the standard white 

board, the ratio of these intensities (the reflectance) was very close to 1. Thus, reflectance above 1 was 

revised to 1. After calibration, the original point cloud in Figure 5a was gridded into digital images for 

subsequent processing, with their gray values being interpolated from the distance information and 

backscattered reflectance data of each wavelength, as shown in Figure 5b–f.  

3.2. Classification 

SVM, a supervised classification method, has been widely applied in various applications such as text 

categorization [26], image classification [27], object recognition [28] and hand writing recognition [29]. 

SVM was employed in this study to identify objects with the obtained data because, as one of the most 

robust and accurate machine learning methods, SVM is considered a must try and presents a sound 

theoretical foundation. It is insensitive to the number of dimensions and requires only a small number of 

examples for training [30]. Suppose that N-labeled training vectors exist in the d-dimensional feature 

space ݔ௜ ∈ ܴௗ(݅ = 1,2, … ,ܰ)  in a binary classification problem. Given that SVMs were initially 

proposed as binary classifiers, a multiclass problem was involved in this study because more than two 

objects were present in the scene. Let Ω = ሼݓଵ,ݓଶ  ሽ be the set of T possible labels (prior classes) in்ݓ…

the d-dimensional feature space, where T is seven, Ω = {white wall, ceramic pots, Cactaceae, carton, 

plastic foam block, healthy leaves of E. aureum, and dead leaves of E. aureum}. 

As discussed in the previous paragraph, N-labeled training vectors exist in the d-dimensional feature 

space ݔ௜ܴ߳ௗ(݅ = 1,2, … , ܰ). Unlike the single-wavelength LiDAR, where only two dimensions were 

available (namely, reflectance of a single-wavelength and distance), five dimensions can be selected as the 

feature spaces for MSL, including reflectance of four wavelengths (namely, 556, 670, 700, and 780 nm) 

and distance. The training dataset was manually selected based on the actual area of every prior class. 

Corresponding to the sequence in Ω, 95, 285, 56, 182, 232, 411, and 185 training vectors were available for 

each prior class, and their sum N equaled 1446. The training dataset is shown in Figure 3, where cyan, blue, 

green, red, yellow, magenta and white represent points for the white wall, the ceramic pots, the Cactaceae, 

the carton, the plastic foam block, and the healthy and dead leaves of the E. aureum, respectively. Given 

that the two ceramic pots were of the same disposition, they were attributed to the same class. 

 

Figure 3. Selection of the training dataset for each prior class with different colors. 
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The problem in the multiclass case involves associating each d-dimensional sample x with the label 

of the set Ω that optimizes a predefined classification criterion. The one-against-one (OAO) strategy 

was chosen in this study to fulfill this task because the performance of this strategy is comparable with 

that of the one-against-all (OAA) strategy but with shorter training time [31]. Each possible pair-wise 

classification in the OAO strategy involved one SVM, and the final decision of each sample was based 

on the “winner-takes-all” rule. 

3.3. Assessment of Classification 

The scene was manually discerned into reference classes to quantify the accuracy of classification, as 

shown in Figure 4. Considering that the boundary between the green and dead regions of a leaf was 

difficult to differentiate, only those regions with clear definitions were delineated (Figure 2). Likewise, 

boundaries between two neighboring targets were delineated. Thus through comparison of the 

classification result, the object differentiation abilities of different detecting techniques could be compared. 

 

Figure 4. Manual delineation of the validation dataset for each prior class with different colors. 

The confusion matrices, F-measurement, and overall accuracy of the classification were calculated. An 

F-measurement is defined as a harmonic mean of precision (P) and recall (R) [32]. F-measurement was 

computed to compare the classification accuracy of different objects by using the following expression: F − Measurement = 2ܴܲܲ + ܴ (1)

The differentiation capability of the MSL was further compared with traditional single-wavelength 

LiDAR and passive multispectral imaging. Considering that a traditional single-wavelength LiDAR 

system for each point obtains distance and intensity information at one channel, this system can only 

obtain distance information and reflectance of this channel as features for classification. Similarly, a 

multispectral image with four bands only contains reflectance of four channels as classification 

features without distance information because the image is intrinsically two-dimensional. Thus, 

besides MSL, data from four equivalent single-wavelength LiDAR systems and an equivalent 

multispectral image for classification were obtained. With different feature spaces representing data 

from different detection systems, SVM classification was conducted, and the results are shown in 

Figure 6. The classification assessment, representing all the detection systems, is shown in Table 1.  

