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Abstract: Wireless sensor networks (WSNs) have been widely used to monitor the
environment, and sensors in WSNs are usually power constrained. Because inner-node
communication consumes most of the power, efficient data compression schemes are needed
to reduce the data transmission to prolong the lifetime of WSNss. In this paper, we propose an
efficient data compression model to aggregate data, which is based on spatial clustering and
principal component analysis (PCA). First, sensors with a strong temporal-spatial correlation
are grouped into one cluster for further processing with a novel similarity measure metric.
Next, sensor data in one cluster are aggregated in the cluster head sensor node, and an
efficient adaptive strategy is proposed for the selection of the cluster head to conserve
energy. Finally, the proposed model applies principal component analysis with an error
bound guarantee to compress the data and retain the definite variance at the same time.
Computer simulations show that the proposed model can greatly reduce communication and
obtain a lower mean square error than other PCA-based algorithms.
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1. Introduction

Wireless sensor networks (WSNs) consist of a great number of tiny sensor nodes that are obviously
capacity constrained, especially power constrained. Generally, each sensor node has three functions, i.e.,
sensing the requisite information, processing and managing the acquired data and exchanging messages
with other sensor nodes [1]. Because inter-node communication consumes most of the power, efficient
data compression schemes are used to reduce the data transmission in order to prolong the lifetime of
wireless sensor networks [2].

For the purpose of conserving energy, a great deal of data aggregation models have been proposed
in recent years, including principal component analysis (PCA)-based algorithms. PCA is one of
the dimensionality reduction models, which uses an orthonormal transformation to convert a set of
observations of possibly correlated variables into a set of values of linearly-uncorrelated variables called
principal components. The number of principal components (PCs) is smaller than or equal to the number
of original variables [3]. The PCA operation can be regarded as revealing the internal structure of the
data in a way that best explains the variance in the data. Due to such characteristic, PCA can be used
effectively to compress data in WSNss.

Recently, the PCA-based algorithms have been applied to wireless sensor networks [4-9]. In [4,5],
the authors proposed a data compression model based on context that worked in an orthogonal way and
utilized the attribute of each individual component to reduce the data transmission. In [6], Borgne et al.
showed that the PCA can be efficiently implemented in a network of wireless sensors, where supervised
and unsupervised compression models are presented. Following that, they revealed a distributed
power iteration method to compute an approximation of the principal components in [7].
Rooshenas et al. [8] proposed an algorithm, which let the sink node gain access to the original data for
computing the reconstruction error to get a tradeoff between the accuracy and the rate of compression.
Fenxiong et al. [9] proposed an algorithm based on multiple-PCA, which iteratively uses the PCA
method in multiple layers.

These above-mentioned PCA-based models, however, mostly ignore the strong temporal-spatial
correlation and massive data redundancy among sensor nodes, which are vital for reducing data
transmission and saving power consumption in WSNs. In the real world, temporal-spatial relevancy
among sensor nodes usually exists. By grouping similar sensor nodes into one cluster, the
interdependency of sensor data will gain a considerable improvement. Therefore, we can use less
principal components to represent more original data, and the performance of the compression is
expected to be significantly promoted.

A process of spatial clustering can be used to find the correlation among sensor data. Regarding the
spatial clustering, the authors in [10] proposed a hierarchical spatial clustering algorithm, which aims to
group the highly-correlated sensor nodes into the same cluster for rotatively reporting representative data
later. In [11], Bandyopadhyay et al. proposed a distributed, randomized clustering algorithm to organize
the sensors and generate a hierarchy of cluster heads.

These spatial clustering models are usually used for approximate data collection, where the data of
the cluster head is used to represent all of the data of the same cluster. Obviously, the precision of the



Sensors 2015, 15 19445

model will be influenced greatly by the correlation of the sensor data. It will have a poor performance,
while the relevance among sensor data is not strong enough.

In this paper, we propose an efficient data compression model, which is based on spatial clustering
and principal component analysis to aggregate data, reducing the transmission data while ensuring the
accuracy of compression. Moreover, by using magnitude similarity to measure the current state of sensor
data and the autoregressive model to capture the varying trend of the environment, our proposed model
has considerable adaptability for various situations.

