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Abstract: A novel VLSI architecture for multi-channel online spike sorting is presented in
this paper. In the architecture, the spike detection is based on nonlinear energy operator
(NEO), and the feature extraction is carried out by the generalized Hebbian algorithm
(GHA). To lower the power consumption and area costs of the circuits, all of the channels
share the same core for spike detection and feature extraction operations. Each channel
has dedicated buffers for storing the detected spikes and the principal components of that
channel. The proposed circuit also contains a clock gating system supplying the clock to
only the buffers of channels currently using the computation core to further reduce the power
consumption. The architecture has been implemented by an application-specific integrated
circuit (ASIC) with 90-nm technology. Comparisons to the existing works show that the
proposed architecture has lower power consumption and hardware area costs for real-time
multi-channel spike detection and feature extraction.
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1. Introduction

Neurons are the basic elements that underlie the function of the nervous system, which contains the
brain, spinal cord and peripheral ganglia. Neurons process and transmit information mainly by electrical
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signaling through the generation of action potentials. These action potentials can be recorded in vivo by
placing electrodes in the vicinity of the neurons. The spikes recorded by the electrodes represent spike
events generated by an unknown number of neurons. The role of spike sorting [1,2] is to assign each spike
to the neuron that produced it. A typical automatic spike sorting involves complicated operations, such as
spike detection, feature extraction and classification. As the technology progresses, multi-channel arrays
are increasingly being employed. Increasing the number of recording electrodes raises the computation
time for automatic spike sorting, as detection and feature extraction become tedious tasks. However,
for many spike sorting applications [3], real-time operations are desired. Hardware systems offering
dedicated circuits can substantially outperform their software counterparts in terms of computational
performance and power dissipation. Hardware solutions are therefore necessary for neurophysiological
signal recordings and analysis, where these factors are crucial.

One effective technique for spike sorting is based on principal component analysis (PCA) [4,5] for
feature extraction. Implementation of PCA-based hardware systems [6,7] involves the computations
for covariance matrix and eigenvalue decomposition. Therefore, direct realization of PCA requires
substantial hardware costs, such as power consumption and hardware area. Alternatives to PCA, such
as discrete derivatives [8], integral transform [9] and zero-cross features [10], have been proposed to
reduce the computational complexities for feature extraction. However, their effectiveness remains to be
validated through real data experiments.

Besides feature extraction, spike sorting requires a set of prepossessing steps, including spike
detection and spike alignment. Spike detection distinguishes neuronal spikes from background noises.
A commonly-used detection method is to compare the absolute voltage of the recorded signal with a
threshold [11,12]. However, the method may not performs well for spike trains corrupted by large
noises. The nonlinear energy operator (NEO)-based [13] spike detection method detects the peak of
a spike by simple arithmetic operations. It provides a hardware-efficient alternative and also achieves
high detection accuracy by considering both spike amplitude and frequency. Spike alignment can be
carried out by the positions of the peak or maximum slope of the detected spikes [1]. Because the peak
location of the detected spikes can be obtained from the NEO, the peak-based spike alignment operating
in conjunction with the NEO may be more hardware friendly as compared to its counterparts using
maximum slope techniques.

The objective of this paper is to present a novel VLSI architecture capable of performing in vivo
multi-channel spike sorting. In the architecture, the spike detection and alignment are based on NEO
with peak-based alignment, and the feature extraction is carried out by the generalized Hebbian algorithm
(GHA) [14]. The GHA can be viewed as an incremental PCA, which computes the principal components
without the involvement of the covariance matrix. In the GHA, the principal components are updated
incrementally based on a set of training data. For the spike sorting applications, the training set is formed
by the detected spikes. In the hardware implementation for GHA, only the buffers storing the principal
components and the arithmetic operation circuits for updating principal components are required. No
memory for storing the covariance matrix of the training set is necessary. Power consumption and
hardware area can then be reduced substantially, as compared to its counterparts based on the batch
PCA algorithm.
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Although a number of GHA hardware architectures [15,16] have been proposed, the circuits
are implemented for single channel spike sorting only. One simple way to extend the circuits to
multi-channel cases is to replicate the circuits, one for each channel. Designs in this way may result
in high power dissipation and large hardware area. In addition, the existing implementations are
by field programmable gate array (FPGA) [17], which may not be well suited for the realization of
bio-implantable spike sorting systems due to the large power consumption inherited from FPGAs.

The proposed NEO and GHA circuits are implemented by an application-specific integrated circuit
(ASIC) [18] to lower the power consumption. In addition, they are designed specifically for
multi-channel spike sorting. To minimize the power consumption and area costs of the circuits, all of
the channels share the same core for spike detection and feature extraction operations. Each channel has
dedicated buffers for storing the detected spikes and the principal components of that channel. A clock
gating (CG) technique [19,20] is employed to supply the system clock only to the buffers of the channels
currently using the computation core. The dynamic power dissipation of the inactive channels can then be
further reduced. Furthermore, the relations among the sampling rate of spikes, the number of channels of
the recording system and the latency of the GHA circuit are investigated in this study. A general guideline
for optimizing the design is then derived. A number of design examples are provided to demonstrate the
effectiveness of the proposed architecture. Experimental results reveal that the proposed architecture
is an effective alternative for “in vivo” multi-channel spike sorting with low power dissipation and low
hardware area costs.

