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Abstract: Decision fusion for distributed detection in sensor networks under non-ideal
channels is investigated in this paper. Usually, the local decisions are transmitted to the
fusion center (FC) and decoded, and a fusion rule is then applied to achieve a global decision.
We propose an optimal likelihood ratio test (LRT)-based fusion rule to take the uncertainty of
the decoded binary data due to modulation, reception mode and communication channel into
account. The average bit error rate (BER) is employed to characterize such an uncertainty.
Further, the detection performance is analyzed under both non-identical and identical local
detection performance indices. In addition, the performance of the proposed method is
compared with the existing optimal and suboptimal LRT fusion rules. The results show
that the proposed fusion rule is more robust compared to these existing ones.
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1. Introduction

The advances of wireless communications and distributed signal processes have promoted the
deployment of the wireless sensor networks (WSN) in recent years [1–3]. Usually, a sensor network
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employing a number of spatially-distributed sensor nodes is deployed in a surveillance region. These
sensor nodes are able to make a decision locally and transmit such local decisions to a fusion center
(FC), where a final situation assessment is derived according to the information from local sensors.
The capability of detecting a target over a potential region can be significantly enhanced due to the
collaborative detection from multiple local sensors. Such a capability, together with the flexibility and
scalability of the WSN makes it an attractive solution to many surveillance applications, such as enemy
intruder detection [4], health inspection [5], home automation [6] and environment monitoring [7].
Our goal in this paper is to develop a fusion rule at the FC to derive a final decision of the WSN by
considering the uncertainty of the received data at the FC due to modulation, reception mode and the
communication channel between the FC and sensors.

1.1. Related Works and Motivation

In the past, communication and decision fusion were taken as two separated parts in the application
of the typical distributed detection, and the performance analysis for each part was carried out
independently. For a distributed detection system with reliable communication, we assume that the
local decisions are transmitted to the FC without errors. Based on such an assumption, numerical
results on the distributed detection with decision fusion have been widely studied [8–14]. Under
the assumption of conditional independence of the observations, the optimal decision rule at sensors
and the optimal fusion rule at the FC are both likelihood-ratio tests (LRTs) [8]. Based on the LRT,
several fusion statistics, including Chair–Varshney (CV) [9], generalized LRT [10], the Bayesian fusion
statistic [11] and the counting fusion statistic [12–14], were proposed. These obtained results rely on
the reliable communication between the FC and sensors. However, since the sensors are energy-limited,
the transmission power of each sensor is not large enough to make the communication reliable. Usually,
the communication channels are subject to channel fading, environmental noise and interferences. For
the sake of simplicity, the parallel access channel (PAC) is assumed for information transmission. Each
sensor transmits information to the FC across parallel and independent channels. This transmission can
be realized through time division multiple access (TDMA), frequency division multiple access (FDMA)
or code division multiple access (CDMA). Under the PAC assumption, several channel-aware fusion
rules were developed to take the impairment from the channel fading and noise into account [15–20].
In [15], an additive white Gaussian noise (AWGN) channel has been considered. A distributed binary
detection under an ad hoc network was investigated, and a mixed time scale recursive algorithm was
proposed. The distributed detection model with fading and noisy channels is illustrated in Figure 1.
Each sensor collects raw measurements, makes a local decision and then transmits it to an FC, where
the global decision about the presence/absence of a target is given. The fading and noisy channel
model considers the physical layer specifications. It can be regarded as a kind of modulation channel,
where the waveform carrier modulation and the match-filtering are neglected. Based on this model,
an LRT-based channel-aware fusion rule was derived in [17,18]. Starting from the optimal LRT fusion
rule, the authors also derived several suboptimal fusion rules: the maximum ratio combiner (MRC),
the two-stage CV, and the equal gain combiner (EGC) fusion rules according to the availability of the
channel state information (CSI) at the FC. Besides, a unified asymptotic decision rule based on the
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MRC fusion rule, namely generalized MRC, was proposed to detect weak signals in non-Gaussian
noise [19]. These fusion rules significantly rely on the instantaneous CSI. However, acquiring such
instantaneous information is cumbersome in resource-constrained applications and is not practical for
some time-varying channel. An LRT fusion rule based on channel statistics (LRT-CS) was proposed
in [20]. To avoid the requirement of the instantaneous CSI, the authors in [21,22] investigated the impact
of imperfect CSI on the fusion rule and detection performance by fixing the total transmission power
of training and data symbols. Furthermore, coherent and noncoherent receptions were included in the
analysis of the impact of channel uncertainty. Further, decision fusion with multi-hop transmissions [23]
was developed to form a channel-aware fusion rule by considering large-scale sensor networks.
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Figure 1. A block diagram of the parallel fusion model in the presence of fading and noisy
channels between sensors and the fusion center (FC).

