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Abstract: An accurate performance analysis on the MDL criterion for source enumeration 

in array processing is presented in this paper. The enumeration results of MDL can be 

predicted precisely by the proposed procedure via the statistical analysis of the sample 

eigenvalues, whose distributive properties are investigated with the consideration of their 

interactions. A novel approach is also developed for the performance evaluation when the 

source number is underestimated by a number greater than one, which is denoted as 

“multiple-missed detection”, and the probability of a specific underestimated source 

number can be estimated by ratio distribution analysis. Simulation results are included to 

demonstrate the superiority of the presented method over available results and confirm the 

ability of the proposed approach to perform multiple-missed detection analysis. 

Keywords: performance analysis; minimum description length (MDL); array processing; 

multiple-missed detection; source enumeration 

 

1. Introduction 

Source enumeration is a critical step in array signal processing and widely used in many scenarios [1]. 

The accuracy and the tendency of enumeration will significantly affect the performance of succeeding 

algorithms, such as direction-of-arrival (DOA) estimation [2] or blind source separation [3]. Minimum 

description length (MDL) criterion derived by Rissanen [4], or its equivalent criterion derived by 

OPEN ACCESS



Sensors 2015, 15 20251 

 

 

Schwarz under the name of Bayesian information criterion (BIC) [5], is one of the most commonly 

used enumeration methods for its low complexity and asymptotic consistency which ensures a correct 

estimation as the sample size tends to infinity [6]. A lot of algorithms have been proposed to improve 

the MDL criterion for a performance promotion, low computation complexity or robustness in various 

environments [7–15]. Dayan and Rausley have presented a norm-based improved MDL (iMDL) 

algorithm in [7] by nonlinear rescaling of the sample eigenvalues and the corresponding normalized 

indexes. By using the training sequence of the desired signal, a minimum mean square error (MMSE) 

based MDL method has been developed by Huang in [8] to get a more accurate estimation of the 

source number. Huang and So have also employed the linear shrinkage estimation of noise subspace 

covariance matrix instead of sample covariance matrix in MDL criterion in [9] to achieve a more 

reliable detection in severe environments where the number of snapshots is comparable or even 

smaller than the number of sensors. For the cases at a small sample size, the probability density 

function of the sample eigenvalues has been taken into consideration in MDL as an essential 

supplement in [10,11]. To handle the coherent signals contaminated by colored noise, Zhen and Si [12] 

have whitened the sample eigenvalues to eliminate the inequality of eigenvalues caused by colored 

noise. Fishler and Poor [13] have proposed a robust-MDL (RMDL) method with proven consistency 

for source enumeration under non-uniform noise situations while Huang et al. [14,15] have improved 

MDL by introducing a multi-stage Wiener filter by using the filtered component variances or MMSE 

rather than the sample eigenvalues, which can offer computational simplicity and robustness to  

non-uniform noise. 

Most of the above methods will give an accurate estimation of source number under the assumption 

of an infinite sample size. However, only a limited number of observations is available in practice 

particularly in the applications with latency requirements. Thus, the performance analysis of MDL at a 

finite sample size is of great practical value. 

The statistical performance of MDL criterion for source enumeration has been extensively analyzed 

in [16–27]. Since the method is eigendecomposition-based, the statistical property of the sample 

eigenvalues has been investigated considerably. The distributions of the sample eigenvalues which 

were derived from the multivariate statistical theory [28], have been used by the authors in [16–18]. 

However, the performance estimations are found biased when the sample size is not sufficiently large. 

Recently, the random matrix theory [29] approach has been proposed to solve the enumeration 

problem in array processing in [30–33]. Asymptotic distributions of the sample eigenvalues have been 

given to rectify the bias by taking in the influence on signal eigenvalues from the noise subspace under 

the assumption of large dimension. For non-circular or non-Gaussian cases, statistical analysis has 

been made in [22,23] by taking the fourth-order statistics of the signals into consideration. In [34], the 

interactions between signal eigenvalues are considered by Lawley on the distribution analysis of the 

sample eigenvalues. The authors in [24–27] are able to predict the probability of underestimation in 

close accordance at a moderate sample size by a combination of different theories. 

