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Abstract: A combination of genetic algorithm and particle swarm optimization (PSO) for 

vehicle routing problems with time windows (VRPTW) is proposed in this paper. The 

improvements of the proposed algorithm include: using the particle real number encoding 

method to decode the route to alleviate the computation burden, applying a linear 

decreasing function based on the number of the iterations to provide balance between 

global and local exploration abilities, and integrating with the crossover operator of genetic 

algorithm to avoid the premature convergence and the local minimum. The experimental 

results show that the proposed algorithm is not only more efficient and competitive with other 

published results but can also obtain more optimal solutions for solving the VRPTW issue. 

One new well-known solution for this benchmark problem is also outlined in the following.  
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1. Introduction 

The vehicle routing problem (VRP) is a combinatorial optimization and integer programming 

problem seeking to service a number of customers with a fleet of vehicles. Proposed by Dantzig and 

Ramser in 1959, VRP is important to the fields of transportation, scheduling, distribution and  

logistics [1,2]. The problem involves many real-world considerations, such as time-window 
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constraints, driver waiting costs, backhauls, layovers, etc. The vehicle routing problem with time 

windows (VRPTW) has been extensively studied by many researchers from the fields of operational 

research, applied mathematics, network analysis, graph theory, computer applications, traffic 

transportation, etc. Firstly, VRPTW is still one of the most difficult problems in combinatorial 

optimization, consequently presenting a great challenge. Secondly, in a more practical aspect, study of 

this problem could provide a real opportunity to reduce the costs in the area of logistics [3].  

The VRPTW is a generalization of the VRP where the service for a customer starts within a given 

time interval, and it has been the subject of intensive research efforts for both heuristic and exact 

algorithms. The actual solutions of VRP can be generally classified into two main categories: the exact 

algorithms and the heuristic algorithms. The main approaches for solving VRPs are shown in Table 1.  

Table 1. Main approaches for solving VRPs. 

Algorithms Remarks 

The exact 

algorithms 

Branch and bound method [4,5] 
The Efficiency depends on the depth of the branch and 

bound tree. 

Set segmentation method [6,7] Hard to determine the minimum cost for each solutions. 

Dynamic programming method [8,9] 
Effective to limited-size problems, hard to consider  

the concrete demands such as time windows. 

Integer programming algorithm [10,11] High precision, time consuming, complex. 

The heuristic 

algorithms 

The traditional heuristic 

algorithms 

Savings algorithm [12,13] Computes rapidly, hard to get the optimal solution. 

Sweep algorithm [14,15] 
Suitable to the same number of customers for each 

route with few routes.  

Two-phase algorithm [16,17] Hard to get the optimal solution. 

The meta-heuristic 

algorithms 

Tabu search algorithm [18–20] 
Has the good ability of local search, but is time 

consuming, and depends on the initial solution. 

Genetic algorithm [13,21] 
Has the good ability of global search, computes  

rapidly, hard to obtain the global optimal solution. 

Iterated local search [22,23] 
Has the strength of fast convergence rate and low 

computational complexity. 

Simulated annealing  

algorithm [24,25] 

Slow convergence rates, carefully chosen tunable 

parameters. 

Variable neighborhood  

Search [26,27] 

Is suitable for large and complex optimization problems 

with constraints.  

Ant colony algorithm [28–30] 
Has good positive feedback mechanism, but is  

time consuming and prone to stagnation. 

Neural network  

algorithm [31,32] 

Computes rapidly, has slow convergence and can easily 

be trapped in a local optimum 

Artificial bee colony  

algorithm [30,33] 

Achieves a fast convergence speed, is associated  

with the piecewise linear cost approximation. 

Particle swarm  

optimization [34–36] 

Is robust and has fast searching speed, brings easily 

premature convergence. 

Hybrid algorithm 

[2,8,12,20,28,37,38] 

Is simple with fast optimizing speed and  

less calculation. 
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The exact algorithms can obtain the exact solution, but the computational effort required to solve 

this problem increases exponentially with the problem size. The traditional heuristic algorithms often 

only get the approximate solution close to the optimal solution, and are limited to the smaller 

problems. When the size of the problems increases, the solution precision of the traditional heuristic 

algorithms is often poor. The traditional heuristic algorithms adapt to local optimization and combined 

with the meta-heuristic algorithms to improve the solutions [39]. For large, complex problems, only 

the meta-heuristic algorithms can be used due to their strong performance of global search [18,40,41]. 

The VRPTW is a non-deterministic polynomial-time hard (NP-hard) problem. Due to the 

complexity of the VRPTW, it is not easy to obtain an exact solution for a large problem in real time. 

For such problems, optimal solutions are found quickly and are sufficiently accurate. Usually this task 

is accomplished by using various meta-heuristic algorithms, which rely on some insights into the 

nature of the problem. Particle swarm optimization (PSO) is not only superior in terms of high 

accuracy speed calculation, as well as its simple program, but it is also robust. Nie and Yue integrated 

the concept of evolving individuals originally modeled by GA with the concept of self-improvement of 

PSO [42]. Hao et al. proposed a modified particle swarm optimization which took the crossover 

between each particle’s individual best position [43]. In [44], dynamic parameterized mutation and 

crossover operators were combined with a PSO implementation individually and in combination to test 

the effectiveness of these additions. In [45], the proposed method used the concept of particles’ best 

solution and social best solution in the PSO algorithm, followed by combining it with crossover and 

mutation of GA. Considering the particle real encoding, linear decreasing inertia weight function and 

crossover operator of genetic algorithms, a combination of genetic algorithm and PSO for VRPTW is 

proposed that can improve the performance when computing speed to obtain the optimal solutions.  