These fusion rules based on the physical channel can completely characterize the channel error.
However, in a decode-then-fuse system, each sensor observes the noisy measurements and obtains the
local decisions according to given decision rules. Then, the decisions are coded, modulated and are
transmitted to the FC via the PAC with channel errors. The FC demodulates, decodes the received signal
and derives binary results. Then, all of these binary results are combined to give the final detection
result about the presence/absence of a target. Based on this model, the received signal is usually decoded
first, and a fusion rule is then applied at the FC. Hence, it is the decoded data that determine the final
fusion performance. The accuracy of such demodulated data can be characterized by the average bit
error rate (BER), which is the final output of the non-ideal PAC. The decode-then-fuse detection system
was first given in [24] for MIMO channels. However, it mainly studied the detection performance of
the two-stage CV fusion rule, which combines the maximum-likelihood (ML) or minimum mean square
error estimate of the transmitted symbols. The optimal fusion rule design in a decode-then-fuse detection
system, which combines corrupted binary local decisions that are transmitted from sensors via wireless
channels, to the best of our knowledge, is an unaddressed problem. Our goal here is to design the fusion
rule to combine corrupted binary local decisions that are transmitted from sensors and to evaluate the
detection performance of the decode-then-fuse strategy.
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1.2. Our Contributions and Paper Organization

Our attempt in this paper is to consider the communication channel errors and the fusion rule as
a whole in a decode-then-fuse sensor network. The data uncertainty at the FC due to channel errors,
modulation and reception mode are characterized by the BER. The main contributions of this work are
summarized as follows.

• An optimal LRT fusion rule with channel errors characterized by BER (LRT-BER) in a
decode-then-fuse sensor network is derived. The relation between the decode-then-fuse
fusion strategy and the physical layer specifications (modulation, reception mode and channel
statistic characteristics of the flat fading communication channels between sensors and the FC)
is established.
• The detection performance analysis of the decode-then-fuse sensor network in the presence of

channel errors is presented.
• For identical local detection performance indices, the closed-from solution of the system detection

performance and threshold choice method are derived by randomized test. For non-identical
local detection performance indices, the central limit theorem (CLT) approximation is utilized
to perform the performance analysis.

In addition, the detection performance of the proposed fusion rule is compared with the existing fusion
rules, e.g., MRC, EGC, two-stage CV and LRT-CS. The simulation results show that better detection
performance can be achieved by using the LRT-BER fusion rule.

The rest of this paper is organized as follows. Section 2 gives the detection model and the local
decision rule at each sensor. Several previous fusion statistics are reviewed in Section 3. The LRT-BER
fusion rule is presented in Section 4. The performance analysis of the proposed fusion rule based on the
Neyman–Pearson (N-P) criterion is studied in Section 5. Numerical results are organized in Section 6,
and some conclusions are drawn in Section 7.

2. Statement of the Problem

Consider an WSN-based target detection system consisting of N spatially-distributed sensors and
an FC. There are two hypotheses H0 and H1 under test. H0 corresponds to target-absence and H1

corresponds to target-presence. Let Xi be the observed data at the i-th sensor (i = 1, . . . , N ). Note that
Xi can be either a random variable or a random vector. The observed data across the whole network
are x = [X1, X2, . . . , XN ]T , where the superscript T denotes the transpose. A local decision rule γi(·)
is applied to the observed data, and a local decision ui is available, i.e., ui = γi(Xi), ∀ : 1≤i≤N .
The local decisions can be written in a vector as u = [u1, u2, . . . , uN ]T . The local decision ui is
coded, modulated and then is transmitted to the FC via a wireless channel with channel errors. The FC
decodes, demodulates the received signal and then derives binary corrupted results from sensors. The
received data can be distorted by the non-ideal communication channels due to noise and the multipath
effect. Furthermore, errors can be brought in by using different modulation/demodulation schemes and
reception modes. Assuming that yi is the demodulated data of ui at the FC, the complete impact of the
transmission channel, the modulation/demodulation scheme and reception mode can be characterized by
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P (yi|ui). Then, all of these results y = [y1, y2, · · · , yN ]T from local sensors are combined according to
the proposed fusion rule γ0(·) to give a final detection result u0 about the presence/absence of a target,
i.e., u0 = γ0(y). Here, u0 ∈ {0, 1} is the final decision of the detection system, where ‘0’ denotes target
absence and ‘1’ denotes target presence. Figure 2 gives an illustration of such a decision fusion system.
It can be shown that the fusion model forms a Markov chain, i.e., H0/H1 → x → u → y → u0

