
Sensors 2015, 15, 21033-21053; doi:10.3390/s150921033

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

A Combination of Genetic Algorithm and Particle Swarm
Optimization for Vehicle Routing Problem with Time Windows

Sheng-Hua Xu *, Ji-Ping Liu, Fu-Hao Zhang, Liang Wang and Li-Jian Sun

Research Center of Government GIS, Chinese Academy of Surveying and Mapping,

28 Lianhuachi West Road, Haidian District, Beijing 100830, China; E-Mails: liujip@casm.ac.cn (J.-P.L.);

zhangfh@casm.ac.cn (F.-H.Z.); wangl@casm.ac.cn (L.W.); sunlj@casm.ac.cn (L.-J.S.)

* Author to whom correspondence should be addressed; E-Mail: xushh@casm.ac.cn;

Tel.: +86-10-6388-0567; Fax: +86-10-6388-0540.

Academic Editor: Vittorio M. N. Passaro

Received: 9 February 2015 / Accepted: 24 August 2015 / Published: 27 August 2015

Abstract: A combination of genetic algorithm and particle swarm optimization (PSO) for

vehicle routing problems with time windows (VRPTW) is proposed in this paper. The

improvements of the proposed algorithm include: using the particle real number encoding

method to decode the route to alleviate the computation burden, applying a linear

decreasing function based on the number of the iterations to provide balance between

global and local exploration abilities, and integrating with the crossover operator of genetic

algorithm to avoid the premature convergence and the local minimum. The experimental

results show that the proposed algorithm is not only more efficient and competitive with other

published results but can also obtain more optimal solutions for solving the VRPTW issue.

One new well-known solution for this benchmark problem is also outlined in the following.

Keywords: vehicle routing problem; VRPTW; particle swarm optimization; genetic

1. Introduction

The vehicle routing problem (VRP) is a combinatorial optimization and integer programming

problem seeking to service a number of customers with a fleet of vehicles. Proposed by Dantzig and

Ramser in 1959, VRP is important to the fields of transportation, scheduling, distribution and

logistics [1,2]. The problem involves many real-world considerations, such as time-window

OPEN ACCESS

Sensors 2015, 15 21034

constraints, driver waiting costs, backhauls, layovers, etc. The vehicle routing problem with time

windows (VRPTW) has been extensively studied by many researchers from the fields of operational

research, applied mathematics, network analysis, graph theory, computer applications, traffic

transportation, etc. Firstly, VRPTW is still one of the most difficult problems in combinatorial

optimization, consequently presenting a great challenge. Secondly, in a more practical aspect, study of

this problem could provide a real opportunity to reduce the costs in the area of logistics [3].

The VRPTW is a generalization of the VRP where the service for a customer starts within a given

time interval, and it has been the subject of intensive research efforts for both heuristic and exact

algorithms. The actual solutions of VRP can be generally classified into two main categories: the exact

algorithms and the heuristic algorithms. The main approaches for solving VRPs are shown in Table 1.

Table 1. Main approaches for solving VRPs.

Algorithms Remarks

The exact

algorithms

Branch and bound method [4,5]
The Efficiency depends on the depth of the branch and

bound tree.

Set segmentation method [6,7] Hard to determine the minimum cost for each solutions.

Dynamic programming method [8,9]
Effective to limited-size problems, hard to consider

the concrete demands such as time windows.

Integer programming algorithm [10,11] High precision, time consuming, complex.

The heuristic

algorithms

The traditional heuristic

algorithms

Savings algorithm [12,13] Computes rapidly, hard to get the optimal solution.

Sweep algorithm [14,15]
Suitable to the same number of customers for each

route with few routes.

Two-phase algorithm [16,17] Hard to get the optimal solution.

The meta-heuristic

algorithms

Tabu search algorithm [18–20]
Has the good ability of local search, but is time

consuming, and depends on the initial solution.

Genetic algorithm [13,21]
Has the good ability of global search, computes

rapidly, hard to obtain the global optimal solution.

Iterated local search [22,23]
Has the strength of fast convergence rate and low

computational complexity.

Simulated annealing

algorithm [24,25]

Slow convergence rates, carefully chosen tunable

parameters.

Variable neighborhood

Search [26,27]

Is suitable for large and complex optimization problems

with constraints.

Ant colony algorithm [28–30]
Has good positive feedback mechanism, but is

time consuming and prone to stagnation.

Neural network

algorithm [31,32]

Computes rapidly, has slow convergence and can easily

be trapped in a local optimum

Artificial bee colony

algorithm [30,33]

Achieves a fast convergence speed, is associated

with the piecewise linear cost approximation.

Particle swarm

optimization [34–36]

Is robust and has fast searching speed, brings easily

premature convergence.

Hybrid algorithm

[2,8,12,20,28,37,38]

Is simple with fast optimizing speed and

less calculation.

Sensors 2015, 15 21035

The exact algorithms can obtain the exact solution, but the computational effort required to solve

this problem increases exponentially with the problem size. The traditional heuristic algorithms often

only get the approximate solution close to the optimal solution, and are limited to the smaller

problems. When the size of the problems increases, the solution precision of the traditional heuristic

algorithms is often poor. The traditional heuristic algorithms adapt to local optimization and combined

with the meta-heuristic algorithms to improve the solutions [39]. For large, complex problems, only

the meta-heuristic algorithms can be used due to their strong performance of global search [18,40,41].

The VRPTW is a non-deterministic polynomial-time hard (NP-hard) problem. Due to the

complexity of the VRPTW, it is not easy to obtain an exact solution for a large problem in real time.

For such problems, optimal solutions are found quickly and are sufficiently accurate. Usually this task

is accomplished by using various meta-heuristic algorithms, which rely on some insights into the

nature of the problem. Particle swarm optimization (PSO) is not only superior in terms of high

accuracy speed calculation, as well as its simple program, but it is also robust. Nie and Yue integrated

the concept of evolving individuals originally modeled by GA with the concept of self-improvement of

PSO [42]. Hao et al. proposed a modified particle swarm optimization which took the crossover

between each particle’s individual best position [43]. In [44], dynamic parameterized mutation and

crossover operators were combined with a PSO implementation individually and in combination to test

the effectiveness of these additions. In [45], the proposed method used the concept of particles’ best

solution and social best solution in the PSO algorithm, followed by combining it with crossover and

mutation of GA. Considering the particle real encoding, linear decreasing inertia weight function and

crossover operator of genetic algorithms, a combination of genetic algorithm and PSO for VRPTW is

proposed that can improve the performance when computing speed to obtain the optimal solutions.

2. Vehicle Routing Problem with Time Windows (VRPTW)

In the VRPTW, a fleet of K identical vehicles supplies goods to n customers. All the vehicles have
the same capacity Q . For each customer i , 1,2, ,i n=  , the demand of goods id , the arrival time it ,

the service time is , the waiting time iw and the time window [,]i ib e to meet the demand in customer i

are all decision variables. The component is represents the loading or unloading service time for

customer i , whereas ib describes the earliest time available for starting the service. If any vehicle

arrives at customer i before ib , it must wait. The vehicle must start the customer service before ie .

This type of time window constraint is well known as a hard time window. Each of the vehicle routes

starts and finishes at the central depot. Correspondingly, each customer must be visited once. The
locations of the depot and all customers, the minimal distance ijc and the travel time ijt between all

locations are given.
From the perspective of the graph theory, the VRPTW can be stated as follows: Let (,)G V A be an

undirected graph with a node set 0 1(, , ,)nV v v v=  and an arc set {(,) : , , }i j i jA c c i j c c C= ≠ ∈ . In this

graph model, 0c is the depot, (1, 2, ,)ic i n=  is a customer. To each arc (,)i jc c is associated a value

ijt representing the travel time from ic to jc . A route is defined as starting from the depot, going

through a number of customers and ending at the depot; each customer (1, 2, ,)ic i n=  must be visited

exactly once. There are K vehicles, {0,1, , 1}eV K= − . The number of routes cannot exceed K .