Although many analyses on the performance of MDL are available, few discuss the cases that the 

source number is underestimated by a number greater than one, which is denoted as “multiple-missed 

detection” here. Since the enumeration performance of MDL is signal-to-noise ratio (SNR) dependent, 

the source numbers estimated under varying noise levels may be different. This inconsistency in 

enumeration can be attributed to either the variation of actual source number or the disturbance of 
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noise. By the statistical analysis on multiple-missed detection, the probability of a specific enumeration 

result can be estimated as an important reference for the attribution of the enumeration discrepancy. 

In this paper, we propose a new procedure for the performance evaluation of MDL, which can 

predict the estimation results of MDL precisely at a finite sample size by considering the interactions 

between signal eigenvalues. A novel approach is also developed for the multiple-missed detection analysis. 

Thus the deterioration of enumeration performance with the degradation of SNR can be estimated. 

The remainder of this paper is organized as follows: the problem formulations are given in Section 2, 

including the array signal model and the theoretical analysis of underestimation. Section 3 introduces 

the statistical analysis of underestimation by discussing the distributive property of the sample 

eigenvalues. Simulation results that illustrate the superior performance of the proposed method and the 

performance for multiple-missed detection are presented in Section 4. Finally, conclusions are drawn  

in Section 5. 

2. Problem Formulation 

2.1. Array Signal Model 

Consider q narrowband far-field and incoherent sources impinging on a sensor array of p elements  

(p > q). The observed signals can be modeled as a superposition of source signals corrupted by 

additive circular Gaussian noise, which can be written as: 

= +x As n  (1)

where A is the p × q array steering matrix composed of q linearly independent column vectors, s is the 

q-dimensional source signal vector with nonsingular covariance matrix RS = E [ssH] where (.)H stands 

for conjugate transpose, n is the source-independent noise vector with zero mean and covariance σ2I 

where I is the p × p identity matrix. Signals and noises are assumed to be i.i.d. and complex circular 

Gaussian distributed. The p × p population covariance matrix R is calculated as: 
2[ ]H HE= = + σSR xx AR A I  (2)

whose population eigenvalues in descending order are given by: 
2

1 2 1... ...q q p+λ ≥ λ ≥ ≥ λ > λ = = λ = σ  (3)

The first q eigenvalues of R are contributed by both the source signals and the noise, which are 

called the signal eigenvalues. The last p – q eigenvalues are contributed by noise only, which are called 

the noise eigenvalues. The population covariance matrix can be estimated using the sample covariance 

matrix R̂ : 

1

1ˆ
N

H

iN =

=  i iR x x  (4)

where x1, ... , xN are the independent and identically distributed snapshots of x. The corresponding 

sample eigenvalues of R̂  in descending order are given by: 

1 2 1... ...  q q pl l l l l+> > > > > >  (5)
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2.2. Source Enumeration of MDL 

Assuming that all the observations are i.i.d. complex circular Gaussian random vectors with zero 

mean, the MDL estimator formulation is given by: 

[ ]1
( ) ( ) ( ) ( ) ln (2 ) 1 ln

2
k

k

A
MDL k L k y k N p k k p k N

G
= − + = − + − +  (6)

where L(k) is the log-likelihood term, y(k) is the penalty term: 

1

1 p

k i
i k

A l
p k = +−   (7)

and: 

1/( )

1

p
p k

k i
i k

G l −

= +
∏  (8)

represent the arithmetic and geometric means of the last p – k eigenvalues respectively. The estimated 

source number is denoted by q̂  which can be derived as follows: 

ˆ arg min ( ), 0,..., 1
k

q MDL k k p= = −  (9)

Let Hq denote the hypothesis that the true number of sources is q. The probability of incorrect 

estimation Pe is defined as: 

( )ˆ |e q m fP P q q H P P= ≠ = +  (10)

where the probability of missed detection Pm is defined as: 

( )ˆ |m qP P q q H= <  (11)

and the probability of false alarm Pf is defined as: 

( )ˆ |f qP P q q H= >  (12)

Ding and Kay [35] have proven that MDL is inconsistent at high SNR with a finite sample size. 