is a Markovian process. Since the system detection performance is related to the specifications,
including modulation/demodulation schemes, reception modes and the characteristics of the non-ideal
communication channel, the more practical BER-based decision fusion strategy for the decode-then-fuse
target detection system will be developed and studied in this paper.

Sensor 1

Sensor 2

Sensor N

FC

1u

2u

N
u

�

�

�

1x

2x

N
x

0uNon-ideal

channel

1y

2y

N
y

0 1H H

( )|
i i

P y u

Figure 2. A block diagram of parallel fusion model in the presence of the non-ideal channel
characterized by P (yi|ui).

To meet the bandwidth limitation of the wireless channel and power-limited budgets of sensors,
we consider one-bit quantization according to the local decision rule ui = γi(Xi), i.e., ui ∈ {0, 1}.
We denote Pfai and Pdi , respectively, as false alarm and detection probabilities corresponding to the
local decision ui for the i-th sensor. In this paper, we focus on the derivation of the optimal fusion rule
at the FC and assume that the local decisions are known, and each sensor detection performance index,
the probability of detection and the probability of false alarm, is assumed to be predefined. The local
detection performance indices can be determined according to a predefined detection range with a given
local decision rule or can be estimated by a recursive algorithm, e.g., joint probability estimation [25].

The proposed fusion strategy is implemented as follows. Each sensor observes noisy measurements
and derives a local binary decision. Then, the local decision result is coded and modulated before
signal transmission. The fusion strategy in the FC is performed after demodulation and decoding the
corrupted decisions from sensors. Thus, the fusion rule can be regarded as a decode-then-fuse one.
The main goal of this manuscript is to provide a fusion strategy at the FC based on the demodulated
or decoded data. Hence, the intermediate process of the practical modulation/demodulation and
coding/decoding is not mentioned. Here, however, we employ “decode” to distinguish the modulation
channel model characterized by a flat and slow fading envelope (see Figure 1) that does not consider
communication quantization.
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3. Review of Previous Work

This section gives the modulation channel model characterized by the flat fading envelope hi, and the
communication quantization is not considered. Several suboptimal fusion statistics based on such a flat
fading envelope are reviewed.

Consider a fading and noisy communication channel model (see Figure 1). Each sensor obtains noisy
measurements and derives the local decision ui, i = 1, · · · , N according to given local decision rules,
such as the energy detector and correlation detector. The local decision ui ∈ {0, 1}, for i = 1, . . . , N is
encoded as bi = 2ui − 1 for binary phase-shift keying (BPSK) modulation. Then, each sensor transmits
the signal ρi(t) = bi

√
Ei·s(t), where Ei is the data symbol transmit power and s(t) is a predetermined

normalized waveform. At the receiver, i.e., the fusion center, the received signal is:

zi(t) = hi(t)bi
√
Ei·s(t) + ni(t)

where ni(t) is the channel AWGN with zero mean and variance σ2 and hi(t) is a real valued envelope
modeled as a Rayleigh distribution with unit second moment gains, i.e., f(hi) = 2hie

−h2i for hi ≥ 0. We
assume that the data symbol transmission energy is the unit. After matched filtering by the waveform
s(t) at the FC, we have:

zi = hibi + ni (1)

The goal is to design the fusion rule according to the data from local sensors. As such, we neglect
the waveform carrier modulation and the match-filtering process. The received SNR for the Rayleigh
fading envelope with unit second moment gains is defined as SNR = E(h2

i )/σ
2 = 1/σ2, where the

E(·) denotes the expectation. For such a distributed detection model, the received data do not consider
the communication quantization and take the value between −∞ and +∞. Note that the phase of the
channel is assumed to be known, which can be accomplished by shifting the channel estimation from
the FC to sensors to pre-compensate for the channel phase rotations [26]. The fusion rule is then applied
to obtain a final decision for the target detection system. Here, some widely-used suboptimal fusion
statistics based on the flat fading envelope hi in Equation (1) are summarized as follows.

