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Abstract: This paper presents a novel off-grid direction of arrival (DOA) estimation 

method to achieve the superior performance in compressed sensing (CS), in which DOA 

estimation problem is cast as a sparse reconstruction. By minimizing the mixed k-l norm, 

the proposed method can reconstruct the sparse source and estimate grid error caused by 

mismatch. An iterative process that minimizes the mixed k-l norm alternately over two 

sparse vectors is employed so that the nonconvex problem is solved by alternating convex 

optimization. In order to yield the better reconstruction properties, the block sparse source 

is exploited for off-grid DOA estimation. A block selection criterion is engaged to reduce 

the computational complexity. In addition, the proposed method is proved to have the 

global convergence. Simulation results show that the proposed method has the superior 

performance in comparisons to existing methods. 

Keywords: alternating block coordinate descent; block selection criterion; block sparse 

source; compressed sensing; off-grid direction of arrival (DOA) estimation 

 

1. Introduction 

Direction of arrival (DOA) estimation has played an important role in many fields, such as radar, 

medical imaging and array signal processing [1,2]. In the last decades, many classical methods have 

been developed, among which multiple signal classification (MUSIC) [3] and estimation of signal 
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parameter via rotational invariance technique. (ESPRIT) [4] are the most popular and have high 

resolution for DOA estimation. However, these methods are very sensitive to the number of snapshots, 

signal to noise ratio (SNR) and the correlation between sources. Small number of snapshots, low SNR 

and high correlation or coherent sources can all make the performance of these methods degrade 

severely. More recently, the emerging field of compressed sensing (CS) [5,6] has attracted enormous 

attention and it can reconstruct the sparse source using nonadaptive linear projection measurement 

obtained by the measurement matrix that satisfies the restricted isometry property (RIP) [7,8]. Support 

denotes the set that contains the indices of the nonzero elements in the sparse source. Once the support 

is determined, the sparse source can be reconstructed. 

Due to the fact that sources are intrinsically sparse in the spatial domain, the DOA estimation problem 

can be regarded as a sparse reconstruction in the framework of CS. The CS-based estimation methods 

have much better estimation performance than conventional estimation methods. Malioutov et al. [9] 

firstly adopted the sparse signal reconstruction (SSR) perspective for DOA estimation and utilized the 
singular value decomposition (SVD) of the data matrix to propose 1l -SVD method. In [10],  

CS-MUSIC was proposed by revisiting the link between CS and MUSIC. This method identifies the 

parts of support using CS, after which the remaining parts are estimated by a novel generalized MUSIC 
criterion. Xu et al. [11] utilized the Capon spectrum to design a weighted 1l -norm penalty in order to 

further enforce the sparsity and approximate the original 0l -norm for DOA estimation. Wei et al. [12] 

proposed a modified greedy block coordinate descent (R-GBCD) method and the corresponding 

version with weight refinement (R-GBCD+) to improve the estimation performance.  

The key to guarantee the performance of conventional CS-based estimation methods is that all true 

DOAs are exactly located on the grid. However, when true DOAs are not on the grid set, the 

performance may severely degrade due to the grid error caused by mismatch, which is defined as the 

distance from the true direction to the nearest grid. In order to address this issue, Zhu et al. [13] 

proposed the sparse total least square (STIS) to perform the off-grid DOA estimation, in which 

perturbations of the model are assume to be Gaussian. In [14], Yang et al. introduced the Bayesian 

theory in off-grid DOA estimation and proposed an off-grid sparse Bayesian inference based on the 

singular value decomposition (OGSBI-SVD). Liang et al. [15] proposed an off-grid synchronous 

approach based on distributed compressed sensing to obtain larger array aperture. Zhang et al. [16] 

formulated a novel model based on the sampling covariance matrix and solved the off-grid DOA 

estimation problem by the block sparse Bayesian method even if the number of sources are unknown. 

In this paper, a novel alternating block coordinate descent method called ABCD is proposed for  

off-grid DOA estimation in CS. The proposed method solves the mixed k-l norm minimization problem 

to reconstruct the sparse source and estimate the grid error. Since joint estimation will lead to a 

nonconvex optimization problem, the proposed method adopts an iterative process that minimizes the 

mixed k-l norm alternately over two sparse vectors. Instead of conventional sparse source, the block 

sparse source is exploited to achieve better reconstruction properties. The block is updated by the 

proposed block selection criterion, which can improve efficiency of the proposed method. In addition, we 

give a detailed derivation process of proving the global convergence of the proposed method. Simulation 

results illustrate the superior performance of the proposed method as compared with existing methods. 
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The rest of the paper is organized as follows. An off-grid DOA estimation model is formulated in 

Sections 2 and 3 introduces the proposed method in detail. The global convergence of the proposed 

method is proved in Sections 4 and 5 shows the performance of the proposed method. Conclusions are 

provided in Section 6. 

