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Abstract: To solve the problem of coverage performance assessment, this study proposes an 

evaluation method based on the trajectory of the target, which is applicable to universal 

sensor networks, including both heterogeneous and homogeneous sensor networks. Different 

from the traditional Voronoi algorithm, the proposed Improved Coverage Force Division 

(ICFD) plans a coverage force division map whichscales the qualitative coverage 

performancebasedon both covering intensities andlocations of the nodes. Furthermore, the 

Trajectory-based Evaluating Schedule (TES) is responsible for solving the quantitative 

coverage evaluationproblem by measuringthe resulting trajectories’ Balance Values (BVs). 

A model of weak-point ranking conjoined in consideration of coverage force and distance 

can guide future deployment to compensate coverage. Comparative trials using the greedy 

algorithm, Voronoi algorithm, and the proposed TES verify that TES achieves the 

approximate results for two-stage and multistage heterogeneous sensor networks with 

acceptable difference and lower complexity, and it is superior to the Voronoi algorithm in 

homogeneous sensor networks interms of breaking the four-point circle block. 

Keywords: coverage assessment; universal sensor network; heterogeneous sensor 

network; homogeneous sensor network; trajectory 
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1. Introduction 

With widespread applications of wireless sensor networks [1], it is well known that nodes perform 

various tasks, such as detection, process, and communication. Sometimes, more than one job must be 

assigned to some particular nodes. Thus, nodes hardly have the same abilities [2] when fulfilling tasks. 

Working conditions affect the abilities of the nodes; consequently, their energy affects perception 

precision, communication distance, and lifetime. Thus, given the influences of physical and 

environmental factors, nodes cannot be guaranteed to hold exactly the same properties even if they 

have the same tasks. These non-uniformnodes constitute a type of universal and remarkablenetwork 

model, named a heterogeneous sensor network [3–5]. 

Clearly, heterogeneity has become a general phenomenon in sensor networks. Many existing 

outstanding results [6–9] based on homogeneous sensor networks have been unable to deal with 

several challenges caused by heterogeneous sensor networks. Therefore, research on heterogeneous 

sensor networks is important [3–5]. As the basis for quality services, heterogeneous sensor networks 

also haveproblems with coverage evaluation and improvement, which is just similar to normal 

homogeneous networks. Users should know whether a given sensor network is qualified for certain 

tasks. Heterogeneous sensor networks are difficult to distribute evenly [6,7] in such a way that all 

arbitrary nodes can achieve full coverage without any central guidance. Blind and weak spots 

frequently occur in the monitoring area, which decrease network service quality.  

Therefore, an effective quantitative coverage measure method should be implemented to improve 

coverage performance and mend weak areas, as well as to provide a comprehensive and accurate 

evaluation report for the network. As a type of non-uniform network, the heterogeneous sensor 

network should follow the said method without exception. 

Several issues to solve the coverage assessment problem should be considered. Particularly, the 

questions to be asked are as follows: 

(1) How is the quality and the quantity of coverage for universal sensor networks, including 

homogenous and heterogeneous sensor networks, verified? 

(2) How can the overdependence on the whole network information be decreased? 

(3) How should future deployment be instructed? 

Generally, when coverage performance is assessed, significant attention focuses on the 

effectiveness of the sensor network standing by the sensor nodes. It is likely that views on the 

assessment of coverage performance can be changed. If an intruding target is able to easily move 

through the monitored region, the network is regarded as having inferior coverage quality. Conversely, 

a network is considered to have better coverage performance if the moving target can be detected with 

high probability. This new view necessitates a new method to evaluate coverage. As a unique 

advantage, our study focuses on an intruding moving target of which the moving trajectories are 

measured through various types of sensor networks to identify the network that has better coverage. To 

solve the problem, our idea can be described as follows:  

Given a region monitored by a certain sensor network, one fixed starting point, one fixed 

destination, and one virtual movable target, our study identifies the right moving trajectory, where 

“right” means minimal detected probability, or the shortest length and other requirements based on the 
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applications. Obviously, the moving trajectories should be different from the various networks 

although with the same starting point and destination. For example, a low detected probability of a 

trajectory means better coverage performance of the network. Thus, the difference among trajectories 

can indicate various coverage qualities.  