3.1. Two-Stage CV Fusion Statistic

Under a high SNR assumption, the received data zi = hibi + ni at the FC can easily be detected as
one or −1. Hence, the optimal LRT rule can be approximated as:

ΛCV =
∑

sign(zi)=1

log
Pdi
Pfai

+
∑

sign(zi)=−1

log
1− Pdi
1− Pfai

(2)

The detailed derivation can be found in [20]. It assumes that the channel has high SNRs, and thus,
the estimates of the received data are reliable. As the SNR decreases, the approach suffers a significant
performance loss.
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3.2. Maximum Ratio Combiner Fusion Statistic

For the communication channel with low SNRs, it has been shown that the LRT fusion statistic for
identical local detection performance indices can be approximated in [18] by:

ΛMRC =
1

N

N∑
i=1

hizi (3)

Note that the fusion statistic ΛMRC depends on the channel fading envelope hi.

3.3. Equal Gain Combiner Fusion Statistic

Motivated by the MRC statistic, the EGC fusion statistic, which requires the minimum amount of
prior information about the communication channel, is also proposed in [18], expressed as:

ΛEGC =
1

N

N∑
i=1

zi (4)

Note that neither the knowledge of the communication channel nor the local detection performance
indices Pdi and Pfai are required for the statistic ΛEGC.

3.4. LRT Based on Channel Statistics

In [20], a new LRT fusion rule based on the prior information regarding the channel statistic
characteristics instead of the instantaneous CSI hi is proposed. Assuming a Rayleigh fading channel
with unit power, i.e., f(hi) = 2hie

−h2i , hi ≥ 0, the LRT-CS can be written as:

ΛCS =
N∑
i=1

log
1 + (Pdi −Q(azi))

√
2πazie

(azi)
2

2

1 + (Pfai −Q(azi))
√

2πazie
(azi)

2

2

(5)

where Q(·) is the complementary distribution function of the standard Gaussian expressed as

Q(x) = 1
2π

∫∞
x
e−

y2

2 dy and a = 1/(σ
√

1 + 2σ2). The LRT-CS incorporates the Rayleigh fading
characteristics into the fusion statistic to avoid the requirement of the instantaneous CSI.

4. Decision Fusion Rule with Channel Errors Characterized by BER

This section gives the optimal fusion rule based on the non-ideal channel characterized by the
probability P (yi|ui). It can be written as a function of BER. The BER is able to describe the data
uncertainty at the FC due to channel errors, as well as modulations/demodulations. By taking different
physical layer specifications, including modulation, reception mode and channel characteristics between
sensors and the FC, the BER is derived. In this paper, we consider the flat and slow fading channel.
This means that the channel fading is roughly equal across the entire signal bandwidth for a narrowband
signal transmission [27].

For a decode-then-fuse distributed detection system, the FC decodes the received data and obtains the
binary quantization results. Thus, the wireless and non-ideal channel can be modeled as the probability
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P (yi|ui). The probability of a k bit error, when n bit data are transmitted, follows a binomial distribution,
given as [28]:

P (n, k) =

(
n

k

)
(Pe)

k(1− Pe)(n−k) (6)

where Pe is the channel BER. We have P (yi = 0|ui = 1) = P (yi = 1|ui = 0) = P (1, 1) = Pe.
P (1, 1) denotes the probability of one-bit error for one-bit transmission. As we know, the BER depends
on several factors of the communication channel, including the reception mode at the FC, the signal
modulation/demodulation method at sensors and the FC and the statistic characteristics of the non-ideal
channel. Thus, the overall impact from the non-ideal channel and the different modulation/demodulation
schemes on the received data can be characterized by Pe. As such, the fusion rule of the decode-then-fuse
collaborative detection system and the physical layer specifications are related to each other by Pe.