2. Problem Formulation 

Consider K far-field narrowband sources 1 2( ), ( ), , ( )Ks t s t s t  impinging on the uniform linear array 

(ULA) consisting of M omnidirectional sensors with inter-sensor spacing d


. Assume that each source 
( )ks t  is located at different direction θk  with the power σk , 1, 2, ,k K=  . At time instant t, the 

received source by ULA can be expressed as  

1

( ) (θ ) ( ) ( ) 1,2
K

k k
k

t s t t t T
=

= + = x a n  (1)

where 1(θ ) M
k

×∈a  and 1( ) Mt ×∈n  denote the steering vector and noise vector, respectively. Since 

the first point of ULA is set as the origin of sensor array, the mth element of (θ )ka  is written as 
ˆ(2π λ) ( 1)cosθkj d me− −  with the wavelength of source λ . 

To incorporate the CS theory with the DOA estimation, the entire angular space is divided into a 

fine grid 1 2θ [θ , θ θ ]T
L=    , where L ( )L K  denotes the number of the grid and [ ]T  denotes the 

transpose. Due to the fact that true directions 1 2θ [θ , θ θ ]T
K=   are random in the entire angular space, 

θk  for some {1,2 }k K∈   are likely to be not on the grid set. To reduce the grid error caused by 

mismatch, we formulate the off-grid model, which has a close relationship with the on-grid model. Let 

θ  satisfy the uniform distribution so that the grid interval 1
1τ θ θk k L−

+= − ∝  . Without loss of 

generality, by assuming 1 2θ {θ , θ θ }k L∉     and that 1 2θ {θ , θ θ }
kl L∈     is the nearest grid to θk , the 

steering vector (θ )ka  can be approximated as 

(θ ) (θ ) (θ )(θ θ )
k k kk l l k l≈ + −  a a b  (2)

where 
τ τ

ε θ θ [ , ]
2 2kl k l= − ∈ −  is the grid error and (θ )

kl
b  is the partial derivative of (θ )

kl
a  with 

respective to θ
kl
 . Then, if 

1 2
θ , θ θ

Kl l l
    are respectively nearest grids to the true directions 1 2θ , θ θK , 

we have 

( ) ( ) , ε θ θ ; ( 1, 2, )

( ) ε 0 ;
k kl l l k l k

l l

g t s t l l k K

g t elsewhere

 = = − = =


= =

 
 (3)

Then, by imposing the approximation error on the noise, the received source ( )tx  can be rewritten 

as the following sparse form 

( ) [ (ε)] ( ) ( ) 1,2,t diag t t t T= + + = x A B g n  (4)

where 1 2[ (θ ), (θ ), , (θ )]L=   A a a a  is the M L×  array manifold matrix corresponding to all potential 

directions, which is defined as an overcomplete dictionary in CS, and 1 2[ (θ ), (θ ), , (θ )]L=   B b b b . In 

addition, the matrix [ (1) , (2) , , ( ) ]T=
   N n n n  is the noise matrix and (ε)diag  is a diagonal matrix 
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with ε  being the diagonal elements. Since 1 2( ) [ ( ), ( ), , ( )]T
Lt g t g t g t= g  has K nonzero elements in L 

elements, it is a K-sparse vector, where K is referred to as sparsity. More specifically, 1 2ε [ε , ε , ,ε ]T
L=   

is also a K-sparse vector and has the same support as ( )tg . It is evident that the  

on-grid sparse model is a special case by simply setting ε 0=  in Equation (4). Since 1{ ( )}T
tt =g  are jointly 

K-sparse, the matrix [ (1), (2), , ( )] L TT ×= ∈ G g g g  has K nonzero rows and is called row K-sparse. 

To solve the off-grid DOA estimation problem, we need to jointly estimate the support of sparse 
sources, ( ), 1, 2, ,t t T= g , and grid error ε  from the matrix Y which is given by 

[ (1) (2) ( )] Φ Φ (ε)T diag= = + + Y y y y AG G NΒ  (5)

where Φ=
N N  is the N T×  noise matrix, Φ  is the N M×  measurement matrix with <N M  and N 

is the number of nonadaptive linear projection measurement. 