2. Vehicle Routing Problem with Time Windows (VRPTW) 

In the VRPTW, a fleet of K  identical vehicles supplies goods to n  customers. All the vehicles have 
the same capacity Q . For each customer i , 1,2, ,i n=  , the demand of goods id , the arrival time it , 

the service time is , the waiting time iw and the time window [ , ]i ib e  to meet the demand in customer i  

are all decision variables. The component is  represents the loading or unloading service time for 

customer i , whereas ib  describes the earliest time available for starting the service. If any vehicle 

arrives at customer i  before ib , it must wait. The vehicle must start the customer service before ie . 

This type of time window constraint is well known as a hard time window. Each of the vehicle routes 

starts and finishes at the central depot. Correspondingly, each customer must be visited once. The 
locations of the depot and all customers, the minimal distance ijc  and the travel time ijt  between all 

locations are given. 
From the perspective of the graph theory, the VRPTW can be stated as follows: Let ( , )G V A  be an 

undirected graph with a node set 0 1( , , , )nV v v v=   and an arc set {( , ) : , , }i j i jA c c i j c c C= ≠ ∈ . In this 

graph model, 0c  is the depot, ( 1, 2, , )ic i n=   is a customer. To each arc ( , )i jc c  is associated a value 

ijt  representing the travel time from ic  to jc . A route is defined as starting from the depot, going 

through a number of customers and ending at the depot; each customer ( 1, 2, , )ic i n=   must be visited 

exactly once. There are K  vehicles, {0,1, , 1}eV K= − . The number of routes cannot exceed K . 
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Each vehicle serves a subset of customers on the route. The vehicles have the same capacity Q . The 

total sum of demands of customers served by a vehicle on a route cannot exceed Q . The additional 

constraints are that the service beginning time at each node ( 0,1, , )ic i n=   must be greater than or 

equal to ib , the beginning of the time window, and the arrival time at each node ic  must be lower than 

or equal to ie , i.e., the end of the time window. In case the arrival time is less than ib , the vehicle has 

to wait until the beginning of the time window before starting servicing the customer. The goal is to 

find a set of routes which can guarantee each customer to be served by one vehicle within a given time 

interval and then satisfy the vehicle capacity constraints. Furthermore, the size of the set should be less 

than the number of vehicles needed and the total travel distance should be minimized. Moreover, the 

mathematical formulation of the VRPTW is presented as follows [4,46]: 

1
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Min z c x
−

= = =
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where ijkx  is 1 if vehicle k  travels from customer i  to customer j , and 0 otherwise. it  denotes the 

time a vehicle starts services at customer i ; M  is an arbitrary large constant. Objective function states 

that the total cost is to be minimized. Constraint (2) specifies that there are no more than K  routes 

going out of the depot. Constraint (3) ensures that one vehicle goes into and out of a customer exactly. 

Equation (4) is the capacity constraint. The time window is assured in Equation (5), Equation (6) and 

Equation (7). Equation (8) is the flow conservation constraints that describe the vehicle path. 

3. Particle Swarm Optimization (PSO) 

PSO is a population-based stochastic optimization technique developed by Eberhart and Kennedy in 

1995, inspired by social behavior of bird flocking or fish schooling [34] and was first intended for 

simulating these organisms’ social behavior. It is best to imagine a swarm of birds that are searching 

for food. When one of them finds the food, some of them will follow the first bird, while others will 

find other food. Initially, the birds do not know where the food is, but they know at each time how far 
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the food is. Each bird will follow the one that is nearest to the food. Throughout the course of preying, 

a bird will use its own experiences and collective information to search for food.  

In particle swarm optimization, the particles are moved around in the search space according to a 

few simple formulae. The position of a particle represents a candidate solution to the optimization 

problem at hand. Each particle searches for better positions in the search space by changing its velocity 

according to rules originally inspired by behavioral models of flocking. The movements of the 

particles are guided by their own best-known position in the search space as well as the entire swarm’s 

best-known position. When improved positions are discovered, these will then come to guide the 

movements of the swarm. The process is repeated and by doing so it is hoped, but not guaranteed, that 

a satisfactory solution will eventually be discovered. Compared with other intelligence optimization 

algorithms such as ant colony optimization, genetic algorithm, simulated annealing algorithm, neural 

network algorithm and artificial immune algorithm, PSO retains the global search strategy based on the 

swarm and has no individuals as in crossover and mutation. In PSO, through adjusting the velocities 

and positions of the particles which fly through the problem space by following the current optimum 

particles, the optimal solution can be obtained. Due to its simplicity, strong robustness, and fast 

optimization speed, PSO is suitable for very large and complex optimization problems with 

constraints. At first, PSO was applied to solve continuous optimization problems; however, several 

applications were proposed during these years in the area of combinatorial optimization problems 

including shop scheduling [47,48], project scheduling [49], travelling sales force [50], partitional 

clustering [51], and vehicle routing [34,52].  

PSO is one of the evolution algorithms with the characteristics of evolutionary computing and 

swarm intelligence. Similar to other evolutionary algorithms, PSO searches for optima by evaluating 

individual fitness based on cooperation and competition between individuals. In PSO, each individual 

is considered as a particle without weight and volume in n -dimensional search space and flies through 

the space with a certain speed. The speed is adjusted dynamically by the individual’s experience and 

the entire swarm’s experience.  

PSO is initialized with a population of random solutions and searches for the optimal solution by 

updating the particle’s position. Each particle is the feasible solution and is designated a fitness value 

by the objective function. Each particle keeps the track of its coordinates in the problem space which 
are associated with the best solution (fitness) it has achieved so far. The fitness value is called bestp . 