For a flat and slow Rayleigh fading channel, the BER with coherent binary frequency-shift keying
(BFSK or 2FSK) modulation, coherent BPSK modulation and noncoherent differential phase-shift
keying (DPSK) modulation can be addressed as the following relations (see [27] pp: 170∼176):

Pe =


1
2

(
1−

√
γb

2+γb

)
coherent 2FSK modulation

1
2

(
1−

√
γb

1+γb

)
coherent BPSK modulation

1
2(1+γb)

noncoherent DPSK modulation

(7)

where γ̄b is the average received SNR of the communication channel, defined as:

γ̄b =
Pr
N0B

=
Pr
σ2

(8)

where N0B = N0/2×2B is the total noise power within the bandwidth 2B and σ2 = N0/2×2B.
Pr is the received signal power. Furthermore, the received SNR can be regarded as
γ̄b = Eb/(N0BTb) = Eb/N0 for data pulses with Tb = 1/B [27]. For a flat and slow Ricean fading
channel with different K factors, the BER with coherent 2FSK modulation, coherent BPSK modulation
and noncoherent DPSK modulation can be written as:

Pe =



1
π

∫ π
2

0
(1+K) sin2 φ

(1+K) sin2 φ+0.5γb
exp

(
− 0.5Kγb

(1+K) sin2 φ+0.5γb

)
dφ

coherent 2FSK modulation
1
π

∫ π
2

0
(1+K) sin2 φ

(1+K) sin2 φ+γb
exp

(
− Kγb

(1+K) sin2 φ+γb

)
dφ

coherent BPSK modulation
1+K

2(1+K+γb)
exp

(
− Kγb

1+K+γb

)
noncoherent DPSK modulation

(9)

where K is the ratio of the powers of the line of sight component to the scattered component of
the received signal. For a flat and slow Nakagami-m fading channel, the BER with coherent 2FSK
modulation, coherent BPSK modulation and noncoherent DPSK modulation is given as:

Pe =


1
π

∫ π
2

0

(
1 + 0.5γb

m sin2 φ

)−m
dφ coherent 2FSK modulation

1
π

∫ π
2

0

(
1 + γb

m sin2 φ

)−m
dφ coherent BPSK modulation

1
2

∫ π
2

0

(
1 + γb

m

)−m
dφ noncoherent DPSK modulation

(10)
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where m is the Nakagami parameter. The detailed derivation of these BERs can be found in [27].
The main task of this paper is to construct a fusion rule according to the decoded results yi, for

1≤i≤N . Here, we only consider the N-P criterion, since the prior probability of the hypotheses is
usually unknown a priori. The optimal LRT-based fusion rule for N-P criterion can be written as:

P (y | H1)

P (y | H0)

H1

≥
<
H0

TN (11)

where TN is the fusion threshold of the LRT fusion statistic. The LRT statistic (11) based on the
knowledge of channel BER can be further written as:

Λ =
P (y|H1)

P (y|H0)
=

N∏
i=1

P (yi|H1)

P (yi|H0)

=
N∏
i=1

∑
ui
P (yi | ui)P (ui | H1)∑

ui
P (yi | ui)P (ui | H0)

=
N∏
i=1

P (yi | ui = 1)Pdi + P (yi | ui = 0)(1− Pdi)
P (yi | ui = 1)Pfai + P (yi | ui = 0)(1− Pfai)

(12)

where Pdi is the detection probability and Pfai is the false alarm probability of the i-th sensor. The
above equation is obtained by following the fact that H0/H1 → x → u → y → u0 forms a Markov
chain in Figure 2. The local binary decision results are transmitted by using the BPSK, 2FSK or DPSK
modulation scheme. The demodulated data at the FC are also binary, i.e., yi ∈ {0, 1}. Expanding the
fusion statistic Λ in Equation (12) with respect to the one-bit error probability, we have:

Λ =
N∏
i=1

(1− Pe)yi P (1−yi)
e Pdi + P yi

e (1− Pe)(1−yi) (1− Pdi)
(1− Pe)yi P (1−yi)

e Pfai + P yi
e (1− Pe)(1−yi) (1− Pfai)

(13)

Note that in Equation (13), the equation holds yi is either zero or one, and the facts
P (yi = 0|ui = 1) = P (yi = 1|ui = 0) = Pe and P (yi = 1|ui = 1) = P (yi = 0|ui = 0) = 1 − Pe
according to Equation (6) are employed. For Equation (13), two cases (Pe = 0 and 0 ≤ Pe ≤ 1/2) are
considered as follows.