In addition, an adaptive cluster head selection strategy is also proposed to achieve the purpose of
economizing energy. It can be regarded as an extension of the cluster head selection strategy in the
DDSPalgorithm in [12], as the cluster head selection in DDSP is uncorrelated in different rounds, and
they just assumed that a node autonomously decides to elect itself the cluster head with probability p,
while our model takes the correlation of different periods into consideration. By doing that, the energy
consumption of each sensor node can be reduced further.

The contributions of our work are summarized as follows.

e We propose a model based on spatial clustering and principal component analysis to compress
the transmission data in wireless sensor networks, while the idea of taking the strong correlation
among sensor data into consideration in the process of PCA is novel.

e We propose an adaptive strategy to guarantee the error bound of each sensor node, ensuring the
precision of our compression model.

e We extend the cluster head selection strategy in [12], which can be used to reduce the energy
consumption further.

e We verify the powerful performances of our proposed model through computer simulations.

The rest of this paper is organized as follows. Section 2 presents the background knowledge of our
model. Section 3 proposes the cluster head selection strategy. Section 4 expounds the details of our
proposed model. Section 5 evaluates the performance of the model and makes a comparison with other
PCA-based algorithms. Finally, we conclude the paper in Section 6.

2. Background

In this section, we identify a variety of concepts and discuss the most related background to our
proposed model.

2.1. Spatial Clustering and Autoregressive Model

In wireless sensor networks, spatial clustering is the process of grouping a set of sensors into clusters,
so that sensor nodes within one cluster have higher similarity compared to one another, while being
dissimilar to sensors in other clusters. Spatial clustering can be used to gain insight into the distribution
of the data, to capture the underlying pattern of the cluster and to focus on a particular set of clusters for
further analysis [11]. By grouping the similar sensor nodes into one cluster and aggregating the sensor
data into the cluster head node, we can obtain a set of data with a strong correlation, and thus, effective
algorithms can be employed to compress the data accordingly.
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For spatial clustering, a key question is how to measure the similarity between the readings of any
two sensor nodes. Some existing algorithms considered the magnitude similarity as the criterion, such
as DClocalin [13] and DACA in [14]. However, magnitude similarity just grasps the current temporal
feature of sensor data and ignores the underlying varying trend. Thus, it cannot capture the dynamic
change of the environment. Some other algorithms, such as Elink [15], only relied on the trend similarity.
Taking the trend similarity into consideration will overlook the benchmark of the sensor data, which
causes the indications of the sensor nodes in one cluster to have little in common.

In order to avoid the above-mentioned problem, we take both magnitude similarity and trend similarity
into account. For magnitude similarity, our model proposes to keep a sequence of readings and to
calculate the Euclidean distance of any two sensor nodes.

As for trend similarity, the autoregressive (AR) model can be constructed for each sensor node to
capture the tendency of the environmental change and to measure the trend similarities among sensor
nodes. The autoregressive model can describe certain time-varying processes, which specifies that
the output variable depends linearly on its own previous values. The notation AR(n) indicates an
autoregressive model of order n. The AR(n) model is defined as:

n
Ty = C+Z§0i$t—z‘+5t (1)
i=1
where ¢; is the parameter of the model, ¢ is a constant and ¢, is the white noise. The calculation of
the AR parameters is diverse, e.g., we can regard the first n readings as the input and the (n + 1)-th
reading as the output, then construct a training set in this way; then, the problem can be treated as a
linear regression, and the parameters can be estimated by least squares and gradient descent.
Through sending the parameters of the AR model and a sequence of sensor readings to the sink
node, sensor nodes can be classified into different clusters by designated cluster algorithms, in which the
clustering process not only depends on the magnitude similarity, but the trend similarity, as well [10].

2.2. Principal Component Analysis

Principal component analysis is a statistical model that projects the data onto a new basis and aims
to retain variance as large as possible while minimizing the redundancy [3]. It can be realized by
calculating the eigenvalues and eigenvectors of the covariance matrix (covariance matrix > 1S a matrix
whose element denotes the tendency of jointly varying; assume X; and X; are random scalars, then
their covariance can be calculated by 3;; = cov(X;, X;) = E[(X; — E(X;))(X; — E(X}))]) of the
data. Once eigenvectors are sorted by the homologous eigenvalue in descending order, the eigenvectors
denote principal components, and the one corresponding to the maximum eigenvalue relates to the
dominant principal component. Then, a transformation matrix can be constructed with the first definite

number of eigenvectors to project the data onto a new basis. Suppose X,,,«, denotes the original matrix,