3. Off-DOA Estimation 

In this section, an alternating block coordinate descent (ABCD) method and a block selection 

criterion are elaborated in the CS scenario. The proposed method not only has the advantages of 

conventional BCD [17] strategy, but also uses an iterative process that minimizes the mixed k-l norm 

alternately over two sparse vectors. Note that due to solving the minimization alternately, a tractable 

convex problem is obtained and the global convergence of ABCD can be easily determined, which is 

proved in the next section.  
By applying the central limit theorem, the components ( )t

n , 1, 2, ,t T=  , of 


N  are independently 

white Gaussian noise with zero mean and covariance 2σ MI , where MI  denotes an M M×  identity 

matrix. Thus, the covariance matrix of Y  with the size M M×  is expressed as 
2[ ( ) ( )] Φ Φ Φ (ε) (ε) Φ σ ΦΦH H H H H H H

Y G GE t t diag diag= = + +R y y AR A RΒ Β  (6)

where [ ( ) ( )]H
G E t t=R s s  is a L L×  covariance matrix of the sparse source and ( )H  denotes the conjugate 

transpose. Since all potential directions are one to one corresponding to the powers 2 2 2
1 2σ , σ , , σL  and we 

are interested in estimating DOAs, GR  can be reduced to a diagonal matrix ( )G diag=R p , where 
2 2 2
1 2[σ , σ , , σ ]T

L= p  is a K-sparse vector. Then, by denoting 1 2
ˆ ˆ ˆΦ (θ ), (θ ), ,= = [   a aΑ Α ˆ( )Lθ ]a  and 

1 2
ˆ ˆ ˆˆ Φ (θ ), (θ ), , (θ )L= = [ ]  b b bΒ Β , (6) can be further rewritten as 

2 2 2 2

1 1

ˆ ˆˆ ˆ(θ ) (θ ) σ (θ ) (θ )σ ε σ ΦΦ
L L

H H H
Y l l l l l l l

l l= =

= + +    R a a b b  (7)

Due to the vector form of YR  in Equation (7), the following measurement vector is given by  

2( ) σ ΦΦH
Yvec= = + +z R Cp Dq  (8)

with 1 1 2 2
ˆ ˆ ˆ ˆ ˆ ˆ[ (θ ) (θ ), (θ ) (θ ), , (θ ) (θ ) ]H H H

L L= ⊗ ⊗ ⊗     C a a a a a a  and 1 1
ˆ ˆ[ (θ ) (θ ),H= ⊗ D b b  

2 2
ˆ ˆ ˆ ˆ(θ ) (θ ), , (θ ) (θ )]H H

L L⊗ ⊗   b b b b , where ⊗  and ( )vec   denote the Kronecker product and the stack 

operation by placing the columns of a matrix on the top of one another in order, respectively. 
Moreover, 2 2 2 2 2 2

1 1 2 2= [σ ε , σ ε , , σ ε ]T
L Lq  is also a K-sparse vector, which has the same support as p . In 

the conventional sparse source, the nonzero elements of the sparse vector p  or q  can appear anywhere 
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in the vector. However, in this paper, our goal is to explicitly take block sparse source into account, i.e., 
the nonzero elements of the sparse vector p  or q  tend to cluster in blocks. The motivations to exploit 

block sparse source are the following two main reasons. As can be seen in [18], the first reason is that 

block sparse source has been applied in many applications, such as unions of subspaces and multiband 

sources [19]. Secondly, block sparse source has better reconstruction properties than sparse source in the 

conventional sense, which is proved in [20]. To exploit block sparse source, denote 
2 2 2

( 1) 1 ( 1) 2[ ] [σ , σ , , σ ]T
d h d h dhh − + − += p  and 2 2 2 2 2 2

( 1) 1 ( 1) 1 ( 1) 2 ( 1) 2[ ] [σ ε , σ ε , , σ ε ]T
d h d h d h d h dh dhh − + − + − + − += q  as the hth 

blocks of p  and q  with the length d, respectively, so that we have  

[ [1], [2], , [ ]]T T T TH= p p p p  (9)

[ [1], [2], , [ ]]T T T TH= q q q q  (10)

where L dH= . Following the similar manner, the matrices C  and D  can be respectively viewed as a 
concatenation of block matrices [ ]hC  and [ ]hD  of the size 2N d× , i.e., 

= [ [1], [2], , [ ]]HC C C C  (11)