Sensors 2015, 15 21036

Each vehicle serves a subset of customers on the route. The vehicles have the same capacity Q . The

total sum of demands of customers served by a vehicle on a route cannot exceed Q . The additional

constraints are that the service beginning time at each node (0,1, ,)ic i n=  must be greater than or

equal to ib , the beginning of the time window, and the arrival time at each node ic must be lower than

or equal to ie , i.e., the end of the time window. In case the arrival time is less than ib , the vehicle has

to wait until the beginning of the time window before starting servicing the customer. The goal is to

find a set of routes which can guarantee each customer to be served by one vehicle within a given time

interval and then satisfy the vehicle capacity constraints. Furthermore, the size of the set should be less

than the number of vehicles needed and the total travel distance should be minimized. Moreover, the

mathematical formulation of the VRPTW is presented as follows [4,46]:

1

0 0 0

n n K

ij ijk
i j k

Min z c x
−

= = =

= (1)

Subject to:
1

0 1

(0)
K n

ijk
k j

x K i
−

= =

≤ = (2)

1

0 0

1 (1,2, ;)
K n

ijk
k j

x i n i j
−

= =

= = ≠  (3)

0 0

(, [0, 1])
n n

i ijk
i j

d x Q i j k K
= =

≤ ≠ ∀ ∈ −  (4)

0 0t = (5)

(1) (, [1,]; ; [0, 1])i ij i ijk jt t s M x t i j n i j k K+ + − − ≤ ∈ ≠ ∈ − (6)

i i ib t e≤ ≤ (7)

0 0

0 (,)
n n

ihk hjk e
i j

x x j V k V
= =

− = ∈ ∈  (8)

where ijkx is 1 if vehicle k travels from customer i to customer j , and 0 otherwise. it denotes the

time a vehicle starts services at customer i ; M is an arbitrary large constant. Objective function states

that the total cost is to be minimized. Constraint (2) specifies that there are no more than K routes

going out of the depot. Constraint (3) ensures that one vehicle goes into and out of a customer exactly.

Equation (4) is the capacity constraint. The time window is assured in Equation (5), Equation (6) and

Equation (7). Equation (8) is the flow conservation constraints that describe the vehicle path.

3. Particle Swarm Optimization (PSO)

PSO is a population-based stochastic optimization technique developed by Eberhart and Kennedy in

1995, inspired by social behavior of bird flocking or fish schooling [34] and was first intended for

simulating these organisms’ social behavior. It is best to imagine a swarm of birds that are searching

for food. When one of them finds the food, some of them will follow the first bird, while others will

find other food. Initially, the birds do not know where the food is, but they know at each time how far

Sensors 2015, 15 21037

the food is. Each bird will follow the one that is nearest to the food. Throughout the course of preying,

a bird will use its own experiences and collective information to search for food.

In particle swarm optimization, the particles are moved around in the search space according to a

few simple formulae. The position of a particle represents a candidate solution to the optimization

problem at hand. Each particle searches for better positions in the search space by changing its velocity

according to rules originally inspired by behavioral models of flocking. The movements of the

particles are guided by their own best-known position in the search space as well as the entire swarm’s

best-known position. When improved positions are discovered, these will then come to guide the

movements of the swarm. The process is repeated and by doing so it is hoped, but not guaranteed, that

a satisfactory solution will eventually be discovered. Compared with other intelligence optimization

algorithms such as ant colony optimization, genetic algorithm, simulated annealing algorithm, neural

network algorithm and artificial immune algorithm, PSO retains the global search strategy based on the

swarm and has no individuals as in crossover and mutation. In PSO, through adjusting the velocities

and positions of the particles which fly through the problem space by following the current optimum

particles, the optimal solution can be obtained. Due to its simplicity, strong robustness, and fast

optimization speed, PSO is suitable for very large and complex optimization problems with

constraints. At first, PSO was applied to solve continuous optimization problems; however, several

applications were proposed during these years in the area of combinatorial optimization problems

including shop scheduling [47,48], project scheduling [49], travelling sales force [50], partitional

clustering [51], and vehicle routing [34,52].

PSO is one of the evolution algorithms with the characteristics of evolutionary computing and

swarm intelligence. Similar to other evolutionary algorithms, PSO searches for optima by evaluating

individual fitness based on cooperation and competition between individuals. In PSO, each individual

is considered as a particle without weight and volume in n -dimensional search space and flies through

the space with a certain speed. The speed is adjusted dynamically by the individual’s experience and

the entire swarm’s experience.

PSO is initialized with a population of random solutions and searches for the optimal solution by

updating the particle’s position. Each particle is the feasible solution and is designated a fitness value

by the objective function. Each particle keeps the track of its coordinates in the problem space which
are associated with the best solution (fitness) it has achieved so far. The fitness value is called bestp .

When a particle takes all the population as its topological neighbors, the best position is a global best
and is called bestg . Through bestp and bestg , particles update themselves to produce the next generation

of swarms.

The selection of fitness function depends on the research goals. The fitness function to evaluate the

individuals is always related to the objective function. For a VRPTW, the total cost can be viewed as

the fitness value. The inverse of the total cost is used to represent the fitness of the individuals, and

then the fitness function is defined as follows:

1
fitnessf

z
= (9)

In a PSO algorithm the particles represent potential solutions to the problem, and the swarm
consists of P particles. Each particle p can be represented through n -dimensional vectors: the first

Sensors 2015, 15 21038

one is defined by 1 2(, , ,)t t t t
p p p pnX x x x=  with (1,2, ,)p P=  that indicates the position of the particle

p in the searching space at the iteration t . The second one is 1 2(, , ,)t t t t
p p p pnV v v v=  that represents the

velocity with which the particle p moves. The third one is
1 2

(, , ,)
p p p pn

t t t t
best best best bestP p p p=  that denotes

the best position of the pth particle and the last one is
1 2

(, , ,)
t p p pn

t t t t
best best best bestG g g g=  that represents

the global best position in the swarm until tth iteration. The swarm is updated by the

following equations:

1
1 2

1 1

1() () 2() ()t

pn pn

t t t t t
pn pn best pn best pn

t t t
pn pn pn

v v k rand p x k rand g x

x x v

+

+ +

 = + × × − + × × −


= +
 (10)

where 1k and 2k are acceleration coefficients, which are respectively called cognitive and social

parameter; 1()rand and 2()rand are two random numbers uniformly distributed in [0,1] . Acceleration

coefficients 1k and 2k are positive constants to control how far a particle will move in a single

iteration. Low values allow particles to roam far from target regions before being tugged back,

while high values result in abrupt movement towards, or past, target regions. Typically, these are both

set to a value of 2.0, although assigning different values to 1k and 2k sometimes leads to an

improved performance.

A constant, maxv , is used to arbitrarily limit the velocities of the particles t
pnv and improve the

resolution of the search. When maxv is large (5)≥ , the velocity of the particle is large, too; it is

conducive to a global search, though it may fly through the optimal solution [53–55]. When maxv is

small (0.3)≤ , the velocity of the particle is also small; it leads to a fine search in a specific region, but

it is easy to fall to local optimum [53–55]. In a word, the search efficiency depends on maxv .