2. The Architecture

2.1. Overview

Figure 1 depicts the general flow of the proposed architecture for spike sorting. There are three
operations supported by the proposed architecture: spike detection, spike alignment and feature
extraction. The proposed architecture accepts raw spike sequences from different channels as input
data. The goal of spike detection is to identify spikes from sequences using the proposed NEO circuit.
The spike alignment operations first align spikes based on the location of their peak samples. The
aligned spikes from different channels are stored in different buffers for subsequent feature extraction
operations. For each detected spike, the proposed GHA circuit is used for extracting the feature vectors.
The hardware circuits for detection, alignment and feature extraction are discussed separately in the
following subsections.

Detected
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Figure 1. The general block diagram of the proposed architecture for spike sorting.
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2.2. NEO Circuit for Spike Detection

Let sk be the k-th sample of the input spike train of the single channel. In the NEO algorithm, a spike
is detected from the channel when:

s2k − sk−1sk+1 > γ (1)

where γ > 0 is a threshold for spike detection. Without loss of generality, for some k > 0, suppose
that Equation (1) holds, and the corresponding spike is the detected spike, denoted by x, of the channel
for GHA operations. Let xi, i = 1, ...,m, be the i-th sample of x, where m is the dimension of the
spike. Assume that xP is the sample in x having the peak value. Since sk satisfying Equation (1) is
the xP , it then follows that xi = sk−P+i, i = 1, ...,m. Each detected spike will be used by GHA for
feature extraction.

From Equation (1), it can be observed that the NEO operations require only multipliers and adders
for a single channel. The extension of the NEO circuit for a single channel to multiple channels can be
carried out by simply replicating the circuit one for each channel. An alternative is to allow all of the
channels to share the same circuit for NEO operations, as shown in Figure 2. In this way, the average
area cost per channel may be reduced.

Let M be the number of channels for spike sorting. Assume all of the channels are sampled with
the same sampling rate rs. Let Ts = 1/rs be the sampling period. All of the channels are assumed to
be sampled and multiplexed by a mixed mode circuit using the round robin approach. The mixed-mode
circuit then delivers the samples one at a time to the NEO circuit. Therefore, the NEO circuit receives
M samples during a time interval of length Ts. Different samples received during the interval are from
different channels.

The proposed NEO circuit can be separated into two portions: the NEO buffer and the NEO detection
unit. The NEO buffer is a (M ×m)-stage first-in-first-out (FIFO) shift register organized in a snake-like
fashion. Each stage contains a sample of a spike train from a channel. It is therefore able to hold m
consecutive samples of the spike trains from the M channels.

The bottom row of the buffer provides m consecutive samples of the spike train from a channel (say,
channel h). It can be seen from Figure 2 that the bottom row of the NEO buffer is used for both NEO
detection and peak alignment. The NEO detection unit takes three consecutive samples of the bottom
row to carry out the computation given in Equation (1). The computation result is then compared to a
given threshold γ. If the result is larger than the threshold, a hit event is issued. In addition, the entire last
row is regarded as a detected spike (denoted by xh) and is copied to the spike buffer for spike alignment.

The proposed NEO circuit is able to perform spike detection one channel at a time. After the spike
detection of the channel h is completed in the current clock cycle, all of the spike samples already in
the NEO buffer are shifted to the next stage, and a new sample from the next channel (selected in round
robin fashion) enters the first stage of the NEO buffer. Therefore, in the next clock cycle, the last row of
the buffer contains m consecutive samples of channel h̄, where h̄ = (h + 1) mod M . This allows the
spike detection for channel h̄ to be carried out in the next clock cycle.

The power consumption of the proposed NEO circuit can be further lowered by the employment of
the CG technique. This is because not all of the components of the proposed circuit need to be activated
in each clock cycle. The CG technique operates by cutting off the system clock to the components
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that could be de-activated. The dynamic power consumption could then be reduced. The CG circuit
employs the latches and AND gates for controlling the supply of the system clock. Figure 3 shows the
augmentation of the CG circuit to the NEO circuit. As shown in Figure 3, the CG circuit controls the
supply of the system clock to the NEO buffer of the NEO circuit. In a sampling period of Ts seconds,
the CG circuit turns off the system clock supply after all of the channels have fetched their new samples
in the interval and restores the system clock at the beginning of the next sampling interval. The dynamic
power consumption can then be effectively reduced.
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Figure 2. The architecture of the nonlinear energy operator (NEO) circuit for spike detection.
The architecture contains the NEO buffer and the NEO detection unit. The NEO buffer
is able to hold spike sequences up to M channels. All of the channels share the NEO
detection unit.

Figure 3. The clock gating circuit for lowering the dynamic power consumption of the NEO
circuit for spike detection.
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2.3. Spike Buffer for Spike Alignment

The goal of the spike buffer is to hold the detected spikes produced by the NEO circuit, carry out
the alignment and deliver the detected spikes to the GHA circuit upon the requests. Figure 4 shows the
architecture of the spike buffer, which contains a peak alignment unit and a two-port RAM. The peak
alignment unit is responsible for the spike alignment for each channel and the avoidance of multiple
detection hits for a single spike. There are M memory units in the RAM, where each unit stores the
detected spikes for one channel. The detected spikes from different channels are stored in different
memory units. Each memory unit holds a single spike. That is, each memory unit consists ofm registers,
where each register contains the value of one spike sample. Moreover, each memory unit is a first-in
first-out (FIFO) buffer for fast data access. In addition to theM memory units, the spike buffer comprises
an FIFO buffer, which records the indices of the most recent channels issuing hit signals. The FIFO
buffer is beneficial for providing the most recent detected spikes to the GHA circuit.