W = (wy,ws,...,w,) represents the eigenvectors of the covariance matrix of X and w; represents
a column vector of the covariance matrix W. The transformation matrix © can be constructed by
© = (01,60s,...,0,) = (wy,wq,...,w,)(p < n), and an approximation of the original matrix can be
calculated by:

~

X=00"X =067 (2)
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where:
Z=0%X 3)

represents the projection of the original data onto the principal components’ base. The process of

calculating the principal components can be regarded as minimizing the optimization function:
1 m
P
Tplai, 0:) = — z; |z — i
1=

1 — z
— Ez i = 0,6] ]| (4)
=1 =1

by the constraint that each 6; is orthonormal, x; and 6; represent the column vector of X and ©, m is the
number of observations and p is the number of principal components. A sequence of 6 that minimizes the
optimization function is the first p eigenvectors, which are ordered by the eigenvalues of the covariance
matrix [16]. Figure 1 (following the idea from [17], we plot the figure according to our data) is an
illustration of the principal component analysis by projecting the three-dimensional (Figure 1a) data
onto the first two principal components’ basis (Figure 1b). It is clear that the PCA keeps the direction of
the first two maximum variances [18].
The ratio of retained variance after transforming by p principal components can be measured by:
PN

— i=1

A; is the eigenvalue of the covariance matrix. R(p) can be considered as a metric to evaluate the accuracy
of compressing.

Figure 1. Illustration of the principal component analysis. The red line in (a) represents the
direction of PCs. If we look at the data in the plane identified by PCA which can be seen in
(b), it was mostly 2D, as well as keeping almost the whole of the variances.
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3. The Cluster Head Selection Strategy

In this section, we propose a cluster head selection strategy based on the first order radio
model [19] to conserve energy and prolong the lifetime of wireless sensor networks. The inspiration
comes from heuristic searching [20].

An illustration of the first order radio model is shown in Figure 2. The energy consumption of

transmitting a k-bit packet at a distance d can be expressed by:

Eoee ¥k + comp xkxd?, ifd<d
Er,(k,d)=1{ " ’ " (©6)
FEeee * k + €amp * kx d*, if d >= dj

and receiving a k-bit packet can be calculated by:
ERx(k) = Eelec * k (7)

where F.. 1s the radio dissipation of running the electric circuit to transmit or receive a message,
Eamp 18 used for the transmit amplifier to ensure the smooth operation of the radio, k is the size of the
transmitting or receiving packet, d is the distance between the transmission node and receiver node and

dy is a predefined value, which depends on the performance of the sensor node.

Receive Electronics

Eclcc *k

k bit d

\. I /

Transmit Electronics Transmit Amplifier

2
Eelec *k Eamp *k*d

Figure 2. The first order radio model.

In our model, as a transmitting node, the energy consumption can be expressed by Er,(k, d;), where
d; is the distance between the current sensor node and the cluster head node. As the cluster head node,
it will receive packets from other sensor nodes in the same cluster and transmit all of the packets to the
sink node, which will expend:

Econsumption = ERCC<k> * (n - 1) + ETI(k *n, d2) (8)
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where we suppose all sensor nodes transmit a k-bit packet for simplicity, n is the number of nodes in
current cluster and d» denotes the distance between the cluster head node and the sink node.

After each clustering procedure, we calculate the energy consumption Feopnsymption Of €ach node for
each cluster and then select the node with the lowest E.o,sumption @s the head of current cluster, which
can be expressed by:

C}(LQad = arg mi,n (Econsumption (ny))) (9)
{n$y
ny) indicates that sensor node j belongs to the i-th cluster, C}(Qa , represents the head of the ¢-th cluster,
and it is the sensor node that is in the ¢-th cluster that minimizes Fcopsumption- In order to scatter the
power expenditure over all of the sensor nodes, we also propose a rotatory strategy to select the cluster
head. E,,s(k) is used to record the total power consumption of the k-th sensor node, and E..opsumption (k)
represents the consumption of the k-th node in the context of the k-th node being the head of the current
cluster; then:
Cf(LQad, rotatory — L& {m(ll% (Epast (nl(cl)> + Econsumption <ng)>) (10)
L
can be used to select the head of each cluster. After each decision epoch, the consumption of the k-th
node at the current epoch is added to E,,(k), whose value is Er,(k, d;) for the member of the cluster
or Eeonsumption for the head of the cluster.