Each particle moves in the search space with a velocity according to its own previous best solution

and its group’s previous best solution. In Equation (10), the velocity 1t
pnv + consists of three

parts—momentum, cognitive and social parts—respectively each term of the right side of

Equation (10). The momentum part denotes the previous velocity of the particle, which improves the

ability of the global search. The cognitive part denotes the process of learning from an individual’s

experience. The social part denotes the process of learning from others’ experience, which represents

the information sharing and social cooperation between particles. The balance among these parts

determines the performance of a PSO algorithm. Without the momentum part, the particle then moves

in each step without knowledge of the past velocity. Without the cognitive part, the convergence speed

is fast, but can easily fall into a local optimum for a large problem size. Without the social part, it is

hard to get the optimal solution due to the lack of the communications among individuals.

4. The Proposed Algorithm

4.1. Particle Encoding

Encoding is a bridge connecting a problem with an algorithm. Encoding method and initial solution

have a great impact on the VRP problem. It is the key step to finding the appropriate encoding method

for the particles and the corresponding solutions. In brief, the encoding methods of PSO include real

encoding, binary-encoding and integer encoding. Integer encoding is easy to decode and convenient

Sensors 2015, 15 21039

for the fitness function calculation, but it requires a lot of computing resources and tends toward

premature convergence. In addition, binary encoding is hard to decode. Therefore, real encoding is

adopted in the proposed method.

4.2. Inertia Weight Function

In order to better control the searching and exploring abilities and improve the convergence of

particle swarm algorithm, the inertia weight ω is introduced into the velocity function. Therefore,
1t

pnv + is changed into the following form:

1
1 21() () 2() ()t

pn pn

t t t t t
pn pn best pn best pnv v k rand p x k rand g xω+ = + × × − + × × − (11)

The inertia weight ω is employed to control the impact of the previous history of velocities on the

current one. Accordingly, the parameter ω regulates the trade-off between the global and the local

exploration abilities. If ω is high, particles can hardly change their direction and turn around, which

consequently implies a larger area of exploration as well as a reluctance against convergence towards

optimum. On the other hand, If ω is small, only little momentum is presented from the previous

time-step, thereby leading to quick changes of direction. A suitable value for the inertia weight usually

contributes the balance between global and local exploration abilities and consequently results in a

reduction of the number of iterations required to obtain the optimum solution.

Considering whether the inertia weight ω is changed or not, the calculation methods of the inertia

weight ω include three categories: fixed-weight method, time-varying weight method and adaptive

inertia weight method. The fixed-weight method selects a constant value as the inertia weight ω and is

kept unchanged. The fixed-weight method was originally introduced by Shi and Eberhart in [56]. The

time-weight method selects an iterative relationship as the inertia weight ω according to a selected

range, which is defined as a function of time or iteration number. In [57–60], time-varying inertia

weight strategies were introduced and shown to be effective in improving the fine-tuning characteristic

of the PSO. In [61–63], the adaptive inertia weight methods used a feedback parameter to monitor the

state of the algorithm and adjusted the value of the inertia weight.

In order to better balance the global search ability and local search capabilities, kinds of inertia

weight are often used. At first, a higher ω is selected to expand the search space and converge to a

region. Then a smaller ω is selected to explore the local region to obtain high accuracy solutions. In

this paper, the definition of inertia weight is a linear decreasing function of the number of iterations. ω

is given as follows:

0
0

max

eω ωω ω η
η

−= − (12)

where 0ω is the initial value of inertia weight, eω is the final value of inertia weight, maxη is the

maximum number of iterations, η is the current number of iterations. From Equation (12), by the

linear function decreasing inertia weight, it is easy to obtain better global search ability and make

particles enter the area around the optimal value early in the iteration process, and it is easy to obtain

better local search ability and the solutions close to the optimum value late in the iteration process.

Sensors 2015, 15 21040

Since the value of the inertia weight is mainly determined based on the iteration number, this strategy

is relatively simple and has fast convergence compared to other methods.

4.3. Crossover Operator of Genetic Algorithm

In order to expand the search space to obtain the optimum solution and enhance the diversity of

particles, the idea of genetic algorithm is integrated into the PSO to avoid the premature convergence

and local minimum value. Crossover operator of genetic algorithm is introduced. The crossover

operators of the particle’s velocity and position are given as follows:

1 1 2() () (1) ()t t t
child pn c parent pn c parent pnp x p p x p p x= × + − × (13)

2 2 1() () (1) ()t t t
child pn c parent pn c parent pnp x p p x p p x= × + − × (14)

1 2
1 1

1 2

() ()
() ()

() ()

t t
parent pn parent pnt t

child pn parent pnt t
parent pn parent pn

p v p v
p v p v

p v p v

+
=

+
 (15)

1 2
2 2

1 2

() ()
() ()

() ()

t t
parent pn parent pnt t

child pn parent pnt t
parent pn parent pn

p v p v
p v p v

p v p v

+
=

+
 (16)

where childp represents the offspring of the particle, parentp represents the parent of the particle, cp

represents the crossover probability. cp ([0,1]cp ∈) is a random number. Based on the trial and error,

0.2 was found to be a suitable value for cp . The two parents are combined to produce two new

offspring. If the fitness of offspring is more than the fitness of parents, the offspring will be selected to

replace the parents; otherwise, the offspring are discarded.

4.4. The Proposed Algorithm Flow

The flow of the proposed algorithm is shown in Figure 1. In this flow, the parameters are set in

step (1), and the particles are initialized in step (2). Its position is decoded in step (3), its corresponding

fitness value is evaluated in step (4), its cognitive and social information is updated in step (5), and

then moved by step (6). Step (7) is the controlling step for repeating or stopping the iteration. Step (8)

generates a new set of the population. Note that the improvements of this flow from the original PSO

take place in step (3), which uses the real encoding method to decode the route in addition to step (6),

which introduces a linear decreasing function of the number of iterations, and step (8), which is

combined with the crossover operator of genetic algorithm. The proposed algorithm steps are given

as follows:

Sensors 2015, 15 21041

Figure 1. The flow of the proposed algorithm.

(1) Parameters setting. Define the parameters: acceleration coefficients 1k and 2k , the maximum

number of iterations maxη , the initial value of inertia weight 0ω , the final value of inertia weight

eω , a random number cp , the number of the particles P , the maximum velocities of the

particles maxv .

(2) Population initiation. Initialize P particles as a population, generate the pth particle with

random position 0
pnx , velocity 0

pnv , and personal best 0 0

pnbest pnp x= . Set iteration 0η = .

(3) Particle encoding. According to the particle encoding rules, for 1,2, ,i p=  , decode t
pnx to a

set of route t
pnR .

(4) Fitness evaluation. According to Equation (1), compute z , and then evaluate fitnessf through

Equation (9).
(5) bestp and bestg updating. Compute

pn

t
bestp and

pn

t
bestg . If

pn

t
best bestp p< , update

pn

t
best bestp p= . If

pn

t
best bestg g< , update

pn

t
best bestg g= .

(6) Particles updating. Update the velocity and the position of each pth particle according to

Equation (10).
(7) Termination judgment. If the stopping criterion is met, go to step (9). Otherwise, 1η η= + and go

to step (8). The stopping criterion is that maxη η≥ or finding a better solution. A better solution

means that the hierarchical cost objective value is better than that of the best solution found

so far.

Sensors 2015, 15 21042

(8) Crossover operator. Generate random number cp . According to Equations (13)–(16), generate

a new set of population. Then return to step (3).
(9) Outputting the optimal solution. Decode bestg as the best set of vehicle route R and output the

optimal solution R .

5. Experimental Results

In order to evaluate the performance of the proposed algorithm, we implemented the algorithm in

Visual C# under Microsoft Windows-XP on a PC with Intel P4 4 GHz CPU and 2 GB RAM. The

VRPTW benchmark problems of Solomon, which have been the most commonly chosen to evaluate

and compare all algorithms, are tested in this paper.