When a particle takes all the population as its topological neighbors, the best position is a global best 
and is called bestg . Through bestp  and bestg , particles update themselves to produce the next generation 

of swarms. 

The selection of fitness function depends on the research goals. The fitness function to evaluate the 

individuals is always related to the objective function. For a VRPTW, the total cost can be viewed as 

the fitness value. The inverse of the total cost is used to represent the fitness of the individuals, and 

then the fitness function is defined as follows: 

1
fitnessf

z
=  (9)

In a PSO algorithm the particles represent potential solutions to the problem, and the swarm 
consists of P  particles. Each particle p  can be represented through n -dimensional vectors: the first 
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one is defined by 1 2( , , , )t t t t
p p p pnX x x x=   with (1,2, , )p P=   that indicates the position of the particle 

p  in the searching space at the iteration t . The second one is 1 2( , , , )t t t t
p p p pnV v v v=   that represents the 

velocity with which the particle p  moves. The third one is 
1 2

( , , , )
p p p pn

t t t t
best best best bestP p p p=   that denotes 

the best position of the pth particle and the last one is 
1 2

( , , , )
t p p pn

t t t t
best best best bestG g g g=   that represents 

the global best position in the swarm until tth iteration. The swarm is updated by the  

following equations: 

1
1 2

1 1

1() ( ) 2() ( )t

pn pn

t t t t t
pn pn best pn best pn

t t t
pn pn pn

v v k rand p x k rand g x

x x v

+

+ +

 = + × × − + × × −


= +
 (10)

where 1k  and 2k  are acceleration coefficients, which are respectively called cognitive and social 

parameter; 1()rand  and 2()rand  are two random numbers uniformly distributed in [0,1] . Acceleration 

coefficients 1k  and 2k  are positive constants to control how far a particle will move in a single 

iteration. Low values allow particles to roam far from target regions before being tugged back,  

while high values result in abrupt movement towards, or past, target regions. Typically, these are both  

set to a value of 2.0, although assigning different values to 1k  and 2k  sometimes leads to an  

improved performance. 

A constant, maxv , is used to arbitrarily limit the velocities of the particles t
pnv  and improve the 

resolution of the search. When maxv  is large ( 5)≥ , the velocity of the particle is large, too; it is 

conducive to a global search, though it may fly through the optimal solution [53–55]. When maxv  is 

small ( 0.3)≤ , the velocity of the particle is also small; it leads to a fine search in a specific region, but 

it is easy to fall to local optimum [53–55]. In a word, the search efficiency depends on maxv . 

Each particle moves in the search space with a velocity according to its own previous best solution 

and its group’s previous best solution. In Equation (10), the velocity 1t
pnv +  consists of three  

parts—momentum, cognitive and social parts—respectively each term of the right side of  

Equation (10). The momentum part denotes the previous velocity of the particle, which improves the 

ability of the global search. The cognitive part denotes the process of learning from an individual’s 

experience. The social part denotes the process of learning from others’ experience, which represents 

the information sharing and social cooperation between particles. The balance among these parts 

determines the performance of a PSO algorithm. Without the momentum part, the particle then moves 

in each step without knowledge of the past velocity. Without the cognitive part, the convergence speed 

is fast, but can easily fall into a local optimum for a large problem size. Without the social part, it is 

hard to get the optimal solution due to the lack of the communications among individuals.  

4. The Proposed Algorithm 

4.1. Particle Encoding 

Encoding is a bridge connecting a problem with an algorithm. Encoding method and initial solution 

have a great impact on the VRP problem. It is the key step to finding the appropriate encoding method 

for the particles and the corresponding solutions. In brief, the encoding methods of PSO include real 

encoding, binary-encoding and integer encoding. Integer encoding is easy to decode and convenient 
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for the fitness function calculation, but it requires a lot of computing resources and tends toward 

premature convergence. In addition, binary encoding is hard to decode. Therefore, real encoding is 

adopted in the proposed method. 

4.2. Inertia Weight Function 

In order to better control the searching and exploring abilities and improve the convergence of 

particle swarm algorithm, the inertia weight ω  is introduced into the velocity function. Therefore, 
1t

pnv +  is changed into the following form: 

1
1 21() ( ) 2() ( )t

pn pn

t t t t t
pn pn best pn best pnv v k rand p x k rand g xω+ = + × × − + × × −  (11)

The inertia weight ω  is employed to control the impact of the previous history of velocities on the 

current one. Accordingly, the parameter ω  regulates the trade-off between the global and the local 

exploration abilities. If ω  is high, particles can hardly change their direction and turn around, which 

consequently implies a larger area of exploration as well as a reluctance against convergence towards 

optimum. On the other hand, If ω  is small, only little momentum is presented from the previous  

time-step, thereby leading to quick changes of direction. A suitable value for the inertia weight usually 

contributes the balance between global and local exploration abilities and consequently results in a 

reduction of the number of iterations required to obtain the optimum solution. 

Considering whether the inertia weight ω  is changed or not, the calculation methods of the inertia 

weight ω  include three categories: fixed-weight method, time-varying weight method and adaptive 

inertia weight method. The fixed-weight method selects a constant value as the inertia weight ω  and is 

kept unchanged. The fixed-weight method was originally introduced by Shi and Eberhart in [56]. The 

time-weight method selects an iterative relationship as the inertia weight ω  according to a selected 

range, which is defined as a function of time or iteration number. In [57–60], time-varying inertia 

weight strategies were introduced and shown to be effective in improving the fine-tuning characteristic 

of the PSO. In [61–63], the adaptive inertia weight methods used a feedback parameter to monitor the 

state of the algorithm and adjusted the value of the inertia weight.  