= [ [1], [2], , [ ]]HD D D D  (12)

where ( 1) 1 ( 1) 1 ( 1) 2 ( 1) 2ˆ ˆ ˆ ˆ ˆ ˆ[ ] [ (θ ) (θ ), (θ ) (θ ), , (θ ) (θ )]H H H
d h d h d h d h dh dhh − + − + − + − += ⊗ ⊗ ⊗     C a a a a a a  and 

( 1) 1 ( 1) 1 ( 1) 2 ( 1) 2
ˆ ˆ ˆ ˆ ˆ ˆ[ ] [ (θ ) (θ ), (θ ) (θ ), , (θ ) (θ )]H H H

d h d h d h d h dh dhh − + − + − + − += ⊗ ⊗ ⊗     D b b b b b b . Obviously, the 

conventional sparse source is a special case of block sparse source by simply setting 1d = .  
If 

2
[ ] , 1, 2, , ,h h H= p  has at most K nonzero elements, the vector p  is referred to as block  

K-sparse, where 
2

⋅  denotes the Euclidean norm for vectors. In contrast to conventional sparsity, K is 

called block-sparsity. 
Since p  has the same support as q , p  and q  are jointly sparse. Thus, a mixed k-l norm 

minimization problem [21] is utilized to jointly reconstruct p  and q . Given a 1L×  block sparse 

vector p , the mixed k-l norm of p  is defined as  

,
1

= ( [ ] )
H

l l

k l k
h

h
=
p p  (13)

Combining the definition given by Equation (13), this mixed k-l norm minimization problem is 

formulated as 

2

, ,,
min( β ) . . σ ΦΦ

l l H

k l k l
s t+ = + +

p q
p q z Cp Dq  (14)

where 0 1l≤ ≤ . It is worth mentioning that an important class of methods for solving the constrained 

optimization problem is to form the auxiliary function. By introducing the Lagrange multiplier method, 

the Lagrange function with respect to Equation (14) is given by  

2

2,
1 1

1
min β ( [ ] ) β ( [ ] )

2

H H
l l

p qk k
h h

h h
= =

− − + + p q
z Cp Dq p q  (15)

where β p  and βq  are regularized parameters. As can be seen in Equation (15), the minimization problem 

with respect to p  and q  is nonconvex so as to make DOA estimation intractable. But note that if we fix 
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one of two sparse vectors, that is, either p  or q , the minimization problem in Equation (15) turns out to 

be convex with respect to the other sparse vector alone. Thus, p  and q  can be reconstructed by 

alternately solving the following two minimization problems under the condition that the other sparse 

vector is fixed. 

2

2
1

1
min{ β ( [ ] ) }

2

H
l

p k
h

h
=

− − + p
z Cp Dq p  (16)

2

2
1

1
min{ β ( [ ] ) }

2

H
l

q k
h

h
=

− − + q
z Cp Dq q  (17)

It is clear that Equations (16) and (17) have the same structure and can be solved in a similar 

manner. In the following, we only need to find the optimal solution for Equation (16). Then, the 

minimization problem in Equation (17) can be handled in the same way. 

The objective function in Equation (16) can be expressed as 

( ) ( ) ( )F f v= +p p p  (18)

where 
2

2

1
( )

2
f = − −p z Cp Dq  and 

1

( ) β ( [ ] )
H

l
p k

h

v h
=

= p p . Assume that ( )kp  is obtained at the kth 

iteration. Then, by the quadratic approximation of ( )f p  at the fixed point ( )kp , ( )F p  can be 

approximated as  

2( )

2
( ) ( ) ( ) 1

[ ] [ ]
( ) ( ) ( ) ( ) ( )

2

H
k

k k H k h

h h
F f f v

Σ
=

−
≈ + − ∇ + +

 p p
p p p p p p  (19)

where ( ) ( )

1

( ) [ ( [ ] [ ] [ ] [ ]) ]
H

k H k

h

f h h h h
=

∇ = ⋅ + −p C C p D q z  is the partial derivation of ( )( )kf p  with respect 

to ( )kp . Σ  is set to be 1

L
Σ =

Δ
, where 

1
⋅  denotes one norm for vectors, 1 2[ , , , ]T

LΔ Δ Δ= Δ  is a 

1L×  vector and 
2

2

1

ˆ ˆ(θ ) (θ )
l

H
l l

Δ =
⊗ a a

, 1, 2, ,l L=  . Moreover, Δ  can be shown to be a block 

vector, i.e.,  

[ [1], [2], , [ ]]T T T TH= Δ Δ Δ Δ  (20)

where [ ]hΔ  is the hth block of Δ  with the length d. For the convenience of analysis, denote 
( ) ( )( ) ( )k kdiag f= ∇J pΔ , and we can also represent ( )kJ  as a block vector, i.e.,  