However, for the relatively large penalty term, MDL has a trend of underestimation of the source 

number at low SNR. For example, in the setting of p = 5, q = 2, N = 50 and SNR = 3 dB, the 

probability of false alarm Pf is 0.0013 while the probability of underestimation Pm is 0.5029 based on a 

10,000 trial Monte Carlo simulation. Zhang et al., showed in [18] that for a moderate number of 

snapshots, the probability of false alarm using the MDL criterion is approaching zero. So the 

probability of incorrect estimation Pe is dominated by the probability of underestimation Pm, which can 

be expressed as: 

( )ˆ( | ) ( 1) ( ) |e m q qP P P q q H P MDL q MDL q H≈ = < ≈ − <  (13)

Using Equation (6) in Equation (13) we obtain: 

1
1 (2 2 1) ln

exp
2

p q
q

m p q
q q

A p q N
P P

l A N

− +
−

−

 − + ≈ <     
 (14)



Sensors 2015, 15 20254 

 

 

According to the definition of Ak in Equation (7), we can rewrite Aq−1 as: 

1
1

( )
=

1 1 1

p p

i q i
i q i q q q

q

l l l
l p q A

A
p q p q p q

= = +
−

+
+ −

= =
− + − + − +

 
 

(15)

In order to simplify Equation (14), we define:  

/ , 1i i i il Aρ = ρ >  (16)

when i = q, we will have: 

/ , 1q q q ql Aρ = ρ >  (17)

Substituting Equations (15) and (17) into Equation (14), we can get: 

( )1 1( )m qP P f C≈ ρ <  (18)

where: 

w ( )
1

1
1( ) p qf x x p q x

−
− ++ −  (19)

and: 

1

(2 2 1) ln
( 1)exp

2 ( 1)

p q N
C p q

N p q

 − += − +  − + 
 (20)

The function f1(x) is a monotonically increasing function in the region of x > 1, therefore we can 

transform Equation (17) into a simpler form as: 

( )1m q CP P≈ ρ < ρ  (21)

in which: 

1 1 1( )Cf Cρ =  (22)

Since Equation (21) cannot be solved analytically, we can use the Newton-Raphson method to find 
a very accurate solution of 1Cρ  numerically from the initial value derived by binomial expansion: 

0 2
1 1 1 1C D Dρ = + −  (23)

where: 
1

1
1 1

p q
C

D
p q

− +
 

=  − + 
 (24)

For a more complicated situation, we will discuss the cases of multiple-missed detection as follows. 

Consider that the true source number q is underestimated by a number greater than or equal to d, we 

define the corresponding probability as: 

( )ˆ | ,md qP P q q d H d q= ≤ − <  (25)

in order to distinguish the probabilities for different underestimated source numbers. So: 
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( )( ) ( 1) |md qP P MDL q d MDL q d H≈ − < − +  (26)

By using Equation (6) in Equation (26), we can derive: 

1
1 1

(2 2 2 1) ln
exp

2

p q d
q d

md p q d
q d q d

A p q d N
P P

l A N

− +
−

− + −
− + − +

 − + − ≈ <     
 (27)

Let i = q – d + 1 in Equation (16), we will have: 

1 1 1 1/ , 1q d q d q d q dl A− + − + − + − +ρ = ρ >  (28)

and obtain a simpler form of Equation (26): 

( )1( )md d q d dP P f C− +≈ ρ <  (29)

where: 

( )
1

( ) 1 p q d
df x x p q d x

−
− ++ − + −  (30)

(2 2 2 1) ln
( )exp

2 ( )d

p q d N
C p q d

N p q d

 − + −= − +  − + 
 (31)

Since fd(x) is also a monotonically increasing function in the region of x > 1, Equation (29) can be 

rewritten as: 

( )1md q d CdP P − +≈ ρ < ρ  (32)

in which: 

1( )Cd df Cρ =  (33)

The threshold Cdρ can be calculated numerically from the initial value: 

0 2 1Cd d dD Dρ = + −  (34)

where: 
p q d

d
d

C
D

p q d

− +
 

=  − + 
 (35)

We can find that Pm is a particular form of Pmd when d = 1. So the problem of underestimation 

probability turns into the statistical performance analysis of ρi which will be discussed in the next 

section. The expectation of the estimated source number can be calculated by: 
2

1 ( 1) ( 1)
1

ˆ ˆ( ) (1 ) ( ) (1 ), [1, ]
q

m m q md m d
d

E q q P P q d P P q q
−

− +
=

= − + + − − ∈  (36)

which would be an effective indicator of the extent of underestimation. 
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3. Performance Analysis of Multiple-Missed Detection 

According to Equation (16), the statistics of ρi are determined by the distributions of li and Ai.  