Though kappa coefficient has been an index widely used in the field of remote sensing, its 

limitations have also been pointed out [33]. Two simpler summary parameters: quantity disagreement 

(the amount of difference between the reference and the classification maps due to mismatches in the 
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proportions of the classes) and allocation disagreement (the amount of difference between the 

reference and the classification maps due to mismatches in the allocation of the classes, given the 

proportions of the classes in the reference and classification maps) [33] have been adopted and 

compared with kappa coefficient in Table 2 as accuracy assessment. 

Table 1. Confusion matrices of classification, F-measurement and overall accuracy of 

SVM classification with features from L556, L670, L700, L780, multispectral image with 

four bands, and MSL (where PF represents plastic foam block, HL represents healthy 

leaves of E. aureum, and DL represents dead leaves of E. aureum). 

Detecting System Class 
Ground Truth (Pixels) 

Wall Pots Cactaceae Carton PF HL DL 

L556 

Wall 4982 0 1 11 4 2 1 

Pots 6 1232 0 673 0 31 96 

Cactaceae 54 49 423 32 62 258 3 

Carton 1 423 113 2743 5 4 1 

PF 411 15 8 0 2201 19 4 

HL 6 33 318 45 22 2113 238 

DL 0 93 1 57 3 254 386 

F-measurement 95.25 63.46 48.76 80.19 88.84 77.45 50.69 

Overall accuracy (%) 80.8 

L670 

Wall 4963 1 0 10 205 0 0 

Pots 8 718 0 2248 0 4 2 

Cactaceae 61 11 790 0 62 476 5 

Carton 31 999 32 1081 187 843 126 

PF 396 15 15 1 1839 20 3 

HL 1 60 26 115 3 1121 0 

DL 0 41 1 96 1 217 593 

F-measurement 93.30 29.76 69.64 31.56 80.20 55.95 70.68 

Overall accuracy (%) 63.7 

L700 

Wall 5308 6 1 4 54 1 1 

Pots 0 936 0 129 1 0 7 

Cactaceae 138 49 552 74 39 763 13 

Carton 7 834 118 3235 21 153 453 

PF 1 0 0 0 2171 0 0 

HL 6 20 192 101 7 1650 60 

DL 0 0 1 8 4 114 195 

F-measurement 97.98 64.15 44.30 77.28 97.15 69.96 37.11 

Overall accuracy (%) 80.6 

L780 

Wall 4972 0 0 11 146 3 0 

Pots 2 1217 46 284 2 492 162 

Cactaceae 0 0 506 70 101 33 0 

Carton 5 282 3 2919 30 644 557 

PF 435 13 205 0 1894 27 4 

HL 46 325 103 263 123 1453 5 
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Table 1. Cont. 

Detecting System Class 
Ground Truth (Pixels) 

Wall Pots Cactaceae Carton PF HL DL 

L780 

DL 0 8 1 4 1 29 1 

F-measurement 93.88 60.10 64.29 73.05 77.71 58.13 0.26 

Overall accuracy (%) 74.4 

image 

Wall 4986 0 0 58 0 2 0 

Pots 24 1380 1 49 255 0 25 

Cactaceae 3 3 559 94 0 190 2 

Carton 354 158 27 3266 58 32 53 

PF 58 224 0 3 1948 3 0 

DL 16 74 19 52 26 381 623 

F-measurement 94.92 77.12 65.19 87.11 85.95 81.26 64.90 

Overall accuracy (%) 85.1 

MSL 

Wall 5104 0 0 31 0 3 0 

Pots 6 1584 0 44 19 0 33 

Cactaceae 3 3 563 96 0 189 2 

Carton 208 168 26 3300 40 25 56 

PF 103 15 1 3 2198 6 0 

HL 28 6 258 29 11 2094 19 

DL 8 69 16 48 29 364 619 

F-measurement 96.32 89.72 65.46 89.50 95.09 81.70 65.78 

Overall accuracy (%) 88.7 

Table 2. Quantity disagreement, allocation disagreement, and kappa coefficient of SVM 

classification with features from L556, L670, L700, L780, multispectral image with four 

bands, and MSL (where QD represents the quantity disagreement as percent of domain, 