( ) ( ) ( ) ( ) ( )

1

( ) [ ( [ ] [ ] [ ] [ ]) ] [( [1]) , ( [2]) , , ( [ ]) ]
H

k H k k T k T k T T

h

diag h h h h H
=

= ⋅ + − = J C C p D q z J J JΔ  (21)

where ( )[ ]k hJ  is the hth block of ( )kJ  with the length d. At the kth iteration, ( )kp  is updated by 

minimizing ( )F p  in Equation (19) so that the next iteration ( 1)k +p  is given by 

2( )

2
( 1) ( ) ( ) ( ) 1

[ ] [ ]
min{ ( ) ( ) ( ) ( )}

2

H
k

k k k H k h

h h
f f v+ =

−
= + − ∇ + +

Σ


p

p p
p p p p p p  (22)
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By further derivation, Equation (22) can be simplified to  

2( 1) ( )

2
1

1
min{ [ [ ] [ ] [ ] ]}

2

H
lk k

p k
h

h h hλ+

=

= − +
Σ

p
p p u p  (23)

where ( ) ( ) ( )[ ] [ ] [ ]k k kh h h= −u p J . As one may note, the objective function in Equation (23) is separable, 

and thus H blocks of ( 1)k +p  can be solved in a parallel manner. Although it is hard to solve H blocks, 

the classical BCD method has provided a critical inspiration, fortunately. The solution to the hth block 
of ( 1)k +p  is given by a soft-thresholding operator [22] 

( )
( 1) ( ) ( )

2 2( ) 2 2

2

[ ]
[ ] ( [ ] λ [ ] ) ( [ ] λ [ ] ), 1, 2, ,

[ ]

k
k k k

p pk

h
h h h I h h h H

h
+ = − ≥ = up u u

u
Δ Δ  (24)

where ( )I ⋅  denotes an indicator function. Instead of reconstructing ( 1)k +p  directly, ( 1)k +p  can be 

reconstructed by H blocks, which may be zero vectors during the iteration. It can be seen in Equation 

(24) that we just need to determine the relation of ( )

2
[ ]k hu  and 

2
λ [ ]p hΔ  to judge whether ( 1)[ ]k h+p  

is a zero vector. If ( )

2
[ ]k hu  is less than 

2
λ [ ]p hΔ , ( 1)[ ]k h+p  must be a zero vector. Therefore, a 

considerable amount of computations can be avoided in the process of solving H blocks. Similarly, by 
utilizing the soft-thresholding operator, the solution to the hth block of ( 1)k +q  is expressed as 

( )
( 1) ( ) ( )

( ) 2 22 2

2

[ ]
[ ] ( [ ] λ [ ] ) ( [ ] λ [ ] ), 1, 2, ,

[ ]

k
k k k

q qk

h
h h h I h h h H

h
+ = − ≥ = uq u u

u
Δ Δ  (25)

where [ ]hΔ  and ( )[ ]k hJ  are the hth blocks of Δ  and J  with the length d, respectively, and 
( ) ( )[ ] [ ] [ ]k k kh h h= −u q J . Following the similar derivation, we have  

( ) ( )

1

( ) [ ( [ ] [ ] [ ] [ ]) ]
H

k H k

h

diag h h h h
=

= ⋅ + −J D C p D q zΔ  (26)

where 1 2[ , , ]T
LΔ Δ Δ= , Δ  is a 1L×  vector and 2

2

1

ˆ ˆ( ) ( )
i

H
l l

Δ
θ θ

=
⊗ b b

, 1, 2, ,l L=  . Based on 

Equations (24) and (25), p  and q  can be reconstructed alternately until the following criterion is satisfied 

( 1) ( )

( )

η η
γ

η

k k

k

+ − ≤  (27)

where ( ) ( ) ( )η [ ; ]k k k= p q  and γ  is the small tolerance. 

To reduce the computational complexity, a block selection criterion is given. This criterion is of 

great importance in the whole ABCD method. By utilizing the block selection criterion, we can only 

update the block that is the closest to z , i.e., 

0 2
arg min [ ] , 1, 2, ,h h h H= − = w z  (28)

where [ ] [ ] [ ] [ ] [ ]h h h h h= +w C p D q . This means that ( 1)
0[ ]k h+p  and ( 1)

0[ ]k h+q  at the kth iteration are 

updated as Equations (24) and (25) while the remaining blocks keep unchanged. The purpose of 

utilizing this block selection criterion is to avoid the update of repetitive and unnecessary blocks and 
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reduce the computational complexity. The major steps of reconstructing p  and q  by the ABCD 

method are given as follows: 

Initialization: set 
2 2 2(0) (0) 10, , , , , ( )N L N L N

Yk vec× × ×= = = ∈ ∈ = ∈  p 0 q 0 C D z R  and 5γ 10−= . 