5.1. Solomon Benchmark Problems

It is well known that Solomon Benchmark problems are the widely used standard test set for

VRPTW. Solomon Benchmark derives from the website [64]. The Solomon test set consists of

56 problem instances for each dimension category problem, i.e., 25, 50 and 100 customers. Each of

these instances comprises 100 customers. The location of the depot and the customers are given as
integer values from the range 0,1, ,100 in a Cartesian coordinate system. The distance between two

customers is the simple Euclidean distance. It is assumed that the travel times are equal to the

corresponding Euclidean distances between the customer locations. One unit of time is necessary to

run one unit of distance by any vehicle. Different capacity constraints are considered for the vehicle in

each class of instance, as well as the demands from the customers.

The test problems are grouped into six problem types: R1, R2, RC1, RC2, C1, and C2, each

containing 8 to 12 instances. In R1 and R2, the customer locations are generated randomly in a given

area according to a uniform distribution. C1 and C2 have customers located in clusters. RC1 and RC2

contain a mix of randomly distributed and clustered customers. R1, C1 and RC1 have narrow time

windows and the vehicles have only small capacities. Therefore, each vehicle serves only a few

customers. In contrast, R2, C2 and RC2- have wider windows and the vehicles have higher capacities.

Each vehicle supplies more customers and therefore, compared to the type 1 problems, fewer vehicles

are needed. Because the Solomon’s test set represents relatively well different kinds of scenarios, it has

often been chosen to evaluate many solution proposals in the literature.

5.2. Evaluation of the Results

In order to compare the solutions, four evaluation indexes are presented: the total traveled distance,

the average total traveled distance, the CPU runtime and the quality of the solutions. The total traveled

distance and the average total traveled distance are the main criteria in the VRPTW and determines the

algorithm merits. The CPU runtime describes the algorithm efficiency. The quality of the solutions is

the comprehensive index, which denotes the percentage of deviation from the best-known solution.

The formula for calculating the percentage of deviation is as follows:

100%best
dev

best

z z
z

z

−= × (17)

Sensors 2015, 15 21043

where devz is the percentage of deviation from the best-known solution, z is the cost of the current

solution, bestz is the cost of the best-known solution.

5.3. Analysis of the Results

Each of 56 Solomon Benchmark problems is performed by some of the best-reported methods for

VRPTW, namely, the genetic algorithm, ant colony optimization [29], PSO [65] and the proposed

algorithm. Each problem involves 100 customers, randomly distributed over a geographical area. For

each problem, 10 replications of the algorithm are attempted. According to Equation (1), we have

adopted a formulation in which the total traveled distance is the optimized objective. Results displayed

in the following tables contain the total traveled distance and the number of vehicles used in order to

facilitate the comparison of our results with those obtained by hierarchical approaches in which the

total traveled distance is the primary objective and, for the same total traveled distance, the secondary

objective is number of vehicles, and also with multi-objective formulations that simultaneously

consider both objectives [66]. It compares the total traveled distance (TD), the average total traveled

distance, the CPU runtime and the quality of the solutions for each of the problems. Both best and

average results are presented.

5.3.1. The Total Traveled Distance

The results of TD and the number of vehicles (NV) are shown in Table 2. The published

best-known solutions are not obtained by one or a particular class of methods [15,67–71]. Results

emphasized in bold in Table 2 represent the new best solutions reached by the proposed algorithm:

1 out of 56 (1.79%). Results emphasized in bold and italic in Table 2 represent the previously

best-known solutions that cannot be reached by this algorithm. The results show that many previously

best-known solutions from the proposed algorithm have been reached: 31 out of 56 (55.4%). Globally,

the TD average results are close to the optimal solutions known in the proposed algorithm. This

comparison shows that the results from the proposed algorithm are competitive with other published

results. In the genetic algorithm, 27 out of 56 (48.2%) have reached the previously best-known

solutions. In PSO, 28 out of 56 (50%) have reached the previously best-known solutions. In ACO,

26 out of 56 (46.4%) have reached the previously best-known solutions. It can be seen that the

proposed algorithm is better than the genetic algorithms, ACO and PSO. The efficiency is improved

and the results are close to the best-known solutions. It is possible to see that the proposed algorithm

continues to be very competitive in terms of total TD.

Sensors 2015, 15 21044

Table 2. The results of the total traveled distance for Solomon’s 100 customers set Problems.