AD represents the allocation disagreement as percent of domain, and KC represents  

kappa coefficient). 

L556 L670 L700 L780 Image MSL

QD 0.05 0.11 0.12 0.09 0.05 0.04 

AD 0.15 0.25 0.08 0.17 0.10 0.07 

KC 0.76 0.55 0.76 0.68 0.82 0.86 

4. Results and Discussion 

The three-dimensional display of a point cloud in the detected scene is illustrated in Figure 5a. Five 

interpolated two-dimensional gray images with gray values representing the information obtained by 

the MSL system are shown in Figure 5b–f.  

Data obtained by the MSL system were equal to those obtained by the four single-wavelength 

LiDAR systems (where L556, L670, L700, and L780 represent equivalent single-wavelength LiDAR 

systems at 556, 670, 700, and 780 nm, respectively). A passive image consisting of four bands was 

also simulated with the spectral information acquired. Object discrimination abilities were compared, 
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and the SVM classification results of the four single-wavelength LiDAR systems, passive multispectral 

image, and MSL are shown in Figure 6. 

(a) (b)  

(c) (d)  

(e) (f)  

Figure 5. (a) Three-dimensional distribution of the scanned points in the scene;  

(b) Interpolated gray image with pixel values representing the distance information;  

(c–f) Interpolated gray images with pixel values representing the reflectance in 556, 670, 

700 and 780 nm, respectively. 

(a) (b)  

(c) (d)  

(e) (f)  

Figure 6. (a–d) The SVM classification results of data from four equivalent  

single-wavelength LiDAR systems of 556, 670, 700, and 780 nm, respectively; (e) The 

SVM classification result of data from the equivalent multispectral image with four bands;  

(f) The SVM classification result of data from the MSL system. 
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The accuracy of the supervised classification can be quantified from the classification results and 

the validation dataset. The confusion matrices of the classification by L556, L670, L700, and L780, the 

multispectral image, and the MSL system with SVM are listed in Table 1. The overall accuracy of each 

of the classification types is also provided. In Table 2, we compared the quantity disagreement, 

allocation disagreement, and kappa coefficient of the detection results with different systems. 

According to Table 1, the accuracy of the white wall was the lowest (93.30%) in L670, though only 

slightly lower than the highest result (97.98%) in L700. Most misclassifications occurred between the 

white wall and the plastic foam block, likely because the colors of these objects were both bright 

white. The F-measurement of ceramic pots was only 29.76% when classified with features from L670. 

Most samples of pots were misidentified as carton (999/1845), and numerous samples of carton 

(2248/3551) were likewise seriously misidentified. The classification accuracies of Cactaceae and 

dead leaves of E. aureum with L670 ranked first (69.64% and 70.68%, respectively). The  

F-measurement of healthy leaves of E. aureum was the lowest (55.95%), and many instances were 

misclassified as carton.  

When data from L780 was applied, dead leaves of E. aureum were hardly recognized and the  

F-measurement was 0.26%. The F-measurement of dead leaves of E. aureum in this study ranged from 

0.26% to 70.68%, partly because of the small number of dead leaves of the plant. Most samples of 

dead leaves (557/729) were identified as carton, likely because both objects were related to vegetation 

with little moisture. Among samples identified as dead leaves of E. aureum, most instances (29/44) 

were actually healthy leaves of the plant. 

When classification was based on the equivalent multispectral image with four bands, the  

F-measurement of each class was lower than the corresponding accuracy observed with MSL. This 

result stresses the significance of adding spatial information with the MSL system.  