In our coverage study, we focus on the minimal accumulation of detected probability on a 

trajectory.Besides coverage judgment, the presented trajectory-based method can also be good for intrusion 

detections to preventnetworks against invasion by means of its prediction of the intruding trajectory, 

especially forsurveillance in military scenarios [8,9]. Under coverage guidance lighted by our assessment 

results, the sensor network can better serve for other jobs includingvehicle detection [10,11]. Our research 

accomplishes several tasks and makes the following contributions: 

(1) Unfreezing the reliant requirement for global network data. This study presents Improved Coverage 

Force Division (ICFD) to extend the present local Coverage Force Algorithm (simply as CFA) [12] 

by proposing the coverage force division map on the basis of absolute coordinates. As a qualitative 

research result, this map can find the weak sensing points (simply called Weak Points or WPs) 

without a priori knowledge of the overall network topology. 

(2) A novel force overlay model of sensing is defined to calculate the sensing force on WPs 

received from surrounding heterogeneous or homogenous nodes. All WPs are sorted based on 

this model. Furthermore, the second deployment will be arranged to promote coverage guided 

by the sorted array of WPs in the future.  

(3) Finding the network topology with the best coverage performance is a practical problem in more 

than one network topology. A Trajectory-based Evaluating Schedule (TES) is designed to 

evaluate the coverage performance quantitatively, which can help users realize the network that 

can detect targets effectively among many network distributions.  

The study is organized as follows. Section 2 investigates related works and beneficial results.  

Section 3 includes several valuable notions, models, and assumptions. Section 4 proposes ICFD that can 

scale the qualitative coverage quality for the universal sensor network and TES, which is responsible for 

solving the quantitative evaluation problem. Section 5 evaluates the proposed model and schemes by 

extensive simulations. Section 6 concludes the study. 

2. Related Works 

Numerous research works [13–15] have investigated the sensor network coverage performance in 

terms of various measurement scales, such as point coverage,k-coverage [13], coverage holes [14], 

regional coverage, and target path coverage [15]. Although these methods are effective, most of them 

must be supported by the overall network information, which is a demanding task and a heavy burden 

for wireless sensor networks with limited resources.  

The Voronoi diagram [15] algorithmwas an indirect assessment of regional coverage performance 

although its original objective was to solve the best coverage problem. Its theoretical foundation was 

that the perpendicular bisector of the two nodes was a crossing trajectory with the weakest coverage 

force. For three adjacent nodes, three perpendicular bisectors met at the center of gravity, which was 

obviously the Weak Coverage Point (WP) within the node triangle. For 3n >  nodes, perpendicular 
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bisectors and WPs were repeatedly drawn in each node triangle until a Voronoi that has n  cells  

(sub-regions) was built. Figure 1 shows cases with two, three, and more nodes. As shown in Figure 1c, 

considering that any point within the sub-region is not farther from its base node than the other nodes, 

they cannot receive less coverage force from its base node than theothers. The judgment, that boundaries 

of cells are the division lines where coverage forces are weaker than beyond, can be achieved. So, 

Voronoican apply our trajectory-based idea to evaluate the network performance and will be 

consideredin the later simulation analysis. However, the algorithm was not strongly recommended 

because of its limited estimation of coverage quality based on its distribution, whether sparse or not. 

Moreover, as a type of qualitative evaluation method, the Voronoi algorithm lacked quantitative details 

and universality. Simultaneously, the Voronoi algorithm wasunavailable for the heterogeneous network 

and specific topology of a four-point circle (i.e., four points lying on the same circle). 

 
(a) (b) (c) 

Figure 1. Coverage force division for different uniform nodes. (a) Two nodes; (b) Three 

nodes; (c) More than three nodes. 

Voronoi was employed to detect coverage holes [14] and coverage optimization [16] considering 

that the vertex of the cell was farthest from the base node. However, these methods could only roughly 

measure and did not provide sufficient details of the coverage quality.  