As shown in Figure 4, a hit event issued from the NEO circuit activates the spike buffer for a writing
operation. The channel number h received from the NEO circuit serves as the index of the memory
unit to which the detected spike is stored. The channel number h is also recorded in the FIFO buffer.
A reading operation is initiated by the GHA circuit. Upon receiving a read request, the FIFO buffer
provides the index of the channel, denoted by q, for the reading operation. The output of the spike
buffer, denoted by xq, is then delivered to the GHA circuit.

The CG technique can also be employed for reducing the power consumption of the spike buffer.
Figure 5 shows the CG circuit for the spike buffer. It can be observed from Figure 5 that the CG circuit
controls the supply of the system clock to each memory unit of the spike buffer. At most, one memory
unit is operative at a time in the buffer. Therefore, each memory unit is kept inactive until it becomes the
target of a writing operation initiated by the NEO circuit.

Two-Port RAM

Peak

Alignment

Channel

Counter

Peak AlignmentUnit

Figure 4. The architecture of the spike buffer for spike alignment. The architecture contains
a peak alignment unit and a two-port RAM. The spikes aligned by the peak alignment unit
are stored in the two-port RAM. The spike buffer is able to align and store detected spikes
up to M channels.
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Figure 5. The clock gating circuit for lowering the dynamic power consumption of the spike
buffer for alignment.

2.4. GHA Circuit for Feature Extraction

The GHA algorithm operates in two modes: training mode and service mode. The goal of training
mode is to train the synaptic weight vectors wj, j = 1, ..., p, for feature extraction, where p is the number
of principal components. The wj, j = 1, ..., p, and the detected spikes x have the same dimension m.
After the training process is completed, the GHA can operate in service mode. Given a detected spike x,
the GHA computes the feature vector y = [y1, . . . , yp]

T in service mode, where yj is the inner product
of wj and x. The subsequent clustering/classification operations are then based on the feature vector y.

Although the GHA in service mode is based on simple inner product operations, the GHA in training
mode may require complicated operations for the updating of synaptic weight vectors. Let x(n), y(n)

and wj(n) be the input training vector, the feature vector and the synaptic weight vectors at the iteration
n of the training process, respectively. They are related by yj(n) = xT (n)wj(n), where yj(n) is the j-th
element of y(n). Each synaptic weight vector, wj(n), is then adapted by the Hebbian learning rule:

wji(n+ 1) = wji(n) + η[yj(n)xi(n)− yj(n)

j∑
k=1

wki(n)yk(n)] (2)

where η denotes the learning rate and xi(n) and wji(n) are the i-th element of x(n) and wj(n),
respectively. After a great deal of iterative computation and adaptation, wj(n) will asymptotically
approach the eigenvector associated with the j-th eigenvalue, λj , of the covariance matrix of input
vectors, where λ1 > λ2 > · · · > λp. To reduce the complexity of the computing implementation,
Equation (2) can be rewritten as:

wji(n+ 1) = wji(n) + ηyj(n)[xi(n)−
j∑

k=1

wki(n)yk(n)] (3)



Sensors 2015, 15 19837

A more detailed discussion of the GHA algorithm can be found in [14]. In this subsection, the circuit
for GHA in the training mode is presented. The circuit is also able to support GHA in service mode by
deactivating its modules for synaptic weight updating.

The single channel case [16] is first considered. The proposed GHA circuit can be mainly separated
into three portions: buffers, the sum of products (SOP) circuit and the synaptic weight vector updating
(SWU) unit, as depicted in Figure 6. There are two buffers in the GHA circuit: Buffer W and Buffer Z.
The synaptic weight vectors wj(n), j = 1, ..., p, and input spikes x(n) are stored in Buffer W and Buffer
Z, respectively. Given the current synaptic weight vectors and the current input spike, the goal of the
SOP circuit is to compute the feature vector y(n) = [y1(n), . . . , yp(n)]T , where yj(n) = xT (n)wj(n).
This can be accomplished by an architecture consisting of m multipliers and an adder summing the m
products produced by the multipliers.