(1) Calculate ( )kJ  and ( )kJ  in terms of Equations (21) and (26). 
(2) Due to H blocks of ( )kJ  and ( )kJ , calculate ( )[ ]k hu  and ( )[ ]k hu , 1, 2, ,h H=  . 

(3) Calculate ( 1)[ ]k h+p  and ( 1)[ ]k h+q , 1, 2, ,h H=  , in terms of (24) and (25). 

(4) Choose the block index 0h  according to (28). Then, ( 1)k +p  and ( 1)k +q  are respectively updated as 
( ) ( ) ( 1) ( ) ( )

0 0 0[ [1], , [ 1] , [ ] , [ 1] , ; [ ]]k k k k k Th h h H+− + p p p p p  and ( ) ( )
0[ [1], , [ 1],k k h −q q  

( 1) ( ) ( )
0 0[ ], [ 1], , [ ]]k k k Th h H+ + q q q . 

(5) If 
( 1) ( )

( )

η η
γ

η

k k

k

+ − ≤ , stop the iteration. Otherwise, set 1k k= +  and return to step (1). 

4. Global Convergence of the ABCD Method 

The global convergence of the ABCD method is proved in this section. By combining the existing 

convergence proof of the general BCD framework [23] with ABCD method, a detailed derivation 

process for proving the global convergence is shown as follows. 
First, we introduce the general BCD framework. Note that ( )f p  in Equation (18) is a continuous 

convex function and ( )v p  in (18) is a non-smooth convex function. Given a fixed point ( )kp , ( )F p  in 

Equation (18) can be approximated as the following form by exploiting the second order Taylor 
expansion of ( )f p  in the general BCD framework. 

( ) ( ) ( ) ( ) ( )1
( ) ( ) ( ) ( ) ( ) ( ) ( )

2
k k H k k H kF f f v≈ + − ∇ + − − +p p p p p p p H p p p  (29)

where 2 ( )( )k Hf= ∇ =H p C C  is the L L×  Hessian matrix of ( )( )kf p  with respect to ( )kp . It is clear 

that minimizing Equation (29) involves finding the next iteration ( 1)k +p . Assume that χ [1,2, , ]H=   is 

an H-dimensional index set and 0χ  is a subset of χ  consisting of at most K indexes obtained by 

Equation (28). Hence, the next iteration ( 1)k +p  is represented as  

( 1) ( ) ( )
0 0( , χ ) arg min { ( ) / [ ] , χ, χ }k k kF h h hΛ+ = = = ∈ ∉

p
p p p p 0  (30)

Then, to prove the global convergence, we give the modified Armijo rule and modified  

Gauss-Southwell-r rule that are prerequisites to guarantee the global convergence. These two rules are 

described in the following. 

(1) Modified Armijo rule: If ( )0 < α < 1k , 0 < ξ < 1 and  0 < κ < 1, the following inequality holds: 

( ) ( ) ( ) ( ) ( ) ( )( +α μ ) ( ) α κk k k k k kF F Γ≤ +p p  (31)

where ( ) ( )μ k k= −p p  and ( ) ( ) ( ) ( ) ( ) ( )μ ) ( ) ξ(μ ) μ ( ) ( )k k H k k H k kfΓ = ( ∇ + + −p H v p v p . 

(2) Modified Gauss-Southwell-r rule: In the iteration, the index set 0χ  obtained by Equation (28)  

must satisfy 

( ) ( )
0 2 2

( , ) ς ( , χ)k kΛ χ Λ≤p p  (32)
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where 0 < ς < 1. 

It is well known that the problem of proving the global convergence is quite complex and 

intractable. However, fortunately, since Equations (16) and (17) are both convex and have both only 

one global point, we only need to show that Equations (16) and (17) satisfy the modified Armijo rule 

and modified Gauss-Southwell-r rule to prove the global convergence of the ABCD method. 

Furthermore, since Equation (16) has the same structure as Equation (17), it is enough to just prove 

that Equation (16) satisfies the modified Armijo rule and modified Gauss-Southwell-r rule. Regarding 

Equation (17), the derivation process is given in the same way. 