In addition to computational geometry such as Voronoi, some concepts in algebraic topology, such 

as complex and homology theory, were also included in coverage assessment. These concepts are good 

at rapid detection of coverage holes [17,18] and optimization compensation [19]. Furthermore, 

compared with the rigorous Ĉech complex that has difficulty in satisfying its application conditions, 

the Rips complex was verified to have a missing rate problem that could be mended in coverage hole 

detection by adjusting the ratio between the communication radius and the sensing radius [20]. 

In terms of the exposure path as a scale, [21] designed a method of measurement by monitoring the 

moving track of an unauthorized accessing target in a given area. The target trajectory measurement 

opened a new prospect in studying coverage assessment, although its original focus wasto solve the 

largest detection interval but to evaluate coverage and improve network performance. Subsequently, 

Amaldi [22] optimized node positions and analyzed the track exposure on the basis of the detected 

probability for a moving target. In addition, [14] demonstrated a greedy algorithm which divided a 

region into approximately infinitegrids based on multiple directions. Based on its division graph, an 

approximate optimal trajectory with minimal exposure could be found.Although its huge computation 

is not satisfied, its resulting trajectory canbe taken as the criterion to scale the results of other 

algorithms in simulations that follow. 
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Noticeably, the aforementioned methods are constrained within uniform sensor networks. The 

results which are directly pulled into the heterogeneous networks are not sufficient. Moreover, many 

existing studies were embodied by the hybrid sensor network [23], which meant that only two types of 

node would be contained. These were two-stage heterogeneous sensor networks with nodes that have 

strong or weak abilities [24], or were movable or static [4,23,25], or audio or video [26]. For the  

three-stage heterogeneous network, Wang [27] set three types of heterogeneous nodes based on the three 

dimensions of the directional sensor to the optimal deployment. Gupta [28] assumed not more than  

types of nodes and analyzed the redundancy coverage problem for the heterogeneous network. If the 

type of node in the network was not among the three types, several existing intelligent algorithms 

usually became the most popular solutions. Li [29] usedsimulated annealing (SA) and differential 

evolution to discuss optimal coverage for the heterogeneous network. Genetic optimization [30], 

cloning [31], swarm intelligence [32], and biological inspiration [33] were also applied to 

heterogeneous network applications. However, the hardware requirements of these approaches in 

processing and storage far exceeded the node in terms of applications.  

To the best of our knowledge, these algorithms have strong requirements in global information. 

However, a practical desirable algorithm should depend only on a small amount of local information. 

Thus, effectively evaluating the coverage performance without the support of whole network data is an 

urgent issue that drives our research. 

3. System Model 

3.1. Trajectory-Based Idea 

Two issues are included in solving the trajectory-based coverage assessment problem. The first 

issue is how to plan the sensing/coverage force boundaries or the coverage force division, and the 

second is how to design the right trajectory. The former transforms the huntingzonefrom the infinite 

plane area into the finite dividing line segment set. The latter is about defining a convenient scale and 

arranging a schedule to search and assess trajectories. 

In terms of the first problem, most of the methods for dividing were inspired by computation 

geometry, such as the Voronoi algorithm [15,34], greedy algorithm [15,34], and coverage force 

algorithm (CFA) [12] presented in our early studies, which have been able to partition an area into 

cells for every node, where all the points can receivemore sensing force from the base node inside than 

the others outside. These dividing methods fulfill the overall qualitative descriptions for the different 

kinds of sensor networks.Obviously, these borderlines of adjacent cells are the sensing force 

boundaries among the nodes. According to the union of all nodes that have sensing capabilities 

denoting coverage performance, these borderlines were later redefined as coverage force boundaries 

with no ambiguities. 

Given the weights of the boundary segments, understanding that the trajectory problem is the 

minimal weight route problem is easy. The second problem is solved on the basis of the weighted path 

table. Many existing and worthwhile routing methods can strongly support our present study.  

The accumulated weight of the trajectory is a quantitative assessment result. 
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3.2. Network Model 

The n  static sensor nodes { | 1,2, , }iS s i n= =   tasked to detect the moving target T  are 

distributed randomly and independently in the given 2D plane area 2Ι . The sensing parameter iλ  is 

identified as the sensing capability of each node is  and { | 1,2, , }i i nλΛ = =  , where 0iλ > . 