4. System Model

In this section, we formalize the compression procedure and summarize the system model.

4.1. Notations and Formalization

In this paper, we consider a wireless sensor network that consists of a set S = {s1, S2,...,5,} of m
sensor nodes and one sink node. All of the sensor nodes are distributed randomly in a region. Sensor
nodes acquire a sequence of data by epoch, which is a discrete time domain where sensor readings are
gleaned and notated by 7" = {1,2, ... n}.

Suppose z;[t] denotes the sensor node i at epoch ¢ € T" and X [t] = (z1[t], z2[t], . .., x,[t]) represents
all of the sensor node readings at epoch t. X,,,,, is a reading matrix that consists of m sensor observations
at n epochs and whose elements z;; = x;[t], i <= m and j <= n.

Now, we can apply principal component analysis to the sensor data matrix X,,x,, which can be
obtained at the cluster head node, with the goal to find an orthonormal matrix W to construct the
transformation matrix ©, transforming the data matrix into a new space according to Equation (3). Then,
Zmxp that we gained by the transformation is sent to the sink node, where p is the number of principal
components and p < n. Here, we use an adaptive strategy to decide the value of p for guaranteeing
the error bound of each node and roughly constraining the accuracy of the overall model, by which the
data matrix has been compressed in a certain proportion. The transformation matrix ©, which can be
calculated at the cluster head node, will be sent together with Z to the sink node in order to reconstruct
the data matrix.
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4.2. Compression Model

A simple diagrammatic sketch of our model is illustrated in Figure 3, where nodes being in one
case represents that they are classified into one cluster through the similarity measure metric, which we
defined in Section 2.1, and the cluster head nodes gather data of all nodes in their own cluster and handle
the data by the predefined compression algorithm.

Figure 3. Diagrammatic sketch of our model.

The holistic compression procedure can be seen in Figure 4.

Send PC to

sink node
A

Sense data

=

Construct AR

Compress by

I
: ' :
I I I
I I I
I I I

| I
| Model locally I PCA
I | F I
|Training I_I | Compressing]
I Send to I Aggregate I
| sink node I data |
| | L |
| . | Select th |
| , elec e |
| Cluster i cluster head |
- - l - I

Figure 4. Execution procedure of our model.
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This procedure consists of two periods, i.e., training by collecting the historical data to discover the
underlying temporal-spatial correlation between sensor nodes and compressing the data based on the

relevance found by training. It is illustrated in detail as follows:

e First, a set of historical data of each sensor is collected and processed into a matrix by the method
proposed in Section 2.1, i.e., using the latest (n — 1) readings as the input and the n-th data as the
output. The n readings can be regarded as an observation, and m observations are obtained in the
same way. The data of each sensor can be represented by a matrix of size m X n.

e Then, to avoid the cost of transmitting data to the sink node, we construct an autoregressive (AR)
model for each sensor locally based on the data matrix acquired by the above process. The learning
phase of the AR model can be considered as a linear regression, which is universal in machine
learning. The method of minimizing the mean square error between the real data and predicted
data can be used to estimate the parameter through gradient descent. For more details, refer to [21].

e Next, the AR parameters and a sequence of sensor readings of each node will be sent to the sink
node. The power cost of this transmitting can be ignored, because the temporal-spatial correlation
will not change frequently, and the relevancy needs to be updated at a long interval. After all
of the data has been gathered into the sink node, we use a clustering algorithm to group the
sensor nodes into different clusters [22]. The process of clustering can discover the underlying
pattern and correlation of different sensor nodes. In our model, we use the k-means clustering
algorithm, which aims to partition the m observations into k collections C' = {cy, ¢z, ..., ¢k}, SO
as to minimize the sum of the distance between samples and the corresponding cluster centroid,

which can be formalized by:

k
. _ ) 2
arngmZZHx wi| (11)

i=1 zec;
where u; is the mean of points in ¢;. Now, the training stage has come to an end.