In general, the target differentiation result of the MSL system was better than that of any other 

detection system when all of the referenced classes were considered. The classification accuracies of 

ceramic pots, carton and healthy leaves of E. aureum ranked the highest (89.72%, 89.50% and 81.70%, 

respectively) and were considerably higher than those obtained through the single-wavelength LiDAR 

systems. The F-measurement of the rest of the categories (white wall, 96.32%; Cactaceae, 65.46%; 

plastic foam block, 95.09%; and dead leaves of E. aureum 65.78%) ranked second with a small gap 

between the highest (L700, 97.98%; L670, 69.64%; L700, 97.15%; and L670, 70.68%).  

The comparatively low classification accuracy of dead leaves of E. aureum was partly caused by its 

mixture with healthy leaves and the insufficiency of samples. However, considering wavelengths 

adjacent to the 680 nm absorption feature exhibited by all vegetation containing chlorophyll, 

classification based on MSL was proven to show improved ability to separate healthy from dead leaves 

of plants. Thus, although the discrimination rate of one specific target may not be the highest with 

MSL, its global performance far outweighed that of the other detection systems. 

Table 2 shows the following: first, the classification result of MSL excels those of the other 

detecting systems no matter which of the three indexes is or are adopted. In other words, with the 

addition features of the three channels, the two sources of error, quantity and allocation difference, of 

the MSL are reduced in comparison with single-wavelength LiDAR and multispectral image. At the 

same time, comparing with the result of the multispectral image, distance plays a significant role in 

diminishing the two kinds of errors for the MSL. Second, with the help of quantity disagreement and 
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allocation disagreement, we can better understand the detection results than with kappa coefficient. For 

example, the kappa of L556 is the same with that of L700. However, the main error source of L556 is 

allocation difference (QD vs. AD is 0.05 vs. 0.15), while quantity difference accounts for the main error 

of L700 (QD vs. AD is 0.12 vs. 0.08). With the identical kappa coefficient, we may assume that the 

detection errors of the two are similar, while taking measures to improve the results, which turns out to 

be wrong. Based on the overall accuracy in Table 1, and the quantity disagreement and the allocation 

disagreement in Table 2, the MSL system manifested better performance in classification in comparison 

with the four equivalent traditional single-wavelength LiDAR systems and the multispectral image with 

four bands. The overall accuracy of MSL was approximately 26.2% higher than that of L670, 16.4% 

higher than that of L780, and more than 9% higher than that of L556 and L700.  

This result shows that MSL far exceeded the capability of the single-wavelength LiDAR with more 

spectral information. The substantial benefits of MSL compared with passive imaging with four bands 

not only lie in the improvement of differentiation result, but also in maintaining distance information. 

MSL has an evident edge over traditional detecting systems and shows promise in future object 

discrimination applications. 

5. Conclusions 

The ability of the MSL system to detect objects was investigated in this study. Here, both spectral 

and spatial information were proposed to jointly differentiate diverse objects. The overall accuracy of 

SVM classification reached 88.7%, 9.8%–39.2% higher than that obtained using a single-wavelength 

LiDAR, revealing MSL’s superiority over single-wavelength LiDAR for object differentiation with the 

added channels. In addition to overall accuracy, quantity disagreement and allocation disagreement, 

MSL also yields more accurate differentiation results concerning every detected category than passive 

multispectral imaging with the same bands, highlighting the advantage of three-dimensional data for 

target detection. Considering the new feature space provided by this novel system, MSL has the 

potential to improve the detection ability of LiDAR and traditional passive remote-sensing methods for 

object classification and various other applications. More studies are needed to ensure the all-time 

operation of MSL under real-world constraints. The MSL system is also capable of discerning different 

growth stages of vegetation, which reveals its further potential in monitoring the state of crops and 

forests. Automatic point cloud classification remains a challenge even for single wavelength LiDAR, 

future work will focus on incorporating more spectral and spatial features into classification and assign 

different weight to them according to the type of detected objects. 
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