Assuming that a linear relationship exists between the sensing ability and the sensing radius and r is 
regarded as one coverageradius unit,the sensing/coverage radius of nodes is  can be mapped into 

i ir rλ= × .  

Nodes, whichare able to probe object independently, are be assumed toobtain their distances and 

calculatepositions through GPS [23], directional antennas technology [28] or others recommended 

technologies [16,17,19,20,22,26]. Just like many researches [1–9], given the position of T , its 
Euclidean distance to is ( , )i idis dis s T=  is regarded as an important adjustment factor in the 

detection/sensing job. The order-asymptotic sensing model (O-ASM) [35] ( ), k
i i iSen s T disλ=  is used 

to show nodes’ sensing fluctuation with distanceto T , where integer k  is an adjustment parameter for 

distance, usually k ≥ 2. 

3.3. Exposure Model 

To measure the quantitative value, the coverage force amount should be calculated during the 

continuous moving process of the target. According to the concept of exposure [15], the integral 

formulation from the original temporal space into the special space [34] can be transformed. The 

resulting line integral helps to achieve an evaluable coverage force amount for the trajectory, which is 

a critical foundation for comparison of many trajectories in different scenarios. 
During the period of 1( , )b bt t + , b +∈ Ζ , target T  moves at a constant speed from position ( )bpos t  to 

position ( )1bpos t +  along arbitrary ( )( ) ( ), y( )p t x t t=  in 2Ι , here 1( , )b bt t t +∈ , +Ζ  is a positive integer 

set. If the length of ( )p t is ( ( ))L length p t=  and the in  node is present to be involved in the detection 

in subset iS , then i
k is S S∈ ⊆ . The exposure of ( )p t  can be expressed as follows: 

( ( ), ) ( , )
in

i
i kL

k

Exposure p t S Sen s T dl=  , 1,2, , ik n=   (1)

Equation (1) shows that the updated expression is only concerned with the length of the track. 

Exposure is used to indicate the weight. Weight of ( )p t  is defined as follows: 

( ( )) ( ( ), )iWeight p t Exposure p t S=  (2)

3.4. Weak Point Queuing 

The WPis the position where the sensing resultant force is minimal within a given local sub-region 

which is outlined by the least amount of nearest nodes and no others inside. 
If ijkWP  is WP within i j ks s sΔ , its Euclidean distances to is , js  and ks , respectively are idis , jdis  

and kdis , and their sensing parameters are iλ , jλ  and kλ . Figure 2 shows a triangle sub-region 
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example. We define ijkWeak  to present the resultant sensing force for position ijkWP , which can be 

calculatedon the basis of the following Equation: 

2 2 2

ji k
ijk i j k

i j k

Weak w w w
dis dis dis

λλ λ= + +  (3)

where weights iw , jw , and kw  must satisfy 1i j kw w w+ + = , 0 , , 1i j kw w w≤ ≤ .  

Equation (3) shows that larger ijkWeak  means weaker force. ijkWeak  is inversely proportional to the 

distances from nearby nodes and directly proportional to the sensing parameters. 

 

Figure 2. WP within one triangle sub-region, here λi > λj > λk. 

Of course, the resultant sensing force ijkWeak  includes the influences of these nodes that join to 

build a sub-region. Other nodes outside the sub-region are ignored in the study because of the essential 

influence from distance. They are farther than the ones lying on the hull of the triangle sub-region. 
Depending on the value of ijkWeak , the sorting queue for all the WPs can be achieved.  

If a sub-region is not triangular, Equation (3) should be extended by adding corresponding 

polymerizations and weights. 

3.5. Quantitative Model of Trajectory 

It is quite possible that notable cases exist where the trajectory takes an elaborate detour to avoid 

including larger weighted segments. To control the trajectory length, a new Balance Value (simply as 

BV) is defined as conjoining both the length and the weight, as shown in the following Equation: 

( ( ), ) η ( ( ), ) μ ( ( ))i iBalanceValue p t S Exposure p t S length p t= ⋅ + ⋅  (4)

The balancing coefficients, η  and μ  are soured from the different requirements in applications. 