e Further, the result of clustering will be distributed to each sensor node, and the correlation between
sensor nodes has been clear and definite. Then, the cluster head selection strategy mentioned in
Section 3 will be used at each transmission epoch to ensure the head of each cluster, and all if
the data of each cluster will be gathered into the cluster head and then compressed by principal
component analysis, i.e., each sensor node transmits a k-bit message synchronously. Suppose that
there are m sensor nodes in the current cluster, then the head of the current cluster will get a X, 1

data matrix. Accordingly, we can get the covariance matrix Y, through the equation:
S = E[(X — B[X))"(X — E[X]) (12)

The eigenvector matrix Wy, of the covariance matrix Y can be calculated through the eigenvalue
decomposition. Following this, we can get the transformation matrix Oy, based on the number
p (p < k) of PCs by selecting the first p columns of the eigenvector matrix 1. The value of
p can be decided by Equation (5) to guarantee the error bound of our model. To elaborate, we
calculate the R(p) at each cluster head node and set p to the minimum value that satisfies the
inequation R(p) > J, where 4 is a predefined value to measure the error bound that the system
can tolerate. Afterwards the data matrix can be transformed into a new space by Z,,,, = X©O
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(The formula is a little different from Equation (3), just owing to the difference between the form
of the original data expression. In Equation (3), observations are arranged by columns; however,
they are arranged by rows here). Due to the strong temporal-spatial correlation between different
nodes in the same cluster, we can use fewer PCs to transform the original data while retaining a
considerable variance. Thus, the goal of compressing will come true at a lower cost.

o Finally, the data matrix after compression Z,,, and the transformation matrix ©, will be sent to
the sink node, and the data matrix can be reconstructed at the sink node by X = ZOT. Thereafter,
we can calculate the mean square reconstruction error to evaluate the accuracy of the compression

model, which can be used for the reference of tuning parameters.

Regarding the complexity of our proposed model, the computational parts consist of the process of
clustering and compressing. For spatial clustering, we choose the Lloyds k-means algorithm, and its
computational complexity is often given as O(nkdi), where n is the number of d-dimensional vectors,
k the number of clusters and ¢ the number of iterations needed until convergence. For the process of
compression, the complexity of principal component analysis can be shown as O(p?m + p*) in which the
covariance matrix computation is O(p®*m) and the eigenvalue decomposition is O(p?); p is the number
of principal components, and m is the number of observations. Thus, the computational complexity of
our model can be regarded as O(nkdi + p*m + p?).

4.3. Cluster Maintenance

As the surroundings monitored by sensor nodes constantly change, the correlation among cluster
members may vary with time. The relevancy ensured by the training stage may not hold any more
after a period of time, so the cluster relation needs adaptive maintenance [23]. Whenever the mean
square reconstruction error has a significant increase exceeding the threshold and the retained variance
has an obvious decrease, while other conditions remain unchanged, it is reasonable to suspect that
the correlation among sensor nodes has changed. Thus, the clustering should be updated to keep the
accuracy of compression model. It can be ordinarily realized by rerunning the training stage mentioned

in Section 4.2.

5. Performance Evaluation

In this section, a simulation experiment has been executed to evaluate the performances of the
proposed model. Moreover, we also make a comparison with two existing PCA-based algorithms in

terms of compression accuracy and power efficiency.

5.1. Data

Data collected from 54 sensors deployed in the Intel Berkeley Research lab between 28 February
and 5 April in 2004 [24] have been used to perform the experiment. The records, such as timestamped
topology information, humidity, temperature, light and voltage, are collected by Mica2Dot sensors with
weather boards once every 31 s. The topology information of the sensors deployed in the research lab is
illustrated in Figure 5.
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In the Figure 5, each sensor has a coordinate according to the distance relative to the upper right
corner of the lab.

In our experiment, we choose the temperature data between 1 and 10 March of each sensor and
suppose that the coordinate of the sink node is just the mean of all sensor nodes for simplicity. The
missing data in some epochs are substituted by the following readings of the corresponding sensor during
data preprocessing for continuity.

It is shown that the environment data in the real world at two consecutive times has a high degree
of similarity, normally referred to as temporal correlation. Here, we calculate the reading difference of
any two consecutive times of three different sensor nodes of our experimental data and respectively plot
the CCDF (complementary cumulative distribution function) [10] in Figure 6. The value of the y axis is
the percentage of the reading difference that is more than the current corresponding x axis value, e.g.,
the value of z = 0.05 corresponds to the fact that the reading difference exceeds 0.05. Strong temporal
correlation can be observed in our experimental data, as less than a 10% reading difference is greater
than 0.1.