In order to better balance the global search ability and local search capabilities, kinds of inertia 

weight are often used. At first, a higher ω  is selected to expand the search space and converge to a 

region. Then a smaller ω  is selected to explore the local region to obtain high accuracy solutions. In 

this paper, the definition of inertia weight is a linear decreasing function of the number of iterations. ω  

is given as follows: 

0
0

max

eω ωω ω η
η

−= −  (12)

where 0ω  is the initial value of inertia weight, eω  is the final value of inertia weight, maxη  is the 

maximum number of iterations, η  is the current number of iterations. From Equation (12), by the 

linear function decreasing inertia weight, it is easy to obtain better global search ability and make 

particles enter the area around the optimal value early in the iteration process, and it is easy to obtain 

better local search ability and the solutions close to the optimum value late in the iteration process. 
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Since the value of the inertia weight is mainly determined based on the iteration number, this strategy 

is relatively simple and has fast convergence compared to other methods. 

4.3. Crossover Operator of Genetic Algorithm 

In order to expand the search space to obtain the optimum solution and enhance the diversity of 

particles, the idea of genetic algorithm is integrated into the PSO to avoid the premature convergence 

and local minimum value. Crossover operator of genetic algorithm is introduced. The crossover 

operators of the particle’s velocity and position are given as follows: 

1 1 2( ) ( ) (1 ) ( )t t t
child pn c parent pn c parent pnp x p p x p p x= × + − ×  (13)

2 2 1( ) ( ) (1 ) ( )t t t
child pn c parent pn c parent pnp x p p x p p x= × + − ×  (14)

1 2
1 1

1 2

( ) ( )
( ) ( )

( ) ( )

t t
parent pn parent pnt t

child pn parent pnt t
parent pn parent pn

p v p v
p v p v

p v p v

+
=

+
 (15)

1 2
2 2

1 2

( ) ( )
( ) ( )

( ) ( )

t t
parent pn parent pnt t

child pn parent pnt t
parent pn parent pn

p v p v
p v p v

p v p v

+
=

+
 (16)

where childp  represents the offspring of the particle, parentp  represents the parent of the particle, cp  

represents the crossover probability. cp ( [0,1]cp ∈ ) is a random number. Based on the trial and error, 

0.2 was found to be a suitable value for cp . The two parents are combined to produce two new 

offspring. If the fitness of offspring is more than the fitness of parents, the offspring will be selected to 

replace the parents; otherwise, the offspring are discarded. 

4.4. The Proposed Algorithm Flow 

The flow of the proposed algorithm is shown in Figure 1. In this flow, the parameters are set in  

step (1), and the particles are initialized in step (2). Its position is decoded in step (3), its corresponding 

fitness value is evaluated in step (4), its cognitive and social information is updated in step (5), and 

then moved by step (6). Step (7) is the controlling step for repeating or stopping the iteration. Step (8) 

generates a new set of the population. Note that the improvements of this flow from the original PSO 

take place in step (3), which uses the real encoding method to decode the route in addition to step (6), 

which introduces a linear decreasing function of the number of iterations, and step (8), which is 

combined with the crossover operator of genetic algorithm. The proposed algorithm steps are given  

as follows: 
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Figure 1. The flow of the proposed algorithm. 

(1) Parameters setting. Define the parameters: acceleration coefficients 1k  and 2k , the maximum 

number of iterations maxη , the initial value of inertia weight 0ω , the final value of inertia weight 

eω , a random number cp , the number of the particles P , the maximum velocities of the  

particles maxv . 

(2) Population initiation. Initialize P  particles as a population, generate the pth particle with 

random position 0
pnx , velocity 0

pnv , and personal best 0 0

pnbest pnp x= . Set iteration 0η = . 

(3) Particle encoding. According to the particle encoding rules, for 1,2, ,i p=  , decode t
pnx  to a 

set of route t
pnR . 

(4) Fitness evaluation. According to Equation (1), compute z , and then evaluate fitnessf  through 

Equation (9). 
(5) bestp and bestg  updating. Compute 

pn

t
bestp  and 

pn

t
bestg . If 

pn

t
best bestp p< , update 

pn

t
best bestp p= . If 

pn

t
best bestg g< , update 

pn

t
best bestg g= .  

(6) Particles updating. Update the velocity and the position of each pth particle according to 

Equation (10). 
(7) Termination judgment. If the stopping criterion is met, go to step (9). Otherwise, 1η η= +  and go 

to step (8). The stopping criterion is that maxη η≥  or finding a better solution. A better solution 

means that the hierarchical cost objective value is better than that of the best solution found  

so far.  
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(8) Crossover operator. Generate random number cp . According to Equations (13)–(16), generate 

a new set of population. Then return to step (3). 
(9) Outputting the optimal solution. Decode bestg  as the best set of vehicle route R  and output the 

optimal solution R . 

5. Experimental Results 

In order to evaluate the performance of the proposed algorithm, we implemented the algorithm in 

Visual C# under Microsoft Windows-XP on a PC with Intel P4 4 GHz CPU and 2 GB RAM. The 

VRPTW benchmark problems of Solomon, which have been the most commonly chosen to evaluate 

and compare all algorithms, are tested in this paper. 