Theyhave no links to the sensors’ features, but balance the influencing intensities from the exposure 
and length of trajectory, where 0 η,μ 1≤ ≤  and η μ 1+ = . For example, corresponding todecreasing μ  

to sacrifice length standard, the value of η  is increasedwhich means the detection requirements 

areenhanced in the assessment process. Without ignoring the various sensing intensities and node 

distributions, BV can also be defined as the weight for a boundary segment and taken as a scale to 
measure the network coverage performance. Given the fixed η  and μ , greater ( ( ), )iBalanceValue p t S

 

isjs

ks

kdis

idis ( )iλ

( )kλ

( )jλ

jdis

ijkWP
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indicates better coverage performance. As a commendable virtue, the proposed BV is available for 

both the uniform homogeneous network and the heterogeneous network. 

4. Methodology 

In our coverage research, without loss of generality, our study maintains the key idea that all different 

intensities among heterogeneous nodes are considered various sensing magnitude values [12]. In other 

words, the details of the differences are unimportant compared with the size of the fluctuation that can 

affect the sensing abilities (coverage forces) of the nodes.Before introducing our proposed ICFD and 

TES, one important notion and two rules need to be given, where the Division Point (DP) will be defined 

for the beginning of coverage division, the Conflict Resolution Rule (CRR) will adjust the locations of 

DPs and the Supplementary Division Rule (SDR) will extend the division results. 

4.1. Dividing Points 

The DPs are composed of Splitting Points (SPs) and WPs. The former is depended on two nodes, 

and the latter is defined by three nodes. 
Given O-ASM, 2k =  and two adjacent nodes ( , )i i is x y , ( , )j j js x y  with sensing parameter iλ , jλ , 

an Equipotential Line (shortly EL) exists where sensing forces sourcing from is , js  are equal. The EL 

can be easily calculated by building the equation for required points based on the sensing forces 
received from is , js . 

If i jλ λ≠  and /i jλ λ λ= , the EL is an Isopotential Circle (shortened as IC), which has a radius of 

( 1) ( 1)λ λ λ+ −  and a center point ( , )centre centrex y  located on the line of i js s , where 

2

2 ( )

1
j i

centre

x x
x

λ
λ
−

=
−

 

2

2 ( )

1
j i j i i j

centre
j i

y y x y x y
y

x x

λ
λ
− −

= +
− −

 
(5)

The IC and i js s  can meet on point SP ( , )SP SP
ij ij ijSP x y . The location of ijSP  can be deduced as shown 

in the following Equations: 

( ) ( )1SP
ij j i ix x x xλ= − + +  

( ) ( )1SP
ij j i iy y y yλ= − + +  

(6)

If and only if i jλ λ= , the EL becomes the perpendicular bisector of i js s  and its SP is the midpoint 

of i js s . For any point beyond the EL, its coverage forces received from the nearer node is larger than 

the farther one. In other words, the sensing force of SP is smaller than anywhere of i js s .  

On the basis of the WP definition, the objective function to find ( , )WP WP
ijk ijk ijkWP x y  can be constructed 

based on the given node triangle i j ks s sΔ , as shown in the following Equation: 
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2 2 2 2 2 2

S.T. ( , )

i j j i k j j k i k k i

WP WP
ijk ijk i j k

Min dis dis dis dis dis dis

x y s s s

λ λ λ λ λ λ− + − + −

∈ Δ
 (7)

4.2. The Conflict Resolution Rule and the Supplementary Division Rule 

Sometimes, SPs and WPs share the same edge. CRR is presented to adjust their positions. A logical 

explanation for the coexistence of multiple points is that one SP can be calculated based on one certain 

edge; However, one or two WPs may be conducted separately by two adjacent triangles that share one 

edge if one of them is an obtuse triangle.  

CRR: If more than one candidate DP (including SPs and WPs) has coexisted on the same edge in 

one node triangle, the DP with low priority updates its location, and the new location is the same as the 

one with high priority. The WP is prior to the SP, and a first-come-first-served (FCFS) basis is used for 

the same priority DP.  

In CRR, the WP hasthe higher prioritybecause of the three nodes calculated, which are more than the 

two nodes required by SP. Figure 3 presents several desirable cases of CRR. Regardless of the location, 

four DPs are present and they include one WP and three SPs in one node triangle although they might be 

located on the same position. All these points are defined as the DPs for the basic division phase.  