After the operations of the SOP circuit are completed, the SWU is activated. Based on the feature
vector y(n), current synaptic weight vectors wj(n), j = 1, ..., p, and the current input spike x(n), the
objective of the SWU unit is to compute new synaptic weight vectors wj(n + 1), j = 1, ..., p, using
Equation (3). One way to implement Equation (3) in hardware is based on the observation that the
equation can be rewritten as:

wji(n+ 1) = wji(n) + ηyj(n)zji(n) (4)

where:

zji(n) = xi(n)−
j∑

k=1

wki(n)yk(n), j = 1, . . . , p (5)

and zj(n) = [zj1(n), . . . , zjm(n)]T . The zji(n) can be obtained from z(j−1)i(n) by:

zji(n) = z(j−1)i(n)− wji(n)yj(n), j = 2, . . . , p (6)

When j = 1, from Equations (5) and (6), it follows that z0i(n) = xi(n). Therefore, the hardware
implementation of Equations (4) and (6) is equivalent to that of Equation (3). Figure 7 depicts the
hardware implementation of Equations (4) and (6). Because the dimensions of x(n), wj(n), wj(n + 1)

and zj(n) are m, replications of the circuit in Figure 7 may be desired to expedite the updating of weight
vectors. The set of all of the replications of the circuit forms the SWU unit, where each individual
replication is termed a module. Figure 8 shows the operations of the GHA circuit for p = 2. Initially,
x(n) is stored in Buffer Z. The weight vectors w1(n) and w2(n) are stored in Buffer W. As shown in
Figure 8a, the SOP circuit first computes y1(n) based on x(n) and w1(n). It then finds y2(n) using x(n)

and w2(n). Both y1(n) and y2(n) are stored in the two registers (denoted by Regs 1 and 2 in the figure)
for subsequent synaptic weight updating operations in the SWU unit.

The operations of the SWU unit are shown in Figure 8c,d. In this example, there are m modules in
the SWU unit. Buffer Z, Buffer W and two registers, which are used for SOP operations, also operate in
conjunction with the SWU unit. Similar to the case for SOP operations, x(n) is stored in Buffer Z. The
weight vectors w1(n) and w2(n) are stored in Buffer W. The results of the SOP operations, y1(n) and
y2(n), are stored in the two registers (denoted by Regs 1 and 2 in the figure).
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Figure 6. The architecture of the basic single-channel generalized Hebbian algorithm (GHA)
circuit for feature extraction for p = 2. The GHA circuit contains buffers, the sum of
products (SOP) circuit and the synaptic weight vector updating (SWU) unit. The buffers
store spike data and synaptic weight vectors. The SOP circuit computes feature vectors, and
the SWU unit updates synaptic weight vectors. The SWU unit can be further separated into
a number of modules.

There are two steps for weight vector updating. At the first step, as shown in Figure 8c, the SWU unit
computes the updated weight vector w1(n+ 1) based on x(n), y1(n) and w1(n). The w1(n+ 1) will be
stored in Buffer W to replace w1(n). The SWU unit also provides z1(n), which will be stored in Buffer
Z to replace x(n). At the second step, the SWU unit computes the updated weight vector w2(n + 1)

based on z1(n), y2(n) and w2(n). Figure 8d depicts the operations at the second step.
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Figure 7. The hardware implementation of each module in the SWU unit of the GHA circuit
for feature extraction.
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(a) (b)

(c) (d)

Figure 8. The operations of the basic single-channel GHA circuit for feature extraction for
p = 2: (a) the computation of y1(n) using the SOP circuit; (b) the computation of y2(n) using
the SOP circuit; (c) the computation of w1(n+ 1) using the SWU unit; (d) the computation
of w2(n+ 1) using the SWU unit.

Note that the operations shown in Figure 8 are only for the simple cases, where all of the m elements
of x(n), wj(n), zj(n), j = 1, 2, can be used for the SOP and SWU circuits concurrently. When m is
large, the area costs for implementing these circuits may be high. One way to solve this problem is to
separate each of x, wj(n), zj(n), j = 1, 2, into equal-sized segments. Buffer Z provides x(n) (or zj(n))
one at a time. Similarly, the SOP and SWU circuits fetch wj(n) from Buffer W one segment at a time.
Let L be the size of segments. It then follows that only L multipliers are required in the SOP circuit.
Moreover, the SWU circuit contains only L modules. For large m and/or small L, the area costs may
then be reduced at the expense of larger latency.
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To extend the single-channel GHA circuit to a multi-channel one, the SOP circuit and the SWU
circuit are shared by all channels for lowering the average area cost for each channel. Each channel
q, q = 1, ...,M, needs to have its own Buffer W for storing its synaptic weight vectors. Figure 9 shows
an example of the multi-channel GHA circuit for p = 2 andM = 16. That is, the circuit is able to support
the GHA operations for two principal components and 16 channels. All of the channels share the same
SOP circuit and SWU circuit. We set the length of segments L = 8 so that there are eight multipliers in
the SOP circuit and eight modules in the SWU circuit. In addition, because M = 16, there are 16 Buffer
W’s, with one for each channel. Each Buffer W is configured as a shift register supplying segments of
the weight vectors one at a time. In this example, there are two weight vectors for each channel, and each
weight vector is separated into b segments, where m = bL. Suppose that the dimension of spikes is 64
(i.e., m = 64); each weight vector is separated into b = 8 segments. Consequently, there are
pb = 16 stages in each Buffer W, where each stage holds the value of one segment. Moreover, since
the multi-channel GHA circuit carries out the training one channel at a time, one Buffer Z is required in
the circuit. The Buffer Z is also a shift register with b = 8 stages, where each stage holds the value of
one segment.