5.1. Solomon Benchmark Problems 

It is well known that Solomon Benchmark problems are the widely used standard test set for 

VRPTW. Solomon Benchmark derives from the website [64]. The Solomon test set consists of  

56 problem instances for each dimension category problem, i.e., 25, 50 and 100 customers. Each of 

these instances comprises 100 customers. The location of the depot and the customers are given as 
integer values from the range 0,1, ,100  in a Cartesian coordinate system. The distance between two 

customers is the simple Euclidean distance. It is assumed that the travel times are equal to the 

corresponding Euclidean distances between the customer locations. One unit of time is necessary to 

run one unit of distance by any vehicle. Different capacity constraints are considered for the vehicle in 

each class of instance, as well as the demands from the customers. 

The test problems are grouped into six problem types: R1, R2, RC1, RC2, C1, and C2, each 

containing 8 to 12 instances. In R1 and R2, the customer locations are generated randomly in a given 

area according to a uniform distribution. C1 and C2 have customers located in clusters. RC1 and RC2 

contain a mix of randomly distributed and clustered customers. R1, C1 and RC1 have narrow time 

windows and the vehicles have only small capacities. Therefore, each vehicle serves only a few 

customers. In contrast, R2, C2 and RC2- have wider windows and the vehicles have higher capacities. 

Each vehicle supplies more customers and therefore, compared to the type 1 problems, fewer vehicles 

are needed. Because the Solomon’s test set represents relatively well different kinds of scenarios, it has 

often been chosen to evaluate many solution proposals in the literature. 

5.2. Evaluation of the Results 

In order to compare the solutions, four evaluation indexes are presented: the total traveled distance, 

the average total traveled distance, the CPU runtime and the quality of the solutions. The total traveled 

distance and the average total traveled distance are the main criteria in the VRPTW and determines the 

algorithm merits. The CPU runtime describes the algorithm efficiency. The quality of the solutions is 

the comprehensive index, which denotes the percentage of deviation from the best-known solution. 

The formula for calculating the percentage of deviation is as follows: 

100%best
dev

best

z z
z

z

−= ×  (17)
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where devz  is the percentage of deviation from the best-known solution, z  is the cost of the current 

solution, bestz  is the cost of the best-known solution. 

5.3. Analysis of the Results 

Each of 56 Solomon Benchmark problems is performed by some of the best-reported methods for 

VRPTW, namely, the genetic algorithm, ant colony optimization [29], PSO [65] and the proposed 

algorithm. Each problem involves 100 customers, randomly distributed over a geographical area. For 

each problem, 10 replications of the algorithm are attempted. According to Equation (1), we have 

adopted a formulation in which the total traveled distance is the optimized objective. Results displayed 

in the following tables contain the total traveled distance and the number of vehicles used in order to 

facilitate the comparison of our results with those obtained by hierarchical approaches in which the 

total traveled distance is the primary objective and, for the same total traveled distance, the secondary 

objective is number of vehicles, and also with multi-objective formulations that simultaneously 

consider both objectives [66]. It compares the total traveled distance (TD), the average total traveled 

distance, the CPU runtime and the quality of the solutions for each of the problems. Both best and 

average results are presented. 

5.3.1. The Total Traveled Distance 

The results of TD and the number of vehicles (NV) are shown in Table 2. The published  

best-known solutions are not obtained by one or a particular class of methods [15,67–71]. Results 

emphasized in bold in Table 2 represent the new best solutions reached by the proposed algorithm:  

1 out of 56 (1.79%). Results emphasized in bold and italic in Table 2 represent the previously  

best-known solutions that cannot be reached by this algorithm. The results show that many previously 

best-known solutions from the proposed algorithm have been reached: 31 out of 56 (55.4%). Globally, 

the TD average results are close to the optimal solutions known in the proposed algorithm. This 

comparison shows that the results from the proposed algorithm are competitive with other published 

results. In the genetic algorithm, 27 out of 56 (48.2%) have reached the previously best-known 

solutions. In PSO, 28 out of 56 (50%) have reached the previously best-known solutions. In ACO,  

26 out of 56 (46.4%) have reached the previously best-known solutions. It can be seen that the 

proposed algorithm is better than the genetic algorithms, ACO and PSO. The efficiency is improved 

and the results are close to the best-known solutions. It is possible to see that the proposed algorithm 

continues to be very competitive in terms of total TD. 
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Table 2. The results of the total traveled distance for Solomon’s 100 customers set Problems. 