Spatial correlation usually refers to the fact that considerable similarity can be seen in the readings
of neighboring sensor nodes. We plot the readings of 10,000 epochs of four different sensor nodes
in Figure 7. By observing the topology structure of the deployed sensors in Figure 5, it is clear
that neighboring nodes tend to obtain similar readings, showing the strong spatial correlation in our

experimental data [25].
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5.2. Parameters Setting

For the construction of an AR model of each sensor, we construct a 1000 x 50-sized training sample
set to achieve the linear regression. It can be understood by 1000 observations and 50 epochs contained
in each observation, so an AR model of 50 parameters will be acquired for each sensor. In the process of
linear regression, the batch gradient descent algorithm is used to minimize the cost function, which can
be formulized by the mean square error between real output and predicted output, and the parameters
will be updated after each iteration until the cost function converges. In our experiment, we set the
number of iterations to iter = 5000 and the footstep of each iteration to o = 0.00001 to ensure that the

cost function can converge to the optimal value; see Table 1.

Table 1. Parameters used in constructing the AR model.

Parameter Value
Number of AR model parameters 50

Size of the training sample set 1000 x 50
Number of iterations in batch gradient descent 5000
Footstep of each iteration 0.00001

Table 1 summarizes the parameters that are used in constructing the AR model for each sensor.

For the first order radio model mentioned in Section 3, we set the energy dissipation of receiving and
transmitting to E... = 50 nJ/bit and the radio amplifier to £4,, = 100 pJ/bit/m?. We also suppose
that each transmission packet includes a 1000-bit message and the radio range of sensor nodes as
dyp = 10 m. The energy consumption of nodes whose transmission distance exceeds the predefined d
will be penalized by Equation 6. Note that there are different hypotheses about the radio feature. For
instance, energy dissipation in the transmission process may produce a different result. The parameters
setting can be seen in Table 2.

Table 2. Parameters used in the first order radio model.

Parameter Value

Energy dissipation FEeiec = 50 nl/bit
Radio amplifier Eamp = 100 pJ/bit/m?
Number of bits in each packet 1000 bits

Radio range of sensor nodes 10 m

For the clustering procedure, the k-means algorithm is used to group the sensor data into different
clusters, and we use the squared Euclidean measure as the metric and the k-means++ algorithm for
centroid initialization. More details are in [26].

The localPCA algorithm in [8] and the multi-PCA algorithm in [9] are selected as a comparison
model, where a minimum-hop route method is used to construct the data collecting tree. Put simply,
each node builds a minimum-hop route to the sink, so as to decide their parent node in the tree. Other
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existing algorithms for constructing maximum lifetime data gathering tree can also be used, such as [27].
In particular, the multi-PCA algorithm in [9] compresses the data by iteratively using the PCA method
in multiple layers, which is similar to our model, but without the clustering process, so it can be used
to evaluate the effect of the cluster selection in our proposed method. The iPC3algorithm in [4] and the
PC3 algorithm in [5] are not considered as comparison models, as the assumption in their method is

quite different from our model, which makes it difficult to have a fair comparison.

5.3. Compression Accuracy

Compressed data can be reconstructed at the sink node with the compressed data matrix Z and
transformation matrix © by Equation (2). We use the mean square error (MSE):

1l &1
MSE=—% % (alt] - &ift])” (13)
=1 t=1

as the measure metric of compression accuracy, where m is the number of sensor nodes and n is the
number of epochs. The square error of each epoch z;[t] is summed, and the average value is calculated
as the error of sensor X;; then, the mean value of all X; will be considered as the mean square error of
the model.

Just taking one sensor into account to think about what factors affect the compression accuracy of our
model, it is obvious that the number of principal components has a great influence. An illustration of the

influence of different principal components can be seen in Figure 8.
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Figure 8. Compressed data of Sensor 1 by different PCs.

In Figure 8, we compress the temperature data of 8000 epochs of Sensor 1 using a different number
of PCs and then reconstruct the data at the sink node. While the number of clusters £ is also a key factor,
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here, we just set £ = 6 for simplicity. It can be easily found that the number of PCs is larger and that
the reconstructed data curve is closer to the original data curve with a fixed value of k£ in most cases.
Hence, the number of principal components is a critical factor in compressing the data and maintaining
the accuracy.