X

X

+

Figure 9. An example of the multi-channel GHA circuit for feature extraction with two
principal components (p = 2) and 16 channels (M = 16). There are eight modules in the
SWU unit and eight multipliers in the SOP circuit (L = 8).
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Similar to the cases for the NEO circuit and spike buffer, the CG technique is beneficial for lowering
the power consumption of the multi-channel GHA circuit. This is because at most one Buffer W is used
for training in the GHA circuit. Therefore, as shown in Figure 10, the CG circuit controls the supply
of the system clock to the Buffer W of each channel. Only the channel selected for for GHA training
obtains the system clock to activate its Buffer W.

clk

clk

clk

Figure 10. The clock gating circuit for lowering the dynamic power consumption of the
multi-channel GHA circuit for feature extraction.

2.5. Capacity Analysis of the Proposed Architecture

The maximum number of channels M supported by the proposed architecture is dependent on the
sampling rate rs (with sampling period Ts) of the spikes, the clock rate rc (with sampling period Tc) of
the circuit and the latency P of the proposed circuit. Recall that all of the detected spikes are stored in the
spike buffer before they can be further processed by the GHA circuit. For any channel h in the circuit,
a detected spike in that channel is said to be discarded for GHA training when the spike is over-written
in the spike buffer by the next detected spike from the same channel h before it can be further processed
by the GHA circuit. Given rs, rc and P , the goal of this subsection is then to find the maximum number
of channels M guaranteeing no discarded spikes in the spike buffer for any channel.

All of the detected spikes in the spike buffer are processed by the GHA circuit on a first-come-first-
serve basis. For the sake of simplicity, assume that the memory unit for each channel in the spike buffer
is able to hold only one spike. Under these conditions, the simplest scenario for a spike xh detected in a
channel h is first considered. In the scenario, there is no detected spike for all of the remaining M − 1

channels stored in the spike buffer. The GHA circuit is also in the idle state. In this case, the detected
spike xh is immediately processed by the GHA circuit. Therefore, it will not be over-written by the
next detected spike from channel h. Consequently, it will not be discarded by the proposed circuit for
GHA training.

To find the maximum number of channels M , the worst case scenario is considered, where the
detected spikes from all of the remaining M − 1 channels are stored in the spike buffer and are not
processed by the GHA circuit yet. In addition, the GHA circuit is currently busy. In this case, the circuit
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GHA needs to process M preceding spikes (i.e., the detected spikes stored in the spike buffer for all of
the remaining M − 1 channels and the detected spike currently processed by the GHA circuit) before it
can process the xh for the channel h in the spike buffer. Because the latency for processing each detected
spike is P clock cycles, it follows that the GHA circuit starts to process xh afterMP clock cycles. LetQ
be the minimum number of samples between the peak of successive spikes detected by the NEO circuit
from the same channel. Assume that Q is the same for all of the channels. It then follows that xh is not
overwritten and discarded when:

MPTc ≤ QTs (7)

That is, the processing time by the GHA circuit for the preceding M detected spikes (i.e., MPTc)
should be less than the time interval between the peaks of two successive detected spikes from the same
channel (i.e., Ts). Therefore, when the number of channels satisfies M ≤ QTs

PTc
, no detected spike will

be discarded.
It is interesting to know that the NEO circuit imposes an additional limit on the number of channelsM .

It is desired that the NEO circuit is able to receive one sample from each channel in a single sampling
period Ts. Based on the round robin scheme for fetching samples for different channels, as shown in
Figure 3, it is therefore necessary that:

MTc ≤ Ts (8)

By comparing Equation (7) to Equation (8), it is concluded that the number of channels M needs to
meet the condition in Equation (7) when Q < P . Otherwise, it should satisfy Equation (8). Therefore,
the maximum number of channels, denoted by Mmax, satisfying Equations (7) and (8) is given by:

Mmax =

{
bQ
P

Ts

Tc
c if Q < P

bTs

Tc
c if Q ≥ P

(9)

3. Experimental Results

In this section, the performance of the proposed architecture is evaluated. The area complexities of the
proposed architecture are first analyzed. There are five types of area costs: the number of comparators,
adders, multipliers, registers and multiplexers. All of the costs are expressed in terms of the asymptotic
function (i.e., the BigO function) in the tables. Table 1 shows the area complexities of the GHA circuit. It
can be observed from Table 1 that the numbers of adders and the multipliers of the GHA are independent
of the number of channel M . This is because all of the channels share the same computation core
(i.e., the SWU and SOP circuits) for the GHA training. The computation core of the GHA circuit is able
to process the detected spikes one segment at a time. Therefore, the numbers of adders and multipliers
grow with the dimension of the segments L. On the other hand, because the circuit needs to store the
synaptic weight vectors for each and every channels, the number of registers is dependent on the number
of channels M , the number of weight vectors for each channel p and the dimension of each vector m.

Based on the analytical results in Table 1, the overall area complexities of the proposed spike sorting
circuit are summarized in Table 2. The area complexities of the NEO circuit and spike buffer are also
included in the table for evaluation. We can observe from Table 2 that the number of registers in both
the NEO circuit and spike buffer are also dependent on the number of channels M . This is because it is
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necessary to store spike trains from all of the M channels for detection. Moreover, each channel needs
to have its own memory unit to hold the detected spikes for the subsequent GHA training. Therefore,
the number of registers in the NEO circuit, spike buffer and GHA circuit all increase with the number
of channels M . By contrast, because the NEO circuit has only a fixed number of adders and multipliers
independent of M , the overall area costs for the adders and multipliers in the spike sorting circuit are
dependent only on L.