No. Problem 
Best-Known Solution 

Genetic PSO ACO The Proposed Algorithm 

Best Average Best Average Best Average Best Average 

TD NV TD NV TD NV TD NV TD NV TD NV TD NV TD NV TD NV 

1 C101 828.94 10 828.94 10 856.26 10.20 828.94 10 842.60 10.10 828.94 10 842.60 10.10 828.94 10 842.60 10.10 

2 C102 828.94 10 828.94 10 828.94 10.00 828.94 10 828.94 10.00 828.94 10 857.82 10.10 828.94 10 828.94 10.00 

3 C103 828.06 10 828.06 10 859.88 10.00 828.06 10 828.06 10.00 828.06 10 828.06 10.00 828.06 10 828.06 10.00 

4 C104 824.78 10 824.78 10 824.78 10.00 824.78 10 824.78 10.00 824.78 10 849.79 10.10 824.78 10 824.78 10.00 

5 C105 828.94 10 828.94 10 854.25 10.20 828.94 10 866.91 10.30 828.94 10 904.88 10.60 828.94 10 841.60 10.10 

6 C106 828.94 10 828.94 10 851.78 10.10 828.94 10 897.46 10.30 828.94 10 943.14 10.50 828.94 10 874.62 10.20 

7 C107 828.94 10 828.94 10 856.47 10.20 828.94 10 842.70 10.10 828.94 10 870.23 10.30 828.94 10 842.70 10.10 

8 C108 828.94 10 828.94 10 865.99 10.00 828.94 10 841.29 10.00 828.94 10 853.64 10.00 828.94 10 841.29 10.00 

9 C109 828.94 10 828.94 10 910.27 10.30 828.94 10 856.05 10.10 828.94 10 883.16 10.20 828.94 10 828.94 10.00 

10 C201 591.56 3 591.56 3 602.53 3.30 591.56 3 606.18 3.40 591.56 3 609.84 3.50 591.56 3 598.87 3.20 

11 C202 591.56 3 591.56 3 656.01 3.20 591.56 3 623.78 3.10 591.56 3 623.78 3.10 591.56 3 591.56 3.00 

12 C203 591.17 3 591.17 3 606.19 3.00 591.17 3 604.69 3.00 591.17 3 618.20 3.00 591.17 3 604.69 3.00 

13 C204 590.60 3 590.60 3 704.28 3.30 590.60 3 666.39 3.20 590.60 3 742.17 3.40 590.60 3 628.49 3.10 

14 C205 588.88 3 588.88 3 619.27 3.30 588.88 3 599.01 3.10 588.88 3 609.14 3.20 588.88 3 599.01 3.10 

15 C206 588.49 3 588.49 3 620.28 3.20 588.49 3 604.38 3.10 588.49 3 636.17 3.30 588.49 3 588.49 3.00 

16 C207 588.29 3 588.29 3 610.49 3.00 588.29 3 632.69 3.00 588.29 3 621.59 3.00 588.29 3 599.39 3.00 

17 C208 588.32 3 588.32 3 622.73 3.00 588.32 3 599.79 3.00 588.32 3 611.26 3.00 588.32 3 599.79 3.00 

18 R101 1483.57 16 1642.87 20 1645.83 19.50 1642.87 20 1645.33 19.50 1645.79 19 1647.29 19.00 1642.87 20 1645.83 19.50 

19 R102 1355.93 14 1482.74 18 1483.75 17.70 1472.62 18 1477.95 17.80 1480.73 18 1482.21 17.80 1472.62 18 1477.14 17.80 

20 R103 1133.35 12 1292.85 15 1248.88 14.40 1213.62 14 1239.30 14.40 1213.62 14 1247.22 14.30 1213.62 14 1239.01 13.80 

21 R104 968.28 10 982.01 10 995.05 9.60 1007.24 9 1007.30 9.00 982.01 10 1000.11 9.40 982.01 10 992.52 9.70 

22 R105 1262.53 12 1360.78 15 1366.87 14.80 1360.78 15 1374.14 14.70 1360.78 15 1369.99 15.30 1360.78 15 1366.42 15.00 

23 R106 1201.78 12 1249.40 13 1251.48 12.20 1241.52 13 1249.39 12.40 1251.98 12 1252.00 12.00 1241.52 13 1247.29 12.60 

24 R107 1051.92 11 1076.13 11 1094.18 10.70 1076.13 11 1094.19 10.50 1076.13 11 1096.08 10.70 1076.13 11 1088.49 10.70 

25 R108 948.57 10 963.99 9 965.42 9.90 963.99 9 965.10 9.70 948.57 10 960.92 9.60 948.57 10 955.82 9.60 

26 R109 1110.40 12 1151.84 13 1181.86 11.60 1151.84 13 1186.15 11.40 1151.84 13 1190.44 11.20 1151.84 13 1164.71 12.40 
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Table 2. Cont. 