No. Problem
Best-Known Solution

Genetic PSO ACO The Proposed Algorithm

Best Average Best Average Best Average Best Average

TD NV TD NV TD NV TD NV TD NV TD NV TD NV TD NV TD NV

1 C101 828.94 10 828.94 10 856.26 10.20 828.94 10 842.60 10.10 828.94 10 842.60 10.10 828.94 10 842.60 10.10

2 C102 828.94 10 828.94 10 828.94 10.00 828.94 10 828.94 10.00 828.94 10 857.82 10.10 828.94 10 828.94 10.00

3 C103 828.06 10 828.06 10 859.88 10.00 828.06 10 828.06 10.00 828.06 10 828.06 10.00 828.06 10 828.06 10.00

4 C104 824.78 10 824.78 10 824.78 10.00 824.78 10 824.78 10.00 824.78 10 849.79 10.10 824.78 10 824.78 10.00

5 C105 828.94 10 828.94 10 854.25 10.20 828.94 10 866.91 10.30 828.94 10 904.88 10.60 828.94 10 841.60 10.10

6 C106 828.94 10 828.94 10 851.78 10.10 828.94 10 897.46 10.30 828.94 10 943.14 10.50 828.94 10 874.62 10.20

7 C107 828.94 10 828.94 10 856.47 10.20 828.94 10 842.70 10.10 828.94 10 870.23 10.30 828.94 10 842.70 10.10

8 C108 828.94 10 828.94 10 865.99 10.00 828.94 10 841.29 10.00 828.94 10 853.64 10.00 828.94 10 841.29 10.00

9 C109 828.94 10 828.94 10 910.27 10.30 828.94 10 856.05 10.10 828.94 10 883.16 10.20 828.94 10 828.94 10.00

10 C201 591.56 3 591.56 3 602.53 3.30 591.56 3 606.18 3.40 591.56 3 609.84 3.50 591.56 3 598.87 3.20

11 C202 591.56 3 591.56 3 656.01 3.20 591.56 3 623.78 3.10 591.56 3 623.78 3.10 591.56 3 591.56 3.00

12 C203 591.17 3 591.17 3 606.19 3.00 591.17 3 604.69 3.00 591.17 3 618.20 3.00 591.17 3 604.69 3.00

13 C204 590.60 3 590.60 3 704.28 3.30 590.60 3 666.39 3.20 590.60 3 742.17 3.40 590.60 3 628.49 3.10

14 C205 588.88 3 588.88 3 619.27 3.30 588.88 3 599.01 3.10 588.88 3 609.14 3.20 588.88 3 599.01 3.10

15 C206 588.49 3 588.49 3 620.28 3.20 588.49 3 604.38 3.10 588.49 3 636.17 3.30 588.49 3 588.49 3.00

16 C207 588.29 3 588.29 3 610.49 3.00 588.29 3 632.69 3.00 588.29 3 621.59 3.00 588.29 3 599.39 3.00

17 C208 588.32 3 588.32 3 622.73 3.00 588.32 3 599.79 3.00 588.32 3 611.26 3.00 588.32 3 599.79 3.00

18 R101 1483.57 16 1642.87 20 1645.83 19.50 1642.87 20 1645.33 19.50 1645.79 19 1647.29 19.00 1642.87 20 1645.83 19.50

19 R102 1355.93 14 1482.74 18 1483.75 17.70 1472.62 18 1477.95 17.80 1480.73 18 1482.21 17.80 1472.62 18 1477.14 17.80

20 R103 1133.35 12 1292.85 15 1248.88 14.40 1213.62 14 1239.30 14.40 1213.62 14 1247.22 14.30 1213.62 14 1239.01 13.80

21 R104 968.28 10 982.01 10 995.05 9.60 1007.24 9 1007.30 9.00 982.01 10 1000.11 9.40 982.01 10 992.52 9.70

22 R105 1262.53 12 1360.78 15 1366.87 14.80 1360.78 15 1374.14 14.70 1360.78 15 1369.99 15.30 1360.78 15 1366.42 15.00

23 R106 1201.78 12 1249.40 13 1251.48 12.20 1241.52 13 1249.39 12.40 1251.98 12 1252.00 12.00 1241.52 13 1247.29 12.60

24 R107 1051.92 11 1076.13 11 1094.18 10.70 1076.13 11 1094.19 10.50 1076.13 11 1096.08 10.70 1076.13 11 1088.49 10.70

25 R108 948.57 10 963.99 9 965.42 9.90 963.99 9 965.10 9.70 948.57 10 960.92 9.60 948.57 10 955.82 9.60

26 R109 1110.40 12 1151.84 13 1181.86 11.60 1151.84 13 1186.15 11.40 1151.84 13 1190.44 11.20 1151.84 13 1164.71 12.40

Sensors 2015, 15 21045

Table 2. Cont.

No. Problem
Best-Known Solution

Genetic PSO ACO The Proposed Algorithm

Best Average Best Average Best Average Best Average

TD NV TD NV TD NV TD NV TD NV TD NV TD NV TD NV TD NV

27 R110 1080.36 11 1080.36 11 1112.79 10.30 1080.36 11 1105.14 10.50 1080.36 11 1107.72 10.50 1080.36 11 1098.14 10.70
28 R111 987.80 10 1053.50 12 1086.43 10.80 1053.50 12 1083.13 11.60 1088.48 12 1095.07 10.40 1053.50 12 1069.14 11.60
29 R112 953.63 10 982.14 9 995.33 10.80 953.63 10 965.03 10.00 953.63 10 987.40 10.60 960.68 10 968.58 9.90
30 R201 1148.48 9 1148.48 9 1208.94 7.70 1179.79 9 1231.20 5.50 1148.48 9 1212.51 7.30 1148.48 9 1178.39 8.40
31 R202 1049.74 7 1049.74 7 1086.62 5.70 1049.74 7 1100.68 5.00 1079.36 6 1142.69 4.10 1049.74 7 1081.57 5.70
32 R203 900.08 5 900.08 5 930.23 4.60 932.76 7 939.72 3.80 939.54 3 941.70 3.00 900.08 5 922.71 4.60
33 R204 772.33 4 807.38 4 828.06 2.40 772.33 4 817.42 2.80 772.33 4 823.17 2.80 772.33 4 801.47 3.40
34 R205 959.74 4 970.89 6 982.66 4.50 970.89 6 980.30 4.80 970.89 6 989.71 3.60 970.89 6 977.95 5.10
35 R206 898.91 5 898.91 5 906.06 3.40 906.14 3 910.24 3.00 906.14 3 912.29 3.00 898.91 5 903.89 4.00
36 R207 814.78 3 814.78 3 844.73 3.40 814.78 3 868.25 2.60 814.78 3 876.51 2.60 814.78 3 836.67 3.00
37 R208 715.37 3 725.75 2 726.61 2.00 725.42 4 725.77 3.20 725.75 2 726.71 2.00 723.61 3 725.50 2.50
38 R209 879.53 6 879.53 6 892.08 5.40 879.53 6 891.00 5.40 879.53 6 903.21 4.20 879.53 6 891.82 5.10
39 R210 932.89 7 954.12 3 955.06 6.60 954.12 3 954.64 5.00 939.34 3 952.94 4.78 932.89 7 937.89 6.20
40 R211 761.10 4 885.71 2 892.31 2.30 885.71 2 889.53 4.40 888.73 5 867.07 2.90 808.56 4 824.99 3.90
41 RC101 1481.27 13 1660.10 16 1689.57 14.40 1623.58 15 1658.18 15.10 1639.97 16 1687.56 14.40 1623.58 15 1645.18 15.10
42 RC102 1395.25 13 1466.84 14 1493.53 13.50 1482.91 14 1497.28 13.60 1477.54 13 1539.85 12.30 1466.84 14 1487.10 13.50
43 RC103 1221.53 10 1261.67 11 1263.56 11.00 1262.02 11 1262.29 11.00 1262.02 11 1264.17 11.00 1261.67 11 1262.04 11.00
44 RC104 1135.48 10 1135.48 10 1135.50 10.00 1135.48 10 1135.50 10.00 1135.48 10 1135.51 10.00 1135.48 10 1135.49 10.00
45 RC105 1354.20 12 1518.60 16 1601.17 15.40 1518.60 16 1593.35 14.80 1629.44 13 1633.29 13.00 1618.55 16 1621.16 15.40
46 RC106 1226.62 11 1377.35 13 1396.59 11.80 1384.92 12 1417.25 11.20 1377.35 13 1416.49 11.30 1377.35 13 1392.80 12.30
47 RC107 1150.99 10 1230.48 11 1254.98 12.60 1212.83 12 1240.50 12.30 1230.48 11 1258.04 12.80 1212.83 12 1226.01 12.00
48 RC108 1076.81 10 1117.53 11 1135.32 10.30 1117.53 11 1127.41 10.90 1117.53 11 1128.55 10.80 1117.53 11 1126.40 10.70
49 RC201 1134.91 6 1406.91 4 1391.43 7.20 1406.91 4 1406.91 4.00 1286.83 9 1397.23 6.00 1387.55 8 1391.43 7.20
50 RC202 1113.53 8 1365.57 4 1250.18 3.60 1113.53 8 1162.75 7.60 1113.53 8 1204.86 6.30 1148.84 9 1173.34 7.90
51 RC203 945.96 5 945.96 5 1034.30 3.40 945.96 5 1032.14 3.40 1049.62 3 1052.87 3.00 945.96 5 990.67 4.20
52 RC204 796.11 4 798.41 3 798.69 3.20 798.41 3 799.18 3.60 798.46 3 799.43 3.80 798.41 3 798.67 3.20
53 RC205 1168.22 8 1270.69 7 1276.08 6.40 1168.22 8 1282.01 4.70 1168.22 8 1263.14 6.80 1161.81 7 1187.56 6.90
54 RC206 1059.89 7 1059.89 7 1105.75 5.80 1084.30 8 1139.24 4.00 1059.89 7 1135.44 4.00 1059.89 7 1092.22 6.00
55 RC207 976.40 7 999.26 6 1060.37 3.60 976.40 7 1011.75 5.70 1053.58 6 1064.28 3.90 976.40 7 995.65 6.40
56 RC208 785.93 4 816.10 5 824.93 3.60 816.10 5 822.41 4.00 806.87 5 819.64 4.00 795.39 5 807.27 4.78

Sensors 2015, 15 21046

5.3.2. The Average Total Traveled Distance

The results of the average total traveled distance are shown in Table 3. Each entry refers to the best

performance obtained with a specific technique over a particular data set. Rows C1, C2,

R1, R2, RC1 and RC2 present the average number of vehicles and average total distance with respect

to the six problem groups. The last row refers to the cumulative number of routes and traveled distance

over all problem instances. The first column describes the various data sets and corresponding

measures of performance defined by the average number of routes (or vehicles), and the total traveled

distance. The following columns refer to particular problem-solving methods. The performance of the

proposed algorithm is depicted in the last column. The results indicate that the proposed algorithm can

match the best-known solutions, and it performs better than other algorithms. In addition, the proposed

algorithm is the only method that found the minimum number of tours and the comparable traveled

distance consistently for all problem data sets.

Table 3. The results of the average total traveled distance.