However, in the basic division phase, only the division lines can be drawn in the convex hull of the 

network. Our study supplies SDR to add several division lines between the neighbor nodes on the 

boundary of the convex hull for the division to be expanded from the inside hull to the entire 

monitoring region. 

SDR: For every boundary edge on the convex hull, two cases have to be considered. For only one 

DP (regardless of what SP or WP is) located on it, the division line is directly extended outside. 

Otherwise, a new division line that is perpendicular to the boundary edge is drawn from these DPs to 

outside (these DPs lie on the same position). The Figure 4 shows the details of the SDR. 

 

Figure 3. Cases based on CRR where the positions of DPs that share the same edge are updated. 
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(a) (b) (c) 

Figure 4. Extension of segment based on SDR (a) Two boundarynodes in i j ks s sΔ  and 

ijk ikWP SP= ; (b) Two boundary nodes in i j ks s sΔ  and ijk ikWP SP≠ ; (c) All three boundary 

nodes belong to i j ks s sΔ . 

4.3. Improved Coverage Force Division 

Superior to the original CFA [12], the DPs proposed in this study areupdatedusing absolute 

coordinates. In the obtained division, the division line segments have exhibited that desired feature 

where the coverage force received from the base node is not less than other nodes. A coverage force 

division map is generated as follows in Algorithm 1: 

Algorithm 1: ICFD 
1-1 Initialization: 2Ι , S , Λ , Starting, Destination, SP = ∅ , WP = ∅ , and Edge = ∅  

1-2 Δ  = Delaunay triangle partition ( S ) 
1-3 For each i j ks s sΔ in set Δ  

1-4 Calculate ijSP , jkSP , ikSP  within each pair of adjacent nodes % Using Equation (6) 

1-5 Calculate ijkWP  within i j ks s sΔ  % Using Equation (7) 

1-6 ( , , , ) ( , , , )ij jk ik ijk ij jk ik ijkSP SP SP WP CRR SP SP SP WP=  

1-7Update { , , }ij jk ikSP SP SP SP SP=   and { }ijkWP WP WP=   

1-8 Basic Division Phase: Drawing division lines ij ijkSPWP , jk ijkSP WP , and ik ijkSP WP  

1-9 { , , }ij ijk jk ijk ik ijkEdge Edge SP WP SP WP SP WP=   

1-10 End For 
1-11 ( ( ))Edge Edge SDR ConvexHull S=   

1-12 End ICFD 

After the initiation phase, Steps 1–4~1–7 calculate, adjust, and accord DPs’ positions, Steps 1–8~1–9 
draw division lines for every cell. And then, the extended edges are added into the Edge  set in the last 

step. These DPs and division lines constitute a coverage force division map. 

Our ICFD can partition the region into many cells on the basis of the different coverage forces of  

the nodes. Unlike the Voronoi algorithm, the ICFD is available for both homogenous and  

heterogeneous networks. 
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4.4. Trajectory-Based Evaluating Schedule 

Inspired by the idea of trajectory-based coverage assessment, we have planned a TES that can 

produce a quantitative evaluation result. The flow of this TES can be shown as follows in Algorithm 2: 

Algorithm 2: TES 
2-1 ( , , ) ( , )Edge SP WP ICFD S= Λ  % To build coverage force division map 

2-2 For each ijkWP  in WP  

2-3 Calculate ijkWeak  % Using Equation (3) 

2-4 End For 
2-5 _ _ int ( )Top Weak Po Sort WP=  

2-6 ( )Edge Weight Edge←  % Each division line is weighed based on Equation (2) 

2-7 ( , , )Trajectory Path Edge SP WP= % Using minimal weight path algorithm 

2-8 ( , )BalanceValue Trajectory S  % Using Equation (4) 

2-9 End TES 

By ( , )BalanceValue Trajectory S , a judgment on which network has better coverage performance 

among the various network topologies can be obtained. The returned result _ _ intTop Weak Po

identifies the next optimal position for the second deployment. 