Many researches have been done on the statistical properties of the signal sample eigenvalue li and the 

arithmetic mean of the noise sample eigenvalues Aq, and can be mainly divided into multivariate 

statistical theory [28], random matrix theory [29] and Lawley’s theory [34]. The multivariate statistical 

theory is derived based on large sample asymptotics and requires a large value of sample size N.  

Random matrix theory has been proposed to investigate the spectral properties of random matrices 

with the assumption of high-dimension and large sample asymptotic regime. Nadakuditi and Edelman 

have concluded in [32] that for a signal-free sample covariance matrix formed from a p × N matrix of 

observations with i.i.d. Gaussian samples of zero mean and identical variance 2σ , the sample 

eigenvalues will follow the Marchenko-Pastur distribution and their arithmetic mean will converge to 

Gaussian distribution asymptotically as p, N →∞ with / (0, )p N c→ ∈ ∞ , i.e., 

4
2

1

1 2
0,

p

i
i

c
p l

p =

   σ− σ ⎯⎯→    β   
    (37)

where ⎯⎯→  denotes convergence in distribution and β = 1 or 2 for real or complex values 
respectively. For a q-signal-bearing case defined in Section 2.1, as p, N → ∞ with / (0, )p N c→ ∈ ∞ , if 

all the signal eigenvalues of the population covariance matrix are larger than the critical value 
2 (1 )cσ +  where 2σ  stands for the value of noise eigenvalue, which means no phase transition 

phenomenon, the distribution of signal sample eigenvalues can be described as following. If the signal 

eigenvalue 2 (1 )i cλ > σ +  has multiplicity of one for i ≤ q and / 0N c p N− → , the distribution of 

li converges to Gaussian distribution as: 

( )
2 4

2
22 2

2
1 0, 1i i i

i i

c c
N l

    σ σ  − λ + ⎯⎯→ λ −      λ − σ β λ − σ     

   (38)

The distribution analysis of Aq can be performed as the arithmetic mean of the sample eigenvalues 

of a signal-free sample covariance matrix formed from a (p – q) × N matrix of observations. Although 

the random matrix theory is derived under the assumption of large dimension, some simulation results 

have shown that it may also work well in some low-dimension cases. Lawley has constructed a matrix 

with the same eigenvalues as the sample covariance matrix by using the sampling errors. By 

comparing the diagonal elements, the statistics of sample eigenvalues are derived under the assumption 

of Gaussian distribution. All the three theories assume that li and Aq follow Gaussian distribution 

asymptotically and the expectations and variances are listed in Table 1 for comparison. 

Note that the expectations and variances of li in random matrix theory and Lawley’s theory have an 

additional term compared with those in multivariate statistical theory. The random matrix theory has 

taken the disturbance from noise subspace into account while Lawley’s theory has considered the 

interactions between signal eigenvalues in addition. When the sample size N is sufficiently large, the 

additional terms will diminish to zero and the distributions of all the three theories will equal to each 

other. Similarly, the expectation of Aq in Lawley’s theory is different from the others for including the 

bias induced by the signal eigenvalues. Thus, we employ the expectation and variance of li in Lawley’s 
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theory for an accurate analysis, and additional terms with the order higher than O(N−1) in the 

expectations or O(N−2) for variances are omitted as they are relatively small and decay rapidly  

with increasing sample size. The phenomenon of phase transition is not considered for simplicity in  

this paper. 

Table 1. Comparison of three theories on the expectations and variances of li and Aq. 