To see the first, the following inequality holds according to Equation (30). 
( ) ( ) ( ) ( ) ( )( ) ( +μ ) ( α μ )k k k k kF F F= ≤ +p p p  (33)

By substituting Equation (33) into Equation (29), we have  
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1
( ) (μ ) ( ) (μ ) (μ ) ( +μ )

2
1

( ) (α μ ) ( ) (α μ ) (α μ ) ( + α μ )
2

k k H k k H k k k

k k k H k k k H k k k k k

f f v

f f v

+ ∇ + + ≤

+ ∇ + +

p p H p

p p H p
 (34)

Based on the fact that ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( +α μ ) α ( +μ ) (1 α ) ( )k k k k k k k kv v v≤ + −p p p , Equation (34) can be 

further simplified to  

( ) ( ) ( ) ( ) 2 ( ) ( ) ( ) ( ) ( ) ( )1
(1 α )(μ ) ( ) [1 (α ) ](μ ) (μ ) (1 α )[ ( + μ ) ( )] 0

2
k k H k k k H k k k k kf v v− ∇ + − + − − ≤p H p p  (35)

Since ( )0 < α < 1k , by dividing by ( )1 α k−  and setting ( )α 1k → , we have 

( ) ( ) ( ) ( ) ( ) ( ) ( )(μ ) ( ) (μ ) (μ ) ( +μ ) ( ) 0k H k k H k k k kf v v∇ + + − ≤p H p p  (36)

For 0 < ξ < 1, it can be deduced from (36) that  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )μ ) ( ) ξ(μ ) μ ( ) ( ) (ξ 1)(μ ) μ 0k k H k k H k k k H kfΓ = ( ∇ + + − ≤ − ≤p H v p v p H  (37)

Subsequently, by exploiting the convexity of ( )f p , we obtain 

( ) ( ) ( ) ( ) ( ) ( ) ( )1
( ) ( +μ ) ( ) (μ ) ( ) (μ ) (μ )

2
k k k k H k k H kf f f f= ≤ + ∇ +p p p p H  (38)

Since ( ) ( ) ( )F f v= +p p p , it is nature to have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1
( ) ( +μ ) ( ) (μ ) ( ) (μ ) (μ ) ( ) ( )

2
k k k k H k k H k kF F F f= ≤ + ∇ + + −p p p p H v p v p  (39)

Following the fact in Equation (37), the following inequality holds 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1
( ) (μ ) ( ) (μ ) (μ ) ( ) ( )

2
1

( ) κ[(μ ) ( ) (μ ) (μ ) ( ) ( )]
2

k k H k k H k k

k k H k k H k k

F f

F f

+ ∇ + + −

≤ + ∇ + + −

p p H v p v p

p p H v p v p
 (40)

where 0 < κ < 1. Combining Equations (39) and (40), we have  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1
( +μ ) ( ) κ[(μ ) ( ) (μ ) (μ ) ( ) ( )]

2
k k k k H k k H k kF F f≤ + ∇ + + −p p p H v p v p  (41)
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It is worth pointing out that Equation (41) is equal to Equation (31) with ( )α 1k =  and 
1

ξ
2

= . Thus, it 

has been proved that Equation (16) satisfies the modified Armijo rule.  

Secondly, in order to prove that Equation (16) satisfies the modified Gauss-Southwell-r rule, the 

following form is shown 

( )
0 2 2

arg min [ ] arg min ( , χ )k
ih h Λ= − =w z p  (42)

where the cardinality of χ i  is the same as that of 0χ . Without loss of generality, consider the worst 

case, i.e., the cardinality of χ i  is the maximization K, and assume H KZ=  so that χ  is expressed as 

1 2χ [χ χ χ ]Z= ， ， ， . Thus, we have 

( ) ( )
0 2 2

( , χ ) ( , χ )k k
iΛ Λ≤p p  (43)

Based on the following equation 

2( ) ( )

2 2
1

( , χ) ( , χ )
Z

k k
z

z

Λ Λ
=

= p p  (44)

it is easy to have 

( ) ( )
0 2 2

1
( , χ ) ( , χ)k k

Z
Λ Λ≤p p  (45)

Since Equation (45) is equal to Equation (32) with 
1

ς
Z

= , Equation (16) satisfies the modified 

Gauss-Southwell-r rule. Therefore, based on the above analysis, the global convergence of the ABCD 

method has been proved. 