Table 1. The area complexities of the GHA circuit.

Comparators Adders Multipliers Registers Multiplexers

SWU Circuit 0 O(L) O(L) 0 0

SOP Circuit 0 O(L) O(L) O(1) 0

Buffer Z 0 0 0 O(m) O(L)

Buffer W 0 0 0 O(Mpm) O(ML)

GHA Circuit 0 O(L) O(L) O(Mpm) O(ML)

Table 2. The area complexities of the proposed spike sorting circuit.

Comparators Adders Multipliers Registers Multiplexers

NEO Circuit O(1) O(1) O(1) O(Mm) 0

Spike Buffer 0 0 0 O(Mm) O(1)

GHA Circuit 0 O(L) O(L) O(Mpm) O(ML)

Total O(1) O(L) O(L) O(Mpm) O(ML)

We next evaluate the hardware resource consumption of the ASIC implementation of the proposed
circuit with clock gating. The implementation is based on the TSMC90-nm technology. The gate level
design platform is Synopsys Design Compiler. Table 3 shows the area (µm2) of the proposed circuit
for different numbers of channels M and segment lengths L. For all of the experiments shown after
Table 3, the dimension of spikes and weight vectors is m = 64. The number of principal components
is p = 2. From Table 3, we see that the area of the proposed circuit grows with M and L, which is
consistent with the results shown in Table 2. Table 4 shows the normalized area (µm2 per channel) of the
proposed architecture. The normalized area is defined as the area of the circuit divided by the number
of channels M . The normalized area can be viewed as the average area cost per channel. For a fixed
L, it can be observed from the table that the normalized area decreases as the number of channels M
increases. In particular, when L = 8, the normalized area decreases from 162,255 µm2/ch. for M = 2

to 80,503 µm2/ch. for M = 64. The reduction in normalized area for large M is due to the fact that
all of the channels share the same computation cores in the NEO circuit (i.e., the NEO detection unit)
and GHA circuit (i.e., the SWU unit and the SOP circuit). The area of computation cores is independent
of M . Therefore, the average area per channel decreases as M increases. Consequently, because of the
hardware resource sharing scheme, the proposed architecture shows a higher efficiency in area costs for
a larger number of channels.
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Table 3. The area (µm2) of the proposed circuit for different numbers of channels M and
segment lengths L.

Segment Number of Channels M

Length L 2 4 8 16 32 64

2 241,090 395,565 701,479 1,318,032 2,548,962 5,010,148

4 268,776 423,957 731,167 1,350,163 2,586,267 5,057,620

8 324,509 480,852 790,654 1,414,494 2,661,096 5,152,185

16 435,478 594,419 909,403 1,543,228 2,810,642 5,341,566

32 658,196 822,560 1,148,565 1,802,752 3,114,285 5,728,802

Table 4. The normalized area (µm2/ch.) of the proposed circuit for different numbers of
channels M and segment lengths L.

Segment Number of Channels M

Length L 2 4 8 16 32 64

2 120,545 98,891 87,685 82,377 79,655 78,284

4 134,388 105,989 91,396 84,385 80,821 79,025

8 162,255 120,213 98,832 88,406 83,159 80,503

16 217,739 148,604 113,675 96,452 87,833 83,462

32 329,098 205,640 143,571 112,672 97,321 89,513

Although a larger segment length L increases the area of the proposed architecture, the latency P
of the GHA circuit is reduced. As a result, the maximum number of channels Mmax is increased
given fixed sampling period Ts and clock period Tc. Table 5 shows the latency P (in clock cycles)
of the GHA circuit for various L values. The maximum number of channels Mmax for each L value
is also shown. The Mmax is computed by Equation (9). The sampling rate of spike trains is set to be
rs = 24, 000 samples/s. There are three clock rates considered in the table: rc = 0.5 MHz, 1 MHz and
2 MHz. The minimum number of samples between the peak of successive spikes detected by the NEO
circuit from the same channel is Q = 16. We can observe from Table 5 that the latency P is lowered to
16 clock cycles when L is 32. BecauseQ is 16, from Equation (9), it can be concluded that the maximum
number of channels of the proposed architecture is identical to that limited by the NEO circuit (i.e., bTs

Tc
c)

when L is 32.
When a larger Q is allowed, the maximum number of channels Mmax supported by the proposed

architecture may be increased. Table 6 shows the Mmax of the proposed algorithm for Q = 32. By
comparing Tables 5 and 6, it can be observed that Mmax may increases two-fold for the circuits when
Q increases from 16 to 32. In particular, when L = 8 and rs = 1 MHz, the Mmax is 16 and 33 for
Q = 16 and 32, respectively. These facts can be further elaborated in Table 7 for various combinations
of Q, L and rs. When L = 4, we can see from Table 7 that Mmax grows linearly with Q for all of
the clock rates rc. The Mmax for L = 8 is larger than that for L = 4 given the same Q and rs. In
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addition, it also grows with Q for small Q values. Moreover, since the latency for L = 8 is P = 40, the
proposed architecture achieves the maximum number of channels limited by the NEO circuit when Q is
larger or equal to 40. By contrast, the proposed architecture with L = 4 supports the maximum channel
capacity when Q reaches 72. Therefore, when both smaller Q values and a larger number of channels
are desirable for GHA training, larger L values may be preferred. Otherwise, a smaller L value could be
selected for the spike sorting due to lower area costs.