 Multivariate Statistics Random Matrix Lawley 

E(li) *1
 iλ  

2

2
i

i
i

cλ σ
λ +

λ − σ
 *3 

( )

p
i j

i
j i i jN≠

λ λ
λ +

λ − λ  

Var(li) *1 
2
i

N

λ
 

2 4

2 2

2
1

( )
i

i

c

N

 λ σ− β λ − σ 
 *2,*3 

2
22 1

1
p

ji

j i i jN N ≠

  λλ  −    β λ − λ  
  *2 

E(Aq) 2σ  2σ  
2

2
2

1 ( )

q
i

i iN=

λ σ
σ −

λ − σ  

Var(Aq) 
4

( )N p q

σ
−

 
42

( )N p q

σ
β −

 *2 / 

*1 i ≤ q for the expectations and variances of li. E(.) and Var(.) are the mathematical expectation and variance 

respectively; *2 β = 1 for real-valued signals and β = 2 for complex-valued signals. The original formula of 

Lawley’s Var(li) without β is revised here; *3 c is a positive finite value when p, N →∞, p/N → c. 

The expectation and variance of Ai are given only under the condition of i = q in above theories.  

Now we will discuss the distributive property of Ai to get general expressions when i < q. According to 

the definition of Ai in Equation (7), we can rewrite Ai as: 

1

1
( )

q

i q j
j i

A p q A l
p i = +

 
= − + −  

  (39)

Noting that: 

1 1

ˆ( ) ( ( )) ( )
pi

i i j
j j

E p i A l E tr R tr R l
= =

 
− + = = = 

 
   (40)

we can obtain: 

2
2

2
1 1 1

( )1
( ) ( ) ,

( ) ( )

q i i
j k j

i j
j i k jj k j

p q
E A p q i q

p i N N= + = =

  λ λ λ σ − = λ + − + − σ ≤  − λ − λ λ − σ    
    (41)

which equals to the expectation of Aq in Lawley’s theory as i = q. When i < q, Ai will contain signal 

sample eigenvalues. We assume that the covariance between signal and noise sample eigenvalues can 

be ignored. The covariance between signal sample eigenvalues is given in [34] as: 
2 2

2 2

2
( , ) , ,

( )
i j

i j
i j

Cov l l i j i j q
N

λ λ
= ≠ ≤

β λ − λ
，  (42)

According to the properties of variance and complex circular Gaussian assumption, Ai is also 

asymptotically Gaussian distributed and the variance can be derived as: 
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2
1

2 2 2
1 1

( ) ( ) ( ) ( , )
( ) 2

( ) ( ) ( )

q

j q q
j i q j j k

i q
j i j i j k q

l
p q Var A Var l Cov l lp q

Var A Var A
p i p i p i p i p i

= +

= + = + < ≤

 
  −− = + = + +
 − − − − −
 
 


    (43)

Note that Equation (43) equals to the variance of Aq when i = q, so Equation (43) is the general 

expression of the variance of Ai for i ≤ q. Since the distributions of li and Ai are asymptotically 

Gaussian, the distribution of ρi defined in Equation (16) would follow a ratio distribution of two 

Gaussian random variables. The probability density function of the ratio of two correlated Gaussian 

random variables has been derived by Hinkley in [36]. The correlation coefficient ri between li and Ai 

can be derived as: 

1

( , ) 1
( , )

( ) ( ) ( ) ( ) ( )

q
i i

i i j
j ii i i i

Cov l A
r Cov l l i q

Var l Var A p i Var l Var A = +

= = <
−  ，  (44)

So the probability density function f(ρi) of ρi can be obtained by using Equation (1) of [36]. 

Furthermore, the probability of multiple-missed detection Pmd can be calculated as: 

( ) ( )
Cd

md Cd i iP F f d
ρ

−∞
= ρ = ρ ρ  (45)

where: 

( ) ( )
x

F x f t dt
−∞

=   (46)

is the cumulative distribution function of the Gaussian ratio distribution. 

4. Simulation Setup and Numerical Results 

In the numerical simulations, a uniform linear array with an inter-sensor spacing of half-wavelength 

is employed. The observed signals are assumed to be uncorrelated complex circular Gaussian source 

signals contaminated by additive complex circular white Gaussian noise and some results may be 

invalid for arbitrary complex signals. The numbers of samples, sensors, true sources and 

underestimated sources are denoted by N, p, q and d respectively. The DOAs are denoted by the vector 

θ and SNR is short for the signal-to-noise ratio. The probability of an underestimated source number 

greater than or equal to d is denoted by Pmd and the expectation of the estimated source number is 

denoted by ˆ( )E q . All the simulation results are obtained based on 10,000 Monte Carlo trials. 