Problem Best-Known Solution
Genetic PSO ACO The Proposed Algorithm

Best Average Best Average Best Average Best Average

C1-type
NV 10.00 10.00 10.11 10.00 10.10 10.00 10.21 10.00 10.06

TD 828.38 828.38 856.51 828.38 847.64 828.38 870.37 828.38 839.28

C2-type
NV 3.00 3.00 3.16 3.00 3.11 3.00 3.19 3.00 3.05

TD 589.86 589.86 630.22 589.86 617.11 589.86 634.02 589.86 601.29

R1-type
NV 11.67 13.00 12.69 12.92 12.63 12.92 12.57 13.08 12.78

TD 1128.18 1193.22 1202.32 1184.84 1199.35 1186.16 1203.04 1182.04 1192.76

R2-type
NV 5.18 4.73 4.36 4.91 4.14 4.55 3.66 5.36 4.72

TD 893.90 912.31 932.12 915.56 937.16 914.99 940.77 899.98 916.62

RC1-type
NV 11.13 12.75 12.38 12.63 12.36 12.25 11.95 12.75 12.50

TD 1255.27 1346.01 1371.28 1342.23 1366.47 1358.73 1382.93 1351.73 1362.02

RC2-type
NV 6.13 5.13 4.60 6.00 4.63 6.13 4.73 6.38 5.82

TD 997.62 1082.85 1092.72 1038.73 1082.05 1042.13 1092.11 1034.28 1054.60

All
NV 449 465 452.40 472 448.70 466 441.88 483 466.68

TD 53,568.46 55,959.11 57,143.53 55,511.30 56,854.75 55,679.89 57,490.75 55,346.67 56,092.75

5.3.3. The Average Central Processing Unit (CPU) Runtime

The results of the average CPU runtime are listed in Table 4. Rows C1, C2, R1, R2, RC1 and

RC2- present the average CPU runtime with respect to the six problem groups. From Table 4, for the

same instance, ACO is almost the most time consuming; the genetic algorithm takes second place; the

PSO takes third place; and the proposed algorithm is last. The result shows that the proposed algorithm

is highly efficient and suitable to be used in real-life problems to generate good solutions for further

improvement. The average CPU runtime required to solve each type of problem set is between 62 and

149 milliseconds by the proposed algorithm, which is much faster than other algorithms. It can be seen

that the proposed algorithm is very effective. This happened because crossover in GA is done between

random chromosomes, whereas in the proposed algorithm, crossover is done between a particle’s

Sensors 2015, 15 21047

chromosome and best chromosome. Therefore, the proposed algorithm does not only give a better

result, but it also reaches convergence results faster than other methods.

Table 4. The results of the average CPU runtime.

Problem Genetic PSO ACO The Proposed Algorithm

C1e 98 85 111 62
C2 312 231 338 135
R1 112 81 124 60
R2 309 273 553 182

RC1 79 80 82 58
RC2 297 257 333 149

5.3.4. The Quality of the Solutions

According to Equation (17), the quality of the solutions is shown in Table 5. Here z is the average
total traveled distance. Rows C1, C2, R1, R2, RC1 and RC2 present the average devz with respect to

the six problem groups. The last row refers to the cumulative devz over all problem instances. It can be

seen that, with the proposed method, the quality of the results is between 1.32% and 8.17% with

average quality equal to 4.07%; in the ACO, the quality of the solutions is between 5.07% and 9.75%

with average quality equal to 6.95%; in PSO, the quality of the solutions is between 2.32% and 8.53%

with average quality equal to 5.63%; in the genetic algorithm, the quality of the solutions is between

3.39% and 8.96% with average quality equal to 6.29%. The improvement in the quality of the solutions

was achieved with the addition of the crossover operator of genetic algorithm. The reason is that, now,

the particles moved in a more fast and efficient way to their local optimum or to the global optimum

solution (to the best particle in the swarm). It is proved that the addition of the evolution of the

population phase before the individuals used in the next generation improves the results of the algorithm,

especially in the large-scale vehicle routing instances which are more difficult and time consuming.

Table 5. The result of devz .

Problem Genetic PSO ACO The Proposed Algorithm

C1-type 3.39% 2.32% 5.07% 1.32%
C2-type 6.84% 4.62% 7.48% 1.94%
R1-type 6.28% 5.98% 6.33% 5.36%
R2-type 4.44% 4.93% 5.29% 2.62%

RC1-type 8.89% 8.53% 9.75% 8.17%
RC2-type 8.96% 7.92% 8.95% 5.30%

All 6.29% 5.63% 6.95% 4.07%

From the results shown in Tables 2–5, it is observed that the proposed algorithm is fast and

produces good solutions, which are only slightly less accurate than the best-known results. This

comparison also shows that the results from the proposed algorithm are competitive with other

published results. The experimental results reveal that the proposed algorithm is highly capable at

minimizing the total travel distance. In particular, it is obvious that the proposed algorithm has great

advantages for the solved problem size over the genetic algorithm, PSO and ACO. The reason is that,

Sensors 2015, 15 21048

now, the particles moved in a more fast and efficient way to their local optimum or to the global

optimum solution (to the best particle in the swarm). After each environment change (peak

movement), the particles are placed on a point far from the optimum through the inertia weight

function. The particles take few iterations to reach this point. At the same time, the particle’s coding

can be ensured that a particle is always able to generate a new feasible solution.

6. Conclusions

This paper proposes a genetic and PSO algorithm for VRPTW. Moreover, this algorithm was

applied to the Solomon Benchmark problems and produced satisfactory results. Compared to other

approaches, experimental results indicate that the proposed algorithm is fast and possesses a relatively

accurate results. The proposed algorithm has proved to be an effective and competitive algorithm for

the optimization problems due to its easy implementation, inexpensive computation and low memory

requirements. Three major contributions are as follows:

(1) The real encoding method avoids the complex encoding and decoding computation burden.

(2) A linear decreasing function of the number of iterations in PSO have a flexible and

well-balanced mechanism to enhance and adapt to the global and local exploration abilities,

which can help find the optimal solution with the least number of iterations.

(3) The crossover operator of the genetic algorithm is introduced to generate a new population

guaranteeing that the offspring inherits good qualities from this parent. The crossover operator

avoids premature convergence and local minimum value and increases the diversity of particles.

Although the combination of the genetic algorithm and PSO for VRPTW obtains satisfactory

achievements, there is still some room for improvement, such as how to effectively construct the initial

solution and how to precisely judge the local optimal solution. Further research applying the proposed

algorithm to other VRPTW variants will be carried out in our future work.

Acknowledgements

This research was funded by National High Technology Research and Development Program of

China (863 Program) under grant No. 2013AA122003 and No. 2012AA12A402, National Science &

Technology Pillar Program under grant No. 2012BAB16B01, National Natural Science Foundation of

P.R. China under grant No. 40901195, Special Fund for Quality Supervision, Inspection and

Quarantine Research in the Public Interest under grant No. 201410308, and the Basic Research Fund

of CASM.

Author Contributions

Shenghua Xu and Jiping Liu conceived of and designed the study. Shenghua Xu and Liang Wang

analyzed the data and performed the experiments. Shenghua Xu, Fuhao Zhang and Lijian Sun wrote

and revised the paper extensively. All of the authors have read and approved the final manuscript.

Sensors 2015, 15 21049

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Dantzig, G.; Ramser, J. The truck dispatching problem. Manag. Sci. 1959, 6, 80–91.

2. Hu, W.; Liang, H.; Peng, C.; Du, B.; Hu, Q. A hybrid chaos-particle swarm optimization

algorithm for the vehicle routing problem with time window. Entropy 2013, 15, 1247–1270.

3. Bräysy, O. A reactive variable neighborhood search for the vehicle-routing problem with time

windows. INFORMS J. Comput. 2003, 15, 347–368.