Table 5. The latency P of the GHA circuit and the maximum number of channels Mmax for
various segment lengths L and clock rates rc of the proposed spike sorting circuit with clock
gating. The sampling rate of spike trains is rs = 24,000 samples/s. The minimum number
of samples between the peak of successive spikes from the same channel is assumed to be
Q = 16.

Segment Latency Max. No. of Channels Mmax

Length L P rc = 0.5 MHz rc = 1 MHz rc = 2 MHz

bTs

Tc
c = 20 bTs

Tc
c = 41 bTs

Tc
c = 83

1 264 1 2 5

2 136 2 4 9

4 72 4 9 18

8 40 8 16 33

16 24 13 27 55

32 16 20 41 83

Table 6. The latency P of the GHA circuit and the maximum number of channels Mmax

for various segment lengths L and clock rates rc of the proposed spike sorting circuit. The
sampling rate of spike trains is rs = 24,000 samples/s. The minimum number of samples
between the peak of successive spikes from the same channel is assumed to be Q = 32.

Segment Latency Max. No. of Channels Mmax

Length L P rc = 0.5 MHz rc = 1 MHz rc = 2 MHz

bTs

Tc
c = 20 bTs

Tc
c = 41 bTs

Tc
c = 83

1 264 2 5 10

2 136 4 9 19

4 72 9 18 37

8 40 16 33 66

16 24 20 41 83

32 16 20 41 83
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Table 7. The maximum number of channels Mmax for various combinations of Q, L and rc.

Max. No. of Channels Mmax

rc = 0.5 MHz rc = 1 MHz rc = 2 MHz

bTs

Tc
c = 20 bTs

Tc
c = 41 bTs

Tc
c = 83

Q = 16 L = 4 4 9 18

L = 8 8 16 33

Q = 32 L = 4 9 18 37

L = 8 16 33 66

Q = 48 L = 4 13 27 55

L = 8 20 41 83

Q = 64 L = 4 18 37 74

L = 8 20 41 83

Table 8 shows the power dissipation of the proposed architecture for L = 8 with
different clock rates rc. When rc = 1 MHz, the numbers of channels implemented are
M = 8, 16 and 32. The circuit with M = 64 is not implemented because the maximum number of
channels Mmax is only 41, even for large Q, such as Q = 64, as shown in Table 7. When rc = 2 MHz,
we have implemented the circuit for M = 8, 16, 32 and 64. For each M value considered in Table
8, its normalized power consumptions with and without clock gating are measured. The percentage of
power reduction from the circuit without clock gating to the circuit with clock gating for each M is also
included. The power consumption measurement is performed numerically by Synopsys Prime Time.

Table 8. The performance of the proposed spike sorting circuit for L = 8.

Number of Clock Normalized Power Power

Channels M Rates rc No Clock Gating Clock Gating Reduction

8 1 MHz 156.1 µW/ch. 114.3 µW/ch. 26.78 %

16 1 MHz 133.1 µW/ch. 91.4 µW/ch. 31.33 %

32 1 MHz 120.5 µW/ch. 78.7 µW/ch. 34.69 %

8 2 MHz 215.4 µW/ch. 152.4 µW/ch. 29.2 %

16 2 MHz 179.1 µW/ch. 115.5 µW/ch. 35.5 %

32 2 MHz 159.3 µW/ch. 95.3 µW/ch. 40.18 %

64 2 MHz 150.0 µW/ch. 85.8 µW/ch. 42.80 %

It can be observed from Table 8 that the clock gating technique is able to reduce the power
consumption of the proposed circuit. The reduction is due to the lower dynamic power consumption
by disabling clock supply to the buffers of the channels currently not engaged in GHA training. We can
also see from Table 8 that, as the number of channels and/or the clock rate increase, the reduction in
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power consumption increases. In particular, for M = 64 and rc = 2 MHz, the power consumption is
lowered from 150.0 µW/ch. without clock gating to 85.8 µW/ch. with clock gating. The reduction is
therefore 42.80%. For a lower number of channels and/or lower clock rate, the power reduction is still
above 26.78%. The clock gating technique is therefore beneficial for the low power design of the spike
sorting system.

To further demonstrate the effectiveness of the proposed architecture, Table 9 compares the proposed
architecture with the existing ASIC implementations for spike sorting. Direct comparisons among these
architectures may be difficult because these architectures are implemented by different technologies and
are based on different spike detection and/or feature extraction algorithms. Moreover, their operation
frequencies are different. Nevertheless, it can be observed from Table 9 that, as compared with
the existing architectures, the proposed architecture provides effective area-power performance while
supporting both spike detection and feature extraction functions. In particular, subject to the same
technology (i.e., 90 nm), clock rate (1 MHz) and spike dimension (i.e., 64), the proposed architecture
has lower power dissipation (78.819 µW/ch. vs. 521 µW/ch.) and lower area (83,159 µm2/ch. vs.
255,495 µm2/ch.) as compared to the architecture in [6]. The proposed architecture has superior
performance because it adopts the GHA training operations for feature extraction. Therefore, there
is no need to incorporate memory blocks for covariance matrices of the training data, which are required
by [6]. A variant of PCA, termed Streaming Pattern dIscoveRy in multIple Time-series (SPIRIT), has
been implemented by ASIC in [21] without the employment of memory blocks for covariance matrices.
Although the SPIRIT circuit is able to consume lower average power, it has a higher area cost as
compared to the proposed circuit. In addition, the SPIRIT circuit supports only one channel without
spike detection and alignment capabilities. The proposed circuit therefore provides a superior solution
when a low-cost implementation of multi-channel spike detection and feature extraction is desired.