4.1. Evaluation of the Proposed Method for Underestimation Analysis 

The methods presented in [25–27] are used for comparison which based on the statistical analysis of 

sample eigenvalues as well. Haddadi et al. [25] use the expectations in Lawley’s theory and the 

variance in multivariate statistical theory with the neglect of the variances of noise sample eigenvalues 

while Huang et al. [26] employ the variance in random matrix theory. Lu and Zoubir [27] have 

incorporated the expectations in Lawley’s theory and the variances in random matrix theory to predict 

the estimation results of MDL precisely. All the four procedures use the same expectations of li  
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and Aq whereas different variances are selected. A comparison among different procedures is shown  

in Table 2. 

Four experimental settings are listed as following by varying the SNR or the sample size N: 

Setting 1 (see Figure 1): N = 50, p = 20, q = 3, θ = {−5°, 0°, 5°}, SNR = [−10,−4] dB. 

Setting 2 (see Figure 2): N = 1000, p = 20, q = 3, θ = {−5°, 0°, 5°}, SNR = [−15.5,−12.5] dB. 

Setting 3 (see Figure 3): N = [100,500], p = 30, q = 3, θ = {−5°, 5°, 10°}, SNR = −12 dB. 

Setting 4 (see Figure 4): N = [1000,4000], p = 30, q = 3, θ = {−5°, 5°, 10°}, SNR = −17 dB. 

Table 2. Theoretical comparison of the four procedures. 

 Haddadi et al. Huang et al. Lu &Zoubir Ours 

E(lq) Lawley Lawley Lawley Lawley 
Var(lq) Multivariate Statistics Random Matrix Random Matrix Lawley 
E(Aq) Lawley Lawley Lawley Lawley 

Var(Aq) - * - Random Matrix Random Matrix 

* Means this term has been neglected. 

As shown in Figure 1, the proposed method shows the best agreement with simulation results and 

outperforms the others. It is worth noting that the curves nearly intersect at the same point of Pm = 0.5 

with different shapes which may correspond to the expectations and variances, respectively. The 

methods in [25,27] have very similar performance since the former uses a larger variance of signal 

sample eigenvalue while the latter considered the variance of noise sample eigenvalues as a counteract.  

An inconspicuous difference is found for the method in [26] due to the consideration of only the 

interactions between signal and noise subspaces. 

The simulation results at a large sample size are presented in Figure 2. All the four methods match 

the simulation results pretty well and the superiority of the proposed method and the method in [26] 

can be confirmed in the details of Figure 2. The accurate prediction by the method in [26] may be 

attributed to the reason that the ignorance of the variance of noise sample eigenvalues may compensate 

the interactions between signal eigenvalues. Similar results are presented in Figures 3 and 4 by varying 

the sample size N instead of SNR and the proposed method outperforms the other methods. 

The outstanding performance of the proposed method can be attributed to the fact that the 

interactions between signal eigenvalues have been taken into consideration in estimating the variance 

of signal sample eigenvalue. The performance of the methods in [25–27] is dependent of the sample 

size in the simulation settings, since they ignore the interactions between signal eigenvalues which are 

sensitive to the sample size. In the cases when the sample size is sufficiently large, all the methods are 

capable to yield satisfactory results. However, MDL is widely used in practical applications where 

only a limited number of samples is available. Thus, the proposed method is of more practical value 

for its accuracy in such cases. 
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Figure 1. The probability of underestimation Pm1 versus SNR with N = 50, p = 20, q = 3,  

θ = {−5°, 0°, 5°}. 

 

Figure 2. The probability of underestimation Pm1 versus SNR and details with N = 1000,  

p = 20, q = 3, θ = {−5°, 0°, 5°}. 