(1) If Pe = 0, i.e., the communication channel is error-free, Λi in the BER-based fusion statistic
Λ =

∏N
i=1 Λi can be reduced to:

Λi =


Pdi
Pfai

, yi = 1(or ui = 1), Pe = 0
1−Pdi
1−Pfai

, yi = 0(or ui = 0), Pe = 0
(14)

This fusion statistic is the CV statistic in [9]. Note that the CV statistic instead of the two-stage CV
statistic is the optimal fusion statistic under error-free communication channels.

(2) If 0 < Pe ≤ 1/2, i.e., the local decisions are subject to transmission errors, the fusion statistic (13)
can be written as:

Λ =
N∏
i=1

Pdi + Pe
2yi−1(1− Pe)1−2yi(1− Pdi)

Pfai + Pe
2yi−1(1− Pe)1−2yi(1− Pfai)

(15)
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It can be observed that the fusion statistic for the setup Pe = 0 can be regarded as the CV statistic
under the ideal transmission channels. Here, we focus on the channel-aware fusion rule, and the fusion
statistic with the 0 < Pe ≤ 1/2 setup is considered. Taking the logarithm of Equation (15), we obtain
the log-likelihood ratio based on BER (LRT-BER), shown as:

ΛBER =
N∑
i=1

log

[
Pdi + (Pe/(1− Pe))2yi−1(1− Pdi)
Pfai + (Pe/(1− Pe))2yi−1(1− Pfai)

]
(16)

Let S0 = {i : yi = 0} and S1 = {i : yi = 1}. Alternatively, Equation (16) can be further expressed as:

ΛBER =
∑
i∈S1

log
Pdi + (Pe/(1− Pe))(1− Pdi)
Pfai + (Pe/(1− Pe))(1− Pfai)

+
∑
i∈S0

log
Pdi + ((1− Pe)/Pe)(1− Pdi)
Pfai + ((1− Pe)/Pe)(1− Pfai)

(17)

The BER-based fusion statistic ΛBER requires the knowledge of the sensor detection probability Pdi ,
the false alarm probability Pfai and the BER of the communication channel between each sensor and
the FC. The fusion statistic is based on the assumption that the transmitted symbol is {0, 1}. It is
straightforward to show that the symbol {+1,−1} leads to an identical fusion statistic with the symbol
{0, 1}. For the proposed BER-based fusion rule, the modulation mode is reflected in the BER rather than
the transmission symbol. By contrast, for the flat and slow fading channel characterized by the channel
envelope hi, the modulation is reflected in the transmission symbols ({+1,−1} and {0, 1}) [21,22].

Notice that, for the decode-then-fuse strategy Equation (17), the communication channel between
sensor i and the FC is modeled as the probability P (yi|ui) for binary ui and yi. Such a probability can
completely characterize the uncertainties due to modulation/demodulation, reception mode, as well as
the channel flat fading statistics’ characteristics. As such, we can focus on the fusion process, and the
communication errors between sensors and the fusion center are taken into account by the probability
P (yi|ui), which can be expressed as the function of Pe. Pe in Equations (7), (9) and (10) is a function
of the received SNR γ̄b, which can be estimated by transmitting training symbols before fusing data
transmission [29–31].

5. Performance Analysis and Discussion

The system detection performance of the proposed LRT-BER fusion rule is evaluated in this section.
Here, we consider two cases: (1) sensors with identical local detection performance, i.e., the detection
and false alarm probabilities are equal; and (2) sensors with different detection performance. For the
former case, the closed-form performance analysis is carried out by deriving the distribution of the
fusion statistic LRT-BER. For the latter case, the closed-form solutions are difficult to derive, since the
distribution of the ΛBER fusion statistic is a nonlinear function of yi. The central limit theorem (CLT) and
the deflection coefficient are employed to carry out the performance evaluation.
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5.1. Closed-Form Performance Analysis for Identical Local Detection Performance Indices

If the local detection performance indices are equal to each other, i.e., Pdi = Pd and Pfai = Pfa, for
i = 1, . . . , N , the fusion statistic Equation (17) can be written as:

Λ′BER = N ′1log
Pd + Pe/(1− Pe)(1− Pd)
Pfa + Pe/(1− Pe)(1− Pfa)

+ (N −N ′1)︸ ︷︷ ︸
N ′

0

log
Pd + (1− Pe)/Pe(1− Pd)
Pfa + (1− Pe)/Pe(1− Pfa)