No. Problem 
Best-Known Solution 

Genetic PSO ACO The Proposed Algorithm 

Best Average Best Average Best Average Best Average 

TD NV TD NV TD NV TD NV TD NV TD NV TD NV TD NV TD NV 

27 R110 1080.36 11 1080.36 11 1112.79 10.30 1080.36 11 1105.14 10.50 1080.36 11 1107.72 10.50 1080.36 11 1098.14 10.70 
28 R111 987.80 10 1053.50 12 1086.43 10.80 1053.50 12 1083.13 11.60 1088.48 12 1095.07 10.40 1053.50 12 1069.14 11.60 
29 R112 953.63 10 982.14 9 995.33 10.80 953.63 10 965.03 10.00 953.63 10 987.40 10.60 960.68 10 968.58 9.90 
30 R201 1148.48 9 1148.48 9 1208.94 7.70 1179.79 9 1231.20 5.50 1148.48 9 1212.51 7.30 1148.48 9 1178.39 8.40 
31 R202 1049.74 7 1049.74 7 1086.62 5.70 1049.74 7 1100.68 5.00 1079.36 6 1142.69 4.10 1049.74 7 1081.57 5.70 
32 R203 900.08 5 900.08 5 930.23 4.60 932.76 7 939.72 3.80 939.54 3 941.70 3.00 900.08 5 922.71 4.60 
33 R204 772.33 4 807.38 4 828.06 2.40 772.33 4 817.42 2.80 772.33 4 823.17 2.80 772.33 4 801.47 3.40 
34 R205 959.74 4 970.89 6 982.66 4.50 970.89 6 980.30 4.80 970.89 6 989.71 3.60 970.89 6 977.95 5.10 
35 R206 898.91 5 898.91 5 906.06 3.40 906.14 3 910.24 3.00 906.14 3 912.29 3.00 898.91 5 903.89 4.00 
36 R207 814.78 3 814.78 3 844.73 3.40 814.78 3 868.25 2.60 814.78 3 876.51 2.60 814.78 3 836.67 3.00 
37 R208 715.37 3 725.75 2 726.61 2.00 725.42 4 725.77 3.20 725.75 2 726.71 2.00 723.61 3 725.50 2.50 
38 R209 879.53 6 879.53 6 892.08 5.40 879.53 6 891.00 5.40 879.53 6 903.21 4.20 879.53 6 891.82 5.10 
39 R210 932.89 7 954.12 3 955.06 6.60 954.12 3 954.64 5.00 939.34 3 952.94 4.78 932.89 7 937.89 6.20 
40 R211 761.10 4 885.71 2 892.31 2.30 885.71 2 889.53 4.40 888.73 5 867.07 2.90 808.56 4 824.99 3.90 
41 RC101 1481.27 13 1660.10 16 1689.57 14.40 1623.58 15 1658.18 15.10 1639.97 16 1687.56 14.40 1623.58 15 1645.18 15.10 
42 RC102 1395.25 13 1466.84 14 1493.53 13.50 1482.91 14 1497.28 13.60 1477.54 13 1539.85 12.30 1466.84 14 1487.10 13.50 
43 RC103 1221.53 10 1261.67 11 1263.56 11.00 1262.02 11 1262.29 11.00 1262.02 11 1264.17 11.00 1261.67 11 1262.04 11.00 
44 RC104 1135.48 10 1135.48 10 1135.50 10.00 1135.48 10 1135.50 10.00 1135.48 10 1135.51 10.00 1135.48 10 1135.49 10.00 
45 RC105 1354.20 12 1518.60 16 1601.17 15.40 1518.60 16 1593.35 14.80 1629.44 13 1633.29 13.00 1618.55 16 1621.16 15.40 
46 RC106 1226.62 11 1377.35 13 1396.59 11.80 1384.92 12 1417.25 11.20 1377.35 13 1416.49 11.30 1377.35 13 1392.80 12.30 
47 RC107 1150.99 10 1230.48 11 1254.98 12.60 1212.83 12 1240.50 12.30 1230.48 11 1258.04 12.80 1212.83 12 1226.01 12.00 
48 RC108 1076.81 10 1117.53 11 1135.32 10.30 1117.53 11 1127.41 10.90 1117.53 11 1128.55 10.80 1117.53 11 1126.40 10.70 
49 RC201 1134.91 6 1406.91 4 1391.43 7.20 1406.91 4 1406.91 4.00 1286.83 9 1397.23 6.00 1387.55 8 1391.43 7.20 
50 RC202 1113.53 8 1365.57 4 1250.18 3.60 1113.53 8 1162.75 7.60 1113.53 8 1204.86 6.30 1148.84 9 1173.34 7.90 
51 RC203 945.96 5 945.96 5 1034.30 3.40 945.96 5 1032.14 3.40 1049.62 3 1052.87 3.00 945.96 5 990.67 4.20 
52 RC204 796.11 4 798.41 3 798.69 3.20 798.41 3 799.18 3.60 798.46 3 799.43 3.80 798.41 3 798.67 3.20 
53 RC205 1168.22 8 1270.69 7 1276.08 6.40 1168.22 8 1282.01 4.70 1168.22 8 1263.14 6.80 1161.81 7 1187.56 6.90 
54 RC206 1059.89 7 1059.89 7 1105.75 5.80 1084.30 8 1139.24 4.00 1059.89 7 1135.44 4.00 1059.89 7 1092.22 6.00 
55 RC207 976.40 7 999.26 6 1060.37 3.60 976.40 7 1011.75 5.70 1053.58 6 1064.28 3.90 976.40 7 995.65 6.40 
56 RC208 785.93 4 816.10 5 824.93 3.60 816.10 5 822.41 4.00 806.87 5 819.64 4.00 795.39 5 807.27 4.78 
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5.3.2. The Average Total Traveled Distance 

The results of the average total traveled distance are shown in Table 3. Each entry refers to the best 

performance obtained with a specific technique over a particular data set. Rows C1, C2,  

R1, R2, RC1 and RC2 present the average number of vehicles and average total distance with respect 

to the six problem groups. The last row refers to the cumulative number of routes and traveled distance 

over all problem instances. The first column describes the various data sets and corresponding 

measures of performance defined by the average number of routes (or vehicles), and the total traveled 

distance. The following columns refer to particular problem-solving methods. The performance of the 

proposed algorithm is depicted in the last column. The results indicate that the proposed algorithm can 

match the best-known solutions, and it performs better than other algorithms. In addition, the proposed 

algorithm is the only method that found the minimum number of tours and the comparable traveled 

distance consistently for all problem data sets. 

Table 3. The results of the average total traveled distance. 

Problem Best-Known Solution 
Genetic PSO ACO The Proposed Algorithm 

Best Average Best Average Best Average Best Average 

C1-type 
NV 10.00 10.00 10.11 10.00 10.10 10.00 10.21 10.00 10.06 

TD 828.38 828.38 856.51 828.38 847.64 828.38 870.37 828.38 839.28 

C2-type 
NV 3.00 3.00 3.16 3.00 3.11 3.00 3.19 3.00 3.05 

TD 589.86 589.86 630.22 589.86 617.11 589.86 634.02 589.86 601.29 

R1-type 
NV 11.67 13.00 12.69 12.92 12.63 12.92 12.57 13.08 12.78 

TD 1128.18 1193.22 1202.32 1184.84 1199.35 1186.16 1203.04 1182.04 1192.76 

R2-type 
NV 5.18 4.73 4.36 4.91 4.14 4.55 3.66 5.36 4.72 

TD 893.90 912.31 932.12 915.56 937.16 914.99 940.77 899.98 916.62 

RC1-type 
NV 11.13 12.75 12.38 12.63 12.36 12.25 11.95 12.75 12.50 

TD 1255.27 1346.01 1371.28 1342.23 1366.47 1358.73 1382.93 1351.73 1362.02 

RC2-type 
NV 6.13 5.13 4.60 6.00 4.63 6.13 4.73 6.38 5.82 

TD 997.62 1082.85 1092.72 1038.73 1082.05 1042.13 1092.11 1034.28 1054.60 

All 
NV 449 465 452.40 472 448.70 466 441.88 483 466.68 

TD 53,568.46 55,959.11 57,143.53 55,511.30 56,854.75 55,679.89 57,490.75 55,346.67 56,092.75 

5.3.3. The Average Central Processing Unit (CPU) Runtime 

The results of the average CPU runtime are listed in Table 4. Rows C1, C2, R1, R2, RC1 and  