 

Figure 3. The probability of underestimation Pm1 versus N with p = 30, q = 3, θ = {−5°, 5°, 

10°}, SNR = −12 dB. 
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Figure 4. The probability of underestimation Pm1 versus N and details with p = 30, q = 3,  

θ = {−5°, 5°, 10°}, SNR = −17 dB. 

4.2. Evaluation of the Analysis on Multiple-Missed Detection 

To evaluate the performance of the proposed method for multiple-missed detection, the algorithms  

in [25–27] have been adapted by the proposed approach as reference methods. Experimental settings 

are listed as following: 

Setting 5 (see Figure 5): N = 150, p = 30, q = 5, θ = {−7°, −5°, 0°, 3°, 11°}, SNR = [−14,−10] dB,  

d = 4. 

Setting 6 (see Figure 6): N = 400, p = 30, q = 5, θ = {−7°, −5°, 0°, 3°, 11°}, SNR = [−16.5,−13] dB, 

d = 4. 

 

Figure 5. The probability of underestimation Pm4 versus SNR with N = 150, p = 30, q = 5,  

θ = {−7°, −5°, 0°, 3°, 11°}, d = 4. 
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Figure 6. The probability of underestimation Pm4 versus SNR with N = 400, p = 30, q = 5,  

θ = {−7°, −5°, 0°, 3°, 11°}, d = 4. 

The simulation results are shown in Figures 5 and 6 at different sample sizes. As indicated in  

Figure 5, the proposed method is more accurate in the region of Pm < 0.5 while the other three methods 

perform better in the region of Pm > 0.5. When the sample size is increased to 400, the discrepancy 

among the methods become smaller and the superiority of the proposed method is reconfirmed in the 

entire region. We attribute this phenomenon to the omission of the higher-order terms, since a bias can 

be found between the simulation results and all the predictions in Figure 5, while the bias is perfectly 

rectified at a slightly larger sample size in Figure 6. The accumulated error by the neglect of  

higher-orders terms would affect the performance analysis for multiple-missed detection and a 

moderate sample size may be required for an accurate estimation. 

To assess the performance deterioration of enumeration with the degradation of SNR, we use the 

expectation of the estimated source number as the indicator which is calculated by Equation (36). 

Experimental settings are listed as follows:  

Setting 7 (see Figure 7): N = 150, p = 20, q = 5, θ = {−10°, −6°, 0°, 6°, 8°}, SNR = [−15,0] dB. 

Setting 8 (see Figure 8): N = 300, p = 20, q = 5, θ = {−11°, −7°, 0°, 2°, 10°}, SNR = [−16,−2] dB. 

Figures 7 and 8 show that all the four methods are able to perform the analysis for multiple-missed 

detection precisely and the capability of the proposed approach for multiple-missed detection is 

verified. The mean absolute error (MAE) between the prediction and simulation results is selected to 

assess the performance of different methods quantitatively. The MAEs are listed in Table 3 and the 

superiority of our method can be confirmed. 

Table 3. MAE of the methods in predicting the enumeration results. 

MAE Haddadi et al. Huang et al. Lu & Zoubir Our Method 

Setting 7 0.0143 0.0123 0.0140 0.0110 
Setting 8 0.0054 0.0047 0.0055 0.0043 
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Figure 7. The expectation of the estimated source number ˆ( )E q  versus SNR and details 

with N = 150, p = 20, q = 5, θ = {−10°, −6°, 0°, 6°, 8°}. 

  

Figure 8. The expectation of the estimated source number ˆ( )E q  versus SNR and details 

with N = 300, p = 20, q = 5, θ = {−11°, −7°, 0°, 2°, 10°}. 

5. Conclusions 

This paper presents an accurate performance analysis for the underestimation performance of the 

MDL source enumeration method at a finite sample size in array processing. Theoretical derivations 

and statistical analyses have been performed with the consideration of the interactions between signal 

eigenvalues to obtain an improved estimation of the probability of underestimation. A new approach is 

also proposed to evaluate the performance of multiple-missed detection cases by ratio distribution 

analysis and can be employed by the eigenvalue-analyzing methods. Simulation results show the 
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superiority of the proposed analysis, and verify the ability of the proposed approach in evaluating the 

deterioration of enumeration performance with the degradation of SNR, which may be a valuable 

reference for practical applications. 
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