Due to the fact that the accuracy can be measured by the mean square error, we calculate the mean
square error of Sensor 1 from 1000 epochs to 8000 epochs by part of Equation (13), i.e.,

n

Errorg — % S (wilt] - wilt))? (14)
t=1

The result is shown in Figure 9.

1.

Mean Square Error

e | | |
1000 2000 3000 4000 5000 6000 7000 8000
Epochs

Figure 9. Mean square error of reconstructed data of Sensor 1.

In Figure 9, we can see that the mean square error is decreasing with the number of principal
components increasing. In addition to the number of principal components, the number of epochs is
another key factor. The holistic trend of the mean square error is increasing as the number of epochs
grows, since in the situation of fewer epochs, the same number of principal components can retain more
variance. Taking the green line as an example, the mean square error is close to zero because eight PCs
can hold almost the whole variance of the original data at the first 4000 epochs. With the increase of the
number of epochs, eight PCs cannot retain the whole variance any longer. As a result, the mean square

error becomes larger.
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As we mentioned in Section 4.2, the number of principal components is adaptively decided by the
retained variance R(p) at each cluster head node, and p is the minimum value that satisfies R(p) > 0
when we set the error bound to §. Thereby, the value of § is also an important factor that influences the
mean square error of the proposed model. An illustration is shown in Figure 10, where retained variance
(denoted as “RV” in the legend) is represented by the value of . We take eight different numbers of
epochs from 1000 to 8000 and four different values of ¢ into account and then compute the mean square
error in each situation. This can be seen from Figure 10.

—=— 0.2 RV
61 —e— 0.5 RV
—A— 0.8 RV

—v— 1.0 RV

Mean Absolute Error

(4 2000 4000 6000 8000

Epochs

Figure 10. Mean square error for different values of §. RV, retained variance.

The value of MSE is decreasing with the value of § increasing, and the data are almost lossless when
we set § to one.

In addition to the values of p and 9, the number of clusters £ also affects the compression accuracy of
our model. With a fixed number of principal components p = 2, we compute the mean square error of
our model in a similar situation as d, in which we consider eight different numbers of epochs from 1000
to 8000 and four different values of k. The result is plotted in Figure 11, and it can be seen that the MSE
is decreasing with the increase of the value of k. However, we can see that the value of the MSE tends
to remain stable because the fixed number of PCs can hold almost all of the variance when the value of
k exceeds a certain value; the lines of £ = 6 and k£ = 8 approach each other in Figure 11.

From Figure 12, we can see that the performances of our proposed model outperforms the multi-PCA
algorithm proposed in [9] and the localPCA algorithm proposed in [8], where o = 0.8. The compression
accuracy of our proposed model is also better than the multi-PCA algorithm proposed in [9] when d = 0.5,
and it is clear that the cluster selection affects the reconstruct error.

We compare our proposed model with another two PCA-based algorithms in terms of the mean square
error, which can be seen in Figure 12.
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Figure 11. Mean square error for different values of k.
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Figure 12. Mean square error by different algorithms.

5.4. Compression Ratio

In terms of the compression ratio, we choose the number of communication messages as the measure

metric, which can be used to elementarily evaluate the compression performance of our model by
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comparing to other algorithms. In our experiment, each sensor node sends the data to the sink node
periodically involving a packet of 1000 bits each period. Due to the compression ratio of each sensor
being mainly decided by R(p), there is no doubt that the number of communication messages will be

severely affected by the value of . An experimental result is shown in Figure 13.
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6=02 §=05 5=0.8 multiPCA localPCA 6=1.0 none
Figure 13. Number of communication messages with different hypotheses.

In Figure 13, the number of communication messages is changing with the value of § with a fixed
number of clusters k£ = 6.

Although the transmission data will be a little less than our model if we send the data directly to the
base station at each sensor node, the cost of energy consumption is so considerable that the method is
not suitable for practice applications. A majority of communication messages are transmitted before
compression and will not change with the value of ¢, since the compression is implemented at the head
node of each cluster.

The compression performance of our proposed model is also compared to another two PCA-based
algorithms and the original method without any compression. The amount of transmission is calculated
for just one period, and the result is described in Figure 13, where the performances of our proposed
model are better than others, even when we set 9 = 0.8. From Figure 13, the gap between our proposed
model and other two PCA-based algorithms for the number of communication messages grows when
0 decreases.