RC2- present the average CPU runtime with respect to the six problem groups. From Table 4, for the 

same instance, ACO is almost the most time consuming; the genetic algorithm takes second place; the 

PSO takes third place; and the proposed algorithm is last. The result shows that the proposed algorithm 

is highly efficient and suitable to be used in real-life problems to generate good solutions for further 

improvement. The average CPU runtime required to solve each type of problem set is between 62 and 

149 milliseconds by the proposed algorithm, which is much faster than other algorithms. It can be seen 

that the proposed algorithm is very effective. This happened because crossover in GA is done between 

random chromosomes, whereas in the proposed algorithm, crossover is done between a particle’s 
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chromosome and best chromosome. Therefore, the proposed algorithm does not only give a better 

result, but it also reaches convergence results faster than other methods. 

Table 4. The results of the average CPU runtime. 

Problem Genetic PSO ACO The Proposed Algorithm 

C1e 98 85 111 62 
C2 312 231 338 135 
R1 112 81 124 60 
R2 309 273 553 182 

RC1 79 80 82 58 
RC2 297 257 333 149 

5.3.4. The Quality of the Solutions 

According to Equation (17), the quality of the solutions is shown in Table 5. Here z  is the average 
total traveled distance. Rows C1, C2, R1, R2, RC1 and RC2 present the average devz  with respect to 

the six problem groups. The last row refers to the cumulative devz  over all problem instances. It can be 

seen that, with the proposed method, the quality of the results is between 1.32% and 8.17% with 

average quality equal to 4.07%; in the ACO, the quality of the solutions is between 5.07% and 9.75% 

with average quality equal to 6.95%; in PSO, the quality of the solutions is between 2.32% and 8.53% 

with average quality equal to 5.63%; in the genetic algorithm, the quality of the solutions is between 

3.39% and 8.96% with average quality equal to 6.29%. The improvement in the quality of the solutions 

was achieved with the addition of the crossover operator of genetic algorithm. The reason is that, now, 

the particles moved in a more fast and efficient way to their local optimum or to the global optimum 

solution (to the best particle in the swarm). It is proved that the addition of the evolution of the 

population phase before the individuals used in the next generation improves the results of the algorithm, 

especially in the large-scale vehicle routing instances which are more difficult and time consuming. 

Table 5. The result of devz . 

Problem Genetic PSO ACO The Proposed Algorithm 

C1-type 3.39% 2.32% 5.07% 1.32% 
C2-type 6.84% 4.62% 7.48% 1.94% 
R1-type 6.28% 5.98% 6.33% 5.36% 
R2-type 4.44% 4.93% 5.29% 2.62% 

RC1-type 8.89% 8.53% 9.75% 8.17% 
RC2-type 8.96% 7.92% 8.95% 5.30% 

All 6.29% 5.63% 6.95% 4.07% 

From the results shown in Tables 2–5, it is observed that the proposed algorithm is fast and 

produces good solutions, which are only slightly less accurate than the best-known results. This 

comparison also shows that the results from the proposed algorithm are competitive with other 

published results. The experimental results reveal that the proposed algorithm is highly capable at 

minimizing the total travel distance. In particular, it is obvious that the proposed algorithm has great 

advantages for the solved problem size over the genetic algorithm, PSO and ACO. The reason is that, 
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now, the particles moved in a more fast and efficient way to their local optimum or to the global 

optimum solution (to the best particle in the swarm). After each environment change (peak 

movement), the particles are placed on a point far from the optimum through the inertia weight 

function. The particles take few iterations to reach this point. At the same time, the particle’s coding 

can be ensured that a particle is always able to generate a new feasible solution.  

6. Conclusions 

This paper proposes a genetic and PSO algorithm for VRPTW. Moreover, this algorithm was 

applied to the Solomon Benchmark problems and produced satisfactory results. Compared to other 

approaches, experimental results indicate that the proposed algorithm is fast and possesses a relatively 

accurate results. The proposed algorithm has proved to be an effective and competitive algorithm for 

the optimization problems due to its easy implementation, inexpensive computation and low memory 

requirements. Three major contributions are as follows: 

(1) The real encoding method avoids the complex encoding and decoding computation burden. 

(2) A linear decreasing function of the number of iterations in PSO have a flexible and  

well-balanced mechanism to enhance and adapt to the global and local exploration abilities, 

which can help find the optimal solution with the least number of iterations.  

(3) The crossover operator of the genetic algorithm is introduced to generate a new population 

guaranteeing that the offspring inherits good qualities from this parent. The crossover operator 

avoids premature convergence and local minimum value and increases the diversity of particles. 

Although the combination of the genetic algorithm and PSO for VRPTW obtains satisfactory 

achievements, there is still some room for improvement, such as how to effectively construct the initial 

solution and how to precisely judge the local optimal solution. Further research applying the proposed 

algorithm to other VRPTW variants will be carried out in our future work. 
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