4. Belenguer, J.-M.; Benavent, E.; Prins, C.; Prodhon, C.; Calvo, R.W. A branch-and-cut method for

the capacitated location-routing problem. Comput. Oper. Res. 2011, 38, 931–941.

5. Jepsen, M.; Spoorendonk, S.; Ropke, S. A branch-and-cut algorithm for the symmetric

two-echelon capacitated vehicle routing problem. Transp. Sci. 2013, 47, 23–37.

6. Niebles, J.; Wang, H.; Fei-Fei, L. Unsupervised learning of human action categories using

spatial-temporal words. Int. J. Comput. Vis. 2008, 79, 299–318.

7. Vidal, T.; Crainic, T.G.; Gendreau, M.; Prins, C. Heuristics for multi-attribute vehicle routing

problems: A survey and synthesis. Eur. J. Oper. Res. 2013, 231, 1–21.

8. Berbeglia, G.; Cordeau, J.-F.; Laporte, G. A hybrid tabu search and constraint programming

algorithm for the dynamic dial-a-ride problem. INFORMS J. Comput. 2012, 24, 343–355.

9. Pillac, V.; Gendreau, M.; Guéret, C.; Medaglia, A.L. A review of dynamic vehicle routing

problems. Eur. J. Oper. Res. 2013, 225, 1–11.

10. Andres Figliozzi, M. The time dependent vehicle routing problem with time windows: Benchmark

problems, an efficient solution algorithm, and solution characteristics. Transp. Res. Part E Logist.

Transp. Rev. 2012, 48, 616–636.

11. Çetinkaya, C.; Karaoglan, I.; Gökçen, H. Two-stage vehicle routing problem with arc time

windows: A mixed integer programming formulation and a heuristic approach. Eur. J. Oper. Res.

2013, 230, 539–550.

12. Yu, B.; Yang, Z.; Yao, B. A hybrid algorithm for vehicle routing problem with time windows.

Expert Syst. Appl. 2011, 38, 435–441.

13. Anbuudayasankar, S.; Ganesh, K.; Koh, S.L.; Ducq, Y. Modified savings heuristics and genetic

algorithm for bi-objective vehicle routing problem with forced backhauls. Expert Syst. Appl. 2012,

39, 2296–2305.

14. Repoussis, P.P.; Tarantilis, C.D.; Ioannou, G. Arc-guided evolutionary algorithm for the vehicle

routing problem with time windows. IEEE Trans. Evol. Comput. 2009, 13, 624–647.

15. Garcia-Najera, A.; Bullinaria, J.A. An improved multi-objective evolutionary algorithm for the

vehicle routing problem with time windows. Comput. Oper. Res. 2011, 38, 287–300.
16. Prescott-Gagnon, E.; Desaulniers, G.; Rousseau, L.M. A branch-and-price-based large

neighborhood search algorithm for the vehicle routing problem with time windows. Networks

2009, 54, 190–204.

Sensors 2015, 15 21050

17. Azi, N.; Gendreau, M.; Potvin, J.Y. An exact algorithm for a vehicle routing problem with time

windows and multiple use of vehicles. Eur. J. Oper. Res. 2010, 202, 756–763.

18. Cordeau, J.F.; Maischberger, M. A parallel iterated tabu search heuristic for vehicle routing

problems. Comput. Oper. Res. 2012, 39, 2033–2050.

19. Brandão, J. A tabu search algorithm for the heterogeneous fixed fleet vehicle routing problem.

Comput. Oper. Res. 2011, 38, 140–151.

20. Escobar, J.W.; Linfati, R.; Toth, P.; Baldoquin, M.G. A hybrid granular tabu search algorithm for

the multi-depot vehicle routing problem. J. Heuristics 2014, 20, 483–509.

21. Archetti, C.; Bouchard, M.; Desaulniers, G. Enhanced branch and price and cut for vehicle routing

with split deliveries and time windows. Transp. Sci. 2011, 45, 285–298.

22. Hashimoto, H.; Yagiura, M.; Ibaraki, T. An iterated local search algorithm for the time-dependent

vehicle routing problem with time windows. Discret. Opt. 2008, 5, 434–456.

23. Michallet, J.; Prins, C.; Amodeo, L.; Yalaoui, F.; Vitry, G. Multi-start iterated local search for the

periodic vehicle routing problem with time windows and time spread constraints on services.

Comput. Oper. Res. 2014, 41, 196–207.

24. Li, X.; Tian, P.; Leung, S.C.H. Vehicle routing problems with time windows and stochastic travel

and service times: Models and algorithm. Int. J. Prod. Econ. 2010, 125, 137–145.

25. Yu, B.; Yang, Z.Z. An ant colony optimization model: The period vehicle routing problem with

time windows. Transp. Res. Part E Logist. Transp. Rev. 2011, 47, 166–181.

26. Dhahri, A.; Zidi, K.; Ghedira, K. A Variable Neighborhood Search for the Vehicle Routing

Problem with Time Windows and Preventive Maintenance Activities. Electron. Notes Discret.

Math. 2015, 47, 229–236.

27. Khouadjia, M.R.; Sarasola, B.; Alba, E.; Jourdan, L.; Talbi, E.-G. A comparative study between

dynamic adapted PSO and VNS for the vehicle routing problem with dynamic requests. Appl. Soft

Comput. 2012, 12, 1426–1439.

28. Brandão de Oliveira, H.C.; Vasconcelos, G.C. A hybrid search method for the vehicle routing

problem with time windows. Ann. Oper. Res. 2010, 180, 125–144.

29. Balseiro, S.; Loiseau, I.; Ramonet, J. An Ant Colony algorithm hybridized with insertion

heuristics for the Time Dependent Vehicle Routing Problem with Time Windows. Comput. Oper. Res.

2011, 38, 954–966.

30. Szeto, W.; Wu, Y.; Ho, S.C. An artificial bee colony algorithm for the capacitated vehicle routing

problem. Eur. J. Oper. Res. 2011, 215, 126–135.

31. Mahdavi, V.; Sadeghi, S.A.; Fathi, S. A mathematical Model and Solving Method for Multi-Depot

and Multi-level Vehicle Routing Problem with Fuzzy Time Windows. Adv. Intel. Transp. Syst.

2012, 1, 19–24.

32. El-Sherbeny, N.A. Vehicle routing with time windows: An overview of exact, heuristic and

metaheuristic methods. J. King Saud Univ. Sci. 2010, 22, 123–131.

33. Bhagade, A.S.; Puranik, P.V. Artificial bee colony (ABC) algorithm for vehicle routing

optimization problem. Int. J. Soft Comput. Eng. 2012, 2, 329–333.

34. Ai, T.; Kachitvichyanukul, V. A particle swarm optimization for the vehicle routing problem with

simultaneous pickup and delivery. Comput. Oper. Res. 2009, 36, 1693–1702.

Sensors 2015, 15 21051

35. Kok, A.L.; Meyer, C.M.; Kopfer, H.; Schutten, J.M.J. A dynamic programming heuristic for the

vehicle routing problem with time windows and European Community social legislation.

Transp. Sci. 2010, 44, 442–454.

36. Erdoğan, S.; Miller-Hooks, E. A green vehicle routing problem. Transp. Res. Part E Logist.

Transp. Rev. 2012, 48, 100–114.

37. Küçükoğlu, İ.; Öztürk, N. An advanced hybrid meta-heuristic algorithm for the vehicle routing

problem with backhauls and time windows. Comput. Ind. Eng. 2015, 86, 60–68.

38. Marinakis, Y.; Marinaki, M. A hybrid genetic–Particle Swarm Optimization Algorithm for the

vehicle routing problem. Expert Syst. Appl. 2010, 37, 1446–1455.