Table 9. Comparison between existing architectures and that proposed. SPIRIT, streaming
pattern discovery in multiple time-series.

Architecture [6] [7] [12] [21] Proposed Proposed

Normalized 255,495 1,770,000 116,000 268,000 83,159 80,503

Area µm2/ch. µm2/ch. µm2/ch. µm2/ch. µm2/ch. µm2/ch.

Normalized 521 256.875 95.6 8.589 78.719 85.828

Power µW/ch. µW/ch. µW/ch. µW/ch. µW/ch. µW/ch.

Clock Rate 1 MHz N/A 16 MHz 281.25 KHz 1 MHz 2 MHz

# of Channels 1 16 16 1 32 64

Spike Dimension 64 N/A 64 64 64 64

Technology 90 nm 350 nm 180 nm 130 nm 90 nm 90 nm

Detection No NEO Absolute No NEO NEO

Feature Extraction PCA PCA No SPIRIT GHA GHA

In addition to being effective for hardware implementation, the GHA architecture has comparable
accuracy for feature extraction as compared to its software counterpart and the basic PCA algorithm. The
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software versions of GHA and PCA algorithms are implemented by MATLAB with double precision
floating numbers. The GHA circuit is based on 17-bit fixed point numbers. The simulator developed
in [22] is adopted to generate extracellular recordings. The simulation gives access to ground truth about
spiking activity in the recording and, thereby, facilitates a quantitative assessment, since the features
of the spike trains are known a priori. Table 10 shows the classification success rates (CSRs) of the
fuzzy C-means (FCM) algorithm [23,24] by clustering the feature vectors produced by the GHA and
PCA hardware/software implementations for two and three neurons, respectively. The CSR is defined
as the number of spikes that are correctly classified divided by the total number of spikes. Spike trains
with different SNR levels are considered in the table. It can be observed in Table 10 that the CSRs
of the FCM algorithm for the data produced by GHA and PCA hardware/software implementations
given the same SNR level are comparable. The GHA circuit has slight degradation in CSR, because
the precision of its number representation is finite (i.e., 17 bits). To further reveal the effectiveness of
the GHA circuit, Figure 11 shows the distribution of the feature vectors extracted by the GHA circuit
and the GHA software MATLAB codes for spike trains generated by three neurons with SNR = 6 dB.
From Figure 11, it can be observed that the GHA hardware and software implementations have a similar
distribution of feature vectors. Therefore, they may produce comparable CSRs, as revealed in Table 10.
The GHA circuit therefore is an effective alternative for hardware implementation when the consumption
of hardware resource and power and the classification performance are the important concerns. All of
these facts show the effectiveness of the proposed architecture.
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Figure 11. The distribution of the feature vectors extracted by GHA hardware/software
implementations for spike trains generated by three neurons with SNR = 6 dB: (a) feature
vectors produced by the GHA software; (b) feature vectors produced by the GHA circuit.
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Table 10. The classification success rates (CSRs) of the feature vectors produced by the
GHA and PCA hardware/software implementations for two and three neurons.

Number of Neurons 2 3

SNR (dB) 6 8 10 6 8 10

PCA Software 99.51% 99.64% 99.39% 95.93% 96.91% 97.41%

GHA Software 99.39% 99.52% 99.33% 95.50% 96.53% 97.19%

GHA Hardware 97.49% 97.92% 97.31% 92.24% 94.80% 95.95%

4. Conclusions

The proposed architecture has been implemented by ASIC with TSMC 90-nm technology for
hardware performance evaluation. Several design examples supporting up to 64 channels and operating
up to 2 MHz clock rates are evaluated. The proposed architecture employs the computation core sharing
and clock gating techniques for enhancing the hardware performance. Experimental results show that
the computation core sharing and clock gating are able to reduce the average area cost and power
consumption per channel, respectively. In particular, when the SWU unit of the GHA circuit contains
eight modules, the normalized area decreases by 50.38% from 162,255 µm2/ch. for two channels to
80,503 µm2/ch. for 64 channels. Moreover, the normalized power consumption for 64 channels
operating at 2 MHz clock rate reduces by 42.80% from 150.0 µW/ch. without clock gating to
85.8 µW/ch with clock gating. In addition to having efficient area and power performance, the proposed
architecture offers comparable classification accuracy to that of the software implementations of GHA
and PCA algorithms. In fact, for the case of two neurons, the proposed architecture attains CSRs above
97%. The proposed architecture therefore provides an effective solution to the applications where the
implantable spike sorting circuits with low power consumption, low area costs and high accuracy spike
sorting are desired.
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