5. Simulation Results 

This section presents several simulations to validate the superior performance of the proposed 

method as compared with R-GBCD+ and OGSBI-SVD. The angular space [−90°, 90°] is taken the 

grid with grid interval τ = 3° to perform three methods for off-grid targets. We set the length of block, 

the number of ULA sensors and spacing between adjacent sensors to be 3d = , 9M =  and 
λ

2
d =


, 

respectively. In the simulation, the root mean squared error (RMSE) and success rate of DOA 

estimation are two significant performance indexes. RMSE is defined as  

2
,

1 1

(θ θ )Mc K
k i k

i k

RMSE
K Mc= =

−
=

⋅  (46)

where Mc  is the number of Monte Carlo runs and ,θk i is the estimate of θk  in the ith Monte Carlo run, 

and success rate is declared if the estimation error is within a certain small Euclidean distance of the 

true directions.  

In the first simulation, we compare the spatial spectra of R-GBCD+, OGSBI-SVD and ABCD. 

Consider four far-field narrowband sources impinging on the ULA from [−30.4° −3.8° 10.1° 15.3°], 

where the latter two most closely spaced sources are coherent and the remaining sources are 
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independent of other sources. Figure 1 presents the spatial spectra of R-GBCD+, OGSBI-SVD and 

ABCD with SNR 3 dB and number of snapshots 100. For the convenience of analysis, the spatial 

spectra are normalized. We can see from Figure 1 that the spatial spectra of three methods are able to 

detect four sources, but the spatial spectrum obtained by R-GBCD+ has obvious bias at the true 

directions and OGSBI-SVD can yield slight bias in the vicinity of the coherent sources. Note that 

ABCD has a nearly ideal spatial spectrum, and thus it outperforms R-GBCD+ and OGSBI-SVD in 

terms of the spatial spectrum. 
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Figure 1. Spatial spectra of R-GBCD+, OGSBI-SVD and ABCD, where the pink circles 

denote the true DOAs. 

The success rates of three methods vs. SNR and the number of snapshots are analyzed in the second 

simulation. The source mode is the same as the first simulation. Figure 2 shows the success rates of 

three methods vs. SNR with the fixed number of snapshots 100, whereas the success rates of three 

methods vs. number of snapshots are depicted with the fixed SNR 0 dB in Figure 3. The following 

facts can be acquired from Figures 2 and 3 that three methods can estimate correctly for high SNR or 

large number of snapshots and ABCD has a higher success rate than the other two methods for low 

SNR or a small number of snapshots. 
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Figure 2. Success rates vs. SNR with the fixed number of snapshots 100. 
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Figure 3. Success rates vs. number of snapshots with the fixed SNR 0 dB. 
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Figure 4. RMSE vs. SNR with the fixed number of snapshots 100. 
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Figure 5. RMSE vs. number of snapshots with the fixed SNR 0 dB. 

The third simulation considers the RMSE of three methods vs. SNR and the number of snapshots. 

All the conditions are the same as the second simulation. Figures 4 and 5 show the RMSE of three 

methods vs. SNR and the number of snapshots, respectively. It is indicated in Figures 4 and 5 that 
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ABCD has the best estimation accuracy among all three methods. Moreover, the accuracy of three 

methods is gradually improving with SNR or the number of snapshots increasing. 

Finally, we test the resolving ability by showing the relation between RMSE of three methods and 

angle separation of sources, which is illustrated in Figure 6 Consider two coherent sources impinging 

on the ULA from 30.7  and 30.7 θ+ Δ , where the step of θΔ  is 1°. The SNR is 0 dB and the number of 

snapshots is 100. As can be seen from Figure 6, the performance of R-GBCD+ and OGSBI-SVD 

degrades severely as angle separation is 3°, while ABCD can still provide a precise estimation as long 

as angle separation is no less than 3°. The proposed ABCD is the most accurate method and has higher 

resolution than the other two methods. 
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Figure 6. RMSE vs. angle separation with the fixed SNR 0 dB and number of snapshots 

100 for coherent sources. 

6. Conclusions 

In this paper, a novel ABCD method is proposed for off-grid DOA estimation in CS. The proposed 

method minimizes the mixed k-l norm to reconstruct the sparse source and estimate the grid error. In 

order to make the minimization problem tractable, an iterative process that minimizes the mixed k-l 

norm alternately over two sparse vectors is adopted. By reconstructing the block sparse source instead 

of conventional sparse source, the proposed method can achieve the better reconstruction properties.  

A block selection criterion is given to update the block so that the proposed method can reduce 

computational complexity. It is proved that the proposed method has the global convergence. 

Simulation results show that the proposed method has more notable performance advantages than  

R-GBCD+ and OGSBI-SVD in terms of spatial spectrum, RMSE and success rate. 
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