39. Nagata, Y.; Bräysy, O.; Dullaert, W. A penalty-based edge assembly memetic algorithm for the

vehicle routing problem with time windows. Comput. Oper. Res. 2010, 37, 724–737.

40. Dey, S.; Bhattacharyya, S.; Maulik, U. Quantum inspired genetic algorithm and particle swarm

optimization using chaotic map model based interference for gray level image thresholding.

Swarm Evol. Comput. 2014, 15, 38–57.

41. Valdez, F.; Melin, P.; Castillo, O. Modular neural networks architecture optimization with a new

nature inspired method using a fuzzy combination of particle swarm optimization and genetic

algorithms. Inf. Sci. 2014, 270, 143–153.

42. Ru, N.; Yue, J. A GA and particle swarm optimization based hybrid algorithm. In Proceedings of the

IEEE Congress on Evolutionary Computation, Hong Kong, China, 1–6 June 2008; pp. 1047–1050.

43. Hao, Z.-F.; Wang, Z.-G.; Huang, H. A particle swarm optimization algorithm with crossover

operator. In Proceedings of the 2007 IEEE International Conference on Machine Learning and

Cybernetics, Hong Kong, China, 19–22 August 2007; pp. 1036–1040.

44. Masrom, S.; Abidin, S.Z.; Omar, N.; Nasir, K.; Abd Rahman, A. Dynamic parameterization of the

particle swarm optimization and genetic algorithm hybrids for vehicle routing problem with time

window. Int. J. Hybrid Int. Syst. 2015, 12, 13–25.

45. Kuo, R.; Zulvia, F.E.; Suryadi, K. Hybrid particle swarm optimization with genetic algorithm for

solving capacitated vehicle routing problem with fuzzy demand—A case study on garbage

collection system. Appl. Math. Comput. 2012, 219, 2574–2588.

46. Dhahri, A.; Zidi, K.; Ghedira, K. Variable Neighborhood Search based Set Covering ILP Model

for the Vehicle Routing Problem with Time Windows. Proc. Comput. Sci. 2014, 29, 844–854.

47. Sha, D.; Hsu, C. A new particle swarm optimization for the open shop scheduling problem.

Comput. Oper. Res. 2008, 35, 3243–3261.

48. Lian, Z.; Gu, X.; Jiao, B. A novel particle swarm optimization algorithm for permutation

flow-shop scheduling to minimize makespan. Chaos Solitons Fract. 2008, 35, 851–861.

49. Jarboui, B.; Damak, N.; Siarry, P.; Rebai, A. A combinatorial particle swarm optimization for

solving multi-mode resource-constrained project scheduling problems. Appl. Math. Comput. 2008,

195, 299–308.

50. Shi, X.; Liang, Y.; Lee, H.; Lu, C.; Wang, Q. Particle swarm optimization-based algorithms for

TSP and generalized TSP. Inf. Process. Lett. 2007, 103, 169–176.

51. Jarboui, B.; Cheikh, M.; Siarry, P.; Rebai, A. Combinatorial particle swarm optimization (CPSO)

for partitional clustering problem. Appl. Math. Comput. 2007, 192, 337–345.

Sensors 2015, 15 21052

52. Pan, Q.; Fatih Tasgetiren, M.; Liang, Y. A discrete particle swarm optimization algorithm for the

no-wait flowshop scheduling problem. Comput. Oper. Res. 2008, 35, 2807–2839.

53. Yin, P.-Y.; Yu, S.-S.; Wang, P.-P.; Wang, Y.-T. A hybrid particle swarm optimization algorithm

for optimal task assignment in distributed systems. Comput. Stand. Int. 2006, 28, 441–450.

54. Bohre, A.K.; Agnihotri, G.; Dubey, M.; Singh, J. A Novel Method to Find Optimal Solution

Based on Modified Butterfly Particle Swarm Optimization. Int. J. Soft Comput. Math. Control

2014, 3, 1–14.

55. Ping, H.J.; Lian, L.Y.; Xing, H.; Hua, W.J. A Novel Hybrid Algorithm with Marriage of Particle

Swarm Optimization and Homotopy Optimization for Tunnel Parameter Inversion. Appl. Mech.

Mater. 2012, 229–231, 2033–2037.

56. Shi, Y.; Eberhart, R. A modified particle swarm optimizer. In Proceedings of the IEEE

International Conference on Evolutionary Computation, Anchorage, AK, USA, 4–9 May 1998;

pp. 69–73.

57. Jiao, B.; Lian, Z.; Gu, X. A dynamic inertia weight particle swarm optimization algorithm.

Chaos Solitons Fract. 2008, 37, 698–705.

58. Liu, X.; Wang, Q.; Liu, H.; Li, L. Particle swarm optimization with dynamic inertia weight and

mutation. In Porceedings of the 3rd IEEE International Conference on Genetic and Evolutionary

Computing, Guilin, China, 14–17 October 2009; pp. 620–623.

59. Tao, Z.; Cai, J. A new chaotic PSO with dynamic inertia weight for economic dispatch problem.

In Proceedings of the IEEE International Conference on Sustainable Power Generation and

Supply, Nanjing, China, 6–7 April 2009; pp. 1–6.

60. Tripathi, P.K.; Bandyopadhyay, S.; Pal, S.K. Multi-objective particle swarm optimization with

time variant inertia and acceleration coefficients. Inf. Sci. 2007, 177, 5033–5049.

61. Nickabadi, A.; Ebadzadeh, M.M.; Safabakhsh, R. A novel particle swarm optimization algorithm

with adaptive inertia weight. Appl. Soft Comput. 2011, 11, 3658–3670.

62. Shen, X.; Chi, Z.; Yang, J.; Chen, C. Particle swarm optimization with dynamic adaptive inertia

weight. In Proceedings of the IEEE International Conference on Challenges in Environmental

Science and Computer Engineering, Wuhan, China, 6–9 March 2010; pp. 287–290.

63. Zhang, L.; Tang, Y.; Hua, C.; Guan, X. A new particle swarm optimization algorithm with

adaptive inertia weight based on Bayesian techniques. Appl. Soft Comput. 2015, 28, 138–149.

64. VRPTW Benchmark Problems. Available online: http://web.cba.neu.edu/~msolomon/

problems.htm (accessed on 26 August 2015).

65. Ai, T.J.; Kachitvichyanukul, V. A particle swarm optimisation for vehicle routing problem with

time windows. Int. J. Oper. Res. 2009, 6, 519–537.

66. Baños, R.; Ortega, J.; Gil, C.; Márquez, A.L.; de Toro, F. A hybrid meta-heuristic for

multi-objective vehicle routing problems with time windows. Comput. Ind. Eng. 2013, 65, 286–296.

67. Barbucha, D. A cooperative population learning algorithm for vehicle routing problem with time

windows. Neurocomputing 2014, 146, 210–229.

68. Ghannadpour, S.F.; Noori, S.; Tavakkoli-Moghaddam, R.; Ghoseiri, K. A multi-objective

dynamic vehicle routing problem with fuzzy time windows: Model, solution and application.

Appl. Soft Comput. 2014, 14, 504–527.

Sensors 2015, 15 21053

69. Taş, D.; Jabali, O.; van Woensel, T. A vehicle routing problem with flexible time windows.

Comput. Oper. Res. 2014, 52, 39–54.

70. Barb, A.S.; Shyu, C.R. A study of factors that influence the accuracy of content-based geospatial

ranking systems. Int. J. Image Data Fusion 2012, 3, 257–268.

71. Alvarenga, G.B.; Mateus, G.R.; de Tomi, G. A genetic and set partitioning two-phase approach

for the vehicle routing problem with time windows. Comput. Oper. Res. 2007, 34, 1561–1584.

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/4.0/).