According to the comparison of our model and the original method without any compression, the
compression performance can be seen clearly. Additionally, comparing to the multiPCA method, it can

be easily found that the cluster selection plays an important role in our model.
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Then, we compute the number of communication messages with different values of k£ and a fixed
value of 6 = 0.5; the result can be seen in Figure 14.
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Figure 14. Number of communication messages with different values of £.

The situation of £ = 1 is equal to the multiPCA algorithm, and £ = 54 is similar to the original
method without any compression; however, the number of communication messages is less than the
value in Figure 13 due to the fact that we set 0 = 0.5 here and that sensor nodes do not need to transmit
all of the data. What is more, it can be seen that the number of communication messages decreases first
with the increase of the value of k, but increasing with a high speed when the value of £ exceeds a certain
value, since the principal components constantly vary, to retain the fixed value of 9. In practice, the value
of k can be decided through a process of cross-validation, which is popular in machine learning.

5.5. Energy Efficiency

In terms of the energy efficiency, first, we evaluate the performances of the cluster head selection
strategy proposed in Section 3 based on the first order radio model. Suppose the lifetime of the wireless
sensor networks is the time when the first node in the network runs out of its energy. We set the
initial power of each sensor node to 1.0 x 10° .J and run the transmitting process periodically until
one node uses up the power. Accordingly, the number of periods representing the times of transmitting
is recorded. As shown in Table 3, our proposed model can sustain 14 periods of transmitting and
compressing, while multi-PCA just holds nine periods. The same model, which just replaces the cluster
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head selection strategy with DDSP, can sustain 11 periods, proving the effectiveness of our proposed
strategy. Additionally, the model based on the multi-hop route tree can hold seven periods.

Table 3. Lifetime comparison with the first order radio model.

Model Periods
Our proposed model 14
Same model with DDSPcluster head selection strategy 11
Multi-PCA model 9
Based on a multi-hop route tree 7

Then, we compare the energy consumption of our model with other algorithms, and the parameter
settings is the same as above. The DDSP algorithm in [12] is put into a comparison model because it
is also a model based on a clustered architecture, to reduce the energy consumption. The total energy
consumption of each period is plotted in Figure 15.
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Figure 15. Energy consumption of each period.

In Figure 15, we can see that the energy consumption of our model is less than the DDSP algorithm
in [12], as the cluster head selection in DDSP is uncorrelated in different rounds, while our model
takes the correlation of different periods into consideration. The energy consumption of our model
is also less than the multi-PCA algorithm, where we can conclude the effects of cluster selection. By
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grouping the data into different clusters, the similarity in each cluster is considerably promoted. Through
a process of PCA compression at each cluster head node, less components can be used to represent the
greater variance of the original data, and the effect becomes more obvious with the periods increasing.
In this way, the number of communication messages reduces greatly, and following that, the energy
consumption is significantly decreased. According to the comparison, our model is more effective
and efficient.

6. Conclusions and Future Work

Taking the spatial correlation among sensor nodes into consideration, we group the sensor nodes into
different clusters according to magnitude similarity, as well as trend similarity. To conserve energy and
to prolong the lifetime of wireless sensor networks, we design an adaptive cluster head selection strategy,
which can dynamically find the cluster head and minimize the energy consumption. Thereafter, data from
different sensor nodes is aggregated to the head nodes of the clusters, and data compression by principal
component analysis is carried out to reduce the data transmission and cut down the energy usage. We
propose an adaptive strategy of selecting the number of principal components with the compression
error bound. Finally, the performances, including compression accuracy and the compression ratio,
are evaluated by computer simulations, and we made a comparison with other existing PCA-based
algorithms to show the effectiveness and efficiency of our proposed model.

In this paper, although we only consider the data from sensors in the monitored environment, such as
temperature and humidity, the model we proposed can also be applied to other application circumstances.
Our proposed model can also be extended to a multi-hop sensor network, and then, a hierarchical
clustering algorithm can be used to group the sensor nodes into different clusters. Due to the fact that the
relevancy among sensor nodes is obviously increased by spatial clustering, the performances of many
existing algorithms will be improved. Thus, the compression mode of considering the correlation among
sensor nodes can be used to enhance the performances of other existing models. Besides, more advanced
works that exploit principal component analysis in a distributed way can be mentioned [28].
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