Regardless of the network being heterogeneous or homogeneous, TES can finish the evaluation 

effectively, such that the four nodes lying on one circle are no longer obstacles to the evaluation 

process. Undoubtedly, the aforementioned methods have exciting merits over Voronoi. Furthermore, 

our schedule can complete the division and valuation tasks without requiring the total network 

information because the data of only three adjacent nodes are sufficient to drive our schedule. The  

in-out correlation between the ICFD and the TEShas been shown in Figure 5. 

 

Figure 5.The in-out correlation between the ICFD and the TES. 

5. Simulation Result Analysis 

In the Matlab platform, our study simulated several scenarios and problems to validate the ICFD 

and TES. The public parameter settings are n  nodes that are randomly distributed in 2D plane 

monitoring region 2 100 100Ι = × ; the starting point and destination are positioned on the opposite sides 

outside and the nearest boundary line to enter or exit is selected. The distance parameter is set as 2k =  

for sensing model O-ASM. For each node, the sensing force is effective for the entire region and the 
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basic sensing radius is 2150r = > Ι . 2Ι  is the largest spanning distance of the monitoring region. In 

simulations, the effectivityof trajectory is considered with the same importance as its efficiency. So, 
η μ 0.5= =  is set for BV assessment. Based on the premise of lossless data characteristics, a new 

relative error model is redefined as 1ε lg(δ φ )−= ⋅ , where δ is absolute error and φ  is standard error, 

whereas the result of the greedy algorithm is considered as a reference for comparison. Based on the 

results of the greedy algorithm, ε  can be definedand calculated in order to evaluate other algorithms. 

5.1. Division, Trajectory and Weak Points 

This experiment compares the moving trajectories produced by TES, the greedy algorithm, and 

Voronoi algorithm, as well as identifies the distribution for WPs. All simulations are repeated in three 
network scenarios, including homogeneous ( 1iλ = ), two-stage heterogeneous ( {1,2}iλ ∈ ), and 

multistage heterogeneous ( [1,3]iλ ∈ ). 20n =  sensor nodes in the monitoring region.For fair 

comparison, Equation (2) is also usedfor weighting in the greedy algorithm and Voronoi algorithm, as 

in our TES. 

The sensing intensity, resulting trajectories, and WPs are shown in these three scenarios. The top 10 

of WPs with tabbed order number are marked as rhombus shapes, which indicate a qualitative analysis 

of coverage performance. Tags P and M are the entry and exit points for the trajectory. The trajectory 

connects the “Starting” point to P as the same as “Destination” point to M with a straight line because 

no sensing force is outside the monitoring region. Figure 6a,b shows no results for the Voronoi 

algorithm because of its limitations. Figure 6c shows Voronoi only in the homogeneous network. 

TES tracking trend follows the resulting trajectory of the greedy algorithm with slight differences 

because the WP, which is one of the smallest sensing force points within the local node triangle, is 

difficult to match consistently with the one found within the larger region in the greedy algorithm. 

Similarly, WP has dislocation in the obtuse triangle compared with the Voronoi algorithm because of 

its barycenter outside the triangle. As a result, all trajectories do not completely coincide even in the 

homogeneous network. 

Compared with the greedy algorithm ( 3(| | )Greedyo VertexNum 6( )o m→ ), TES shows steady and 

effective working abilities with lower computation load, where GreedyVertexNum  is the number of 

division points in whole monitoring region, and m isthe dividedamountin each edge of unit grid.For 

TES, the main computing load is calculation of WP with complex 3( )o n , where n  is the sampling 

pointsnumber inside the node triangle. Compared with Voronoiwhich has working limitations, ICFD is 

devised for both homogeneous and heterogeneous networks. Although differences cannot be avoided 

in the ICFD method, these differences are acceptable on the basis of error analysis in the next section. 
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Figure 6. Comparison of trajectories between TES, greedy algorithm, and Voronoi algorithm. 

(a) Two-stage heterogeneous network; (b) Multi-stage heterogeneous network;  
(c) Homogeneous network. Where, tag ( i , iλ ) nearby node means its label and  

sensing parameter. 

5.2. Two-Stage Heterogeneous Network Analysis 

In this section, the method is tested for its capability to fulfill coverage assessment in a two-stage 

heterogeneous network and implement several quantitative analyses on exposure, length, and BV. 

Given a two-stage random heterogeneous network, the numbers of nodes are set as 15, 20, 25, 30, and 
35 with random distribution to show the different node densities. iλ  is randomly set as 1 or 2.  

For these five scenarios, the TES and greedy algorithms were independently trialed 30 times, and then 

all results have been averaged for every scenario.  

Figure 7 displays the averagederrors ε  for exposure, length, and BV for TES. As a referenced 

trajectory, the greedy algorithm obviously does not need to shown ε . Because that the Voronoi can only 

work in homogeneous network, there aren't any results for Voronoiin this simulation and later simulation 

about multistage heterogeneous network.With varying density, the averaged ε  of ICFD can be stably 

controlled within [−0.14, −0.01] for exposure, within [−0.72, −0.54] for length, and within [−0.69, −0.55] 

for BV. Their maximum spans are 0.13, 0.18, and 0.14, which show that ICFD has high stability. 

Understandably, because of its smaller path table compared with that of the greedy algorithm, TES is 

almost unable to find the shorter trajectory. Thus, the longer trajectory of TES can likely lead to closer 

nodes compared with the greedy algorithm. As exposure is sharply influenced by distance and length, 

exposure sharply increases with lengthening trajectory in TES, which also explains why the length error is 
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less than the exposure error. Of course, these errors are acceptable because the complexity has been greatly 

reduced from the TES to greedy algorithm, which not only saves substantial computing resources but also 

provides a utilitarian method to rapidly assess the coverage performance of the heterogeneous network. 

 

Figure 7. Averaged ε  analyses for TES in two-stage heterogeneous network. 

5.3. Multistage Heterogeneous Network Analysis 

Widespread multistage heterogeneous networks are used in applications such as surveillance [8,9,12,26] 
and vehicle detection [10,11]. In this experiment, each iλ  is set randomly in the range of [0,3]. Other 

settings and experimental procedures are retained. Error analysis of multistage heterogeneous networks is 

presented in Figure 8. 

Fluctuations in TES are not extremely high and their averaged errors vary within the range of  

[−0.26, −0.07] for exposure, [−0.73,−0.52] for length, and [−0.64, −0.53] for BV. Its effective and 

stable operating availabilities are suitable for the quantitative coverage assessment of the multistage 

heterogeneous network. Moreover, the TESrequires only three neighboring nodes for the algorithm to 

work. Undoubtedly, its localization can serve as a basis for broad applications in the future.  

 

Figure 8. Averaged ε  analyses for TES in multistage heterogeneous network. 
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5.4. Homogeneous Network Analysis 

Compared with the Voronoi and greedy algorithms, TES is effective for the homogeneous network, 
as verified in this section. In simulations, the homogeneous network is easily built by setting 1iλ = . 

Five scenarios were tested 30 times to achieve the averaged ε . The experimental data are shown in 

Figure 9.  

 

Figure 9. Averaged ε  analyses for homogeneous network. 

Our findings show that TES and Voronoi are not significantly different, which proves that the 

former can gain results similar to the latter in the homogeneous network. However, existing 

differences, albeit minimal, must be explained. The different locations of WPs lead to different 

coverage force divisions even in the same homogeneous network, as mentioned in the preceding 

section. As shown in Figure 9, the errors should be deemed as an acceptable cost that is offset by 

desirable values, such as simple, local information requirements and extensive availability. 

6. Conclusions 

In this paper, we develop a localized coverage force division algorithm, ICFD which can 

providequalitative assessment for coverage quality in a universal sensor network. Moreover, our study 

presents a quantitative assessment approach, TES to find better coverage performance from various 

universal sensor networks. Compared with similar assessment methods, ourapproach can serve not 

only for homogeneous networks but also for heterogeneous networks besides releasing bounds of a 

four-point circle; and the lower compute load is more suitable for the sensor network. Based on 

localized coverage force map and trajectory-based assessment, future worksare oriented to solve the 

more application problems such as optimal deployment and node resource conservation for universal 

sensor networks.Undeniably, the research for 2D problems is only the beginning. And, assessment 

problems in 3D will be an interesting challenge. As a bottleneck, energy efficiency will be brought into 

the trajectory-based assessment in future research. 
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