= N ′1C1 + C2 (18)

where N ′0 = |S0| and N ′1 = |S1| with | · | denoting the cardinality, that is N ′0 is the number of yi = 0 in
all N demodulated data, whereas N ′1 is the number of yi = 1 in all N demodulated data. C1 and C2 are
constants given as:

C1 = log

[
Pd + Pe/(1− Pe)(1− Pd)
Pfa + Pe/(1− Pe)(1− Pfa)

· Pfa + (1− Pe)/Pe(1− Pfa)
Pd + (1− Pe)/Pe(1− Pd)

]
(19)

and:

C2 = N log

[
Pd + (1− Pe)/Pe(1− Pd)
Pfa + (1− Pe)/Pe(1− Pfa)

]
(20)

The fusion statistic Λ′BER is an affine function of N ′1. Under both hypotheses H1/H0, N ′1 =
∑N

i=1 yi

has a binomial distribution, i.e., N ′1 ∼ B(N,Pj), for j ∈ {0, 1}. Here, the success probability under H1

hypothesis is:
P1 = P (yi = 1 | H1) = (1− Pe)Pd + Pe(1− Pd) (21)

Similarly, the probability of yi = 1 under H0 hypothesis is:

P0 = P (yi = 1 | H0) = (1− Pe)Pfa + Pe(1− Pfa) (22)

As such, under the N-P criterion, given a predefined system false alarm probability α, we have:

PFA =
∑
k∈κ

(
N

k

)
P k

0 (1− P0)N−k ≤ α (23)

where κ = {k : k =
∑N

i=1 yi ≥ T} and T represents the fusion threshold of the statistic N ′1. The
threshold T can be obtained by maximizing all of the solutions that satisfy Inequality in Equation (23).
Correspondingly, the detection probability of the fusion statistic N ′1 can be written as:

PD = Pr(N ′1 = k≥T |H1)

=
∑
k∈κ

(
N

k

)
P k

1 (1− P1)N−k (24)
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For the fusion statistic Λ′BER = N ′1C1 +C2, when C1 > 0, i.e., (Pd−Pfa)(1−2Pe) > 0, the detection
probability of Λ′BER is:

P ′D = Pr(N ′1C1 + C2 ≥ T ′ | H1)

= Pr(N ′1 ≥
T ′ − C2

C1

|H1)

,Pr(N ′1 ≥ T |H1)

= PD (25)

where T ′ is the threshold of Λ′BER. The condition (Pd−Pfa)(1−2Pe) > 0 is satisfied when the detection
probability Pd is larger than the false alarm probability Pfa and the BER Pe is less than 1/2. This
condition is easily satisfied for a practical decode-then-fuse target detection system. It can be observed
from Equations (24) and (25) that the detection probability is equal for the fusion statistic N ′1 and Λ′BER.
The constants C1 and C2 will lead to different thresholds for N ′1 and Λ′BER. For the statistic N ′1, the
threshold is T , while for the statistic Λ′BER, the threshold is T ′ = C1T + C2.

According to the N-P criterion, it is required to maximize the system detection probability of the
FC while the system false alarm probability is below a given value α. Note that the threshold T only
takes values from zero to N . For such a case with finite integer numbers of the fusion threshold, the
desired system false alarm probability α cannot be achieved. Hence, one can use the randomized fusion
strategy under the N-P criterion. Under such a strategy, the FC declares the “detect” randomly with a
probability [32,33]. The fusion space can be partitioned into three parts, given as:

δ(y) =


1, Λ′BER(y) > TR

ω, Λ′BER(y) = TR

0, Λ′BER(y) < TR

(26)

where ω, 0 ≤ ω ≤ 1 is a randomized factor and TR is the randomized fusion threshold. The procedure
to obtain the fusion threshold TR and the randomized factor ω is summarized as follows.

(1) Search and obtain the randomized fusion thresholds TR = [T 1
R , · · · , TLR ]T to satisfy the inequality∑

k∈κR

(
N

k

)
P k

0 (1− P0)N−k ≤ α (27)

where κR is defined as κR = {k : k =
∑N

i=1 yi≥T lR}, 1 ≤ l ≤ L. L is the number of thresholds that
satisfy the inequality.

(2) Maximize the searching thresholds TR in step 1 to obtain TR, i.e., TR = max(TR).

(3) Obtain the randomized factor ω by:

ω =
α−

∑
k∈κR

(
N
k

)
P k

0 (1− P0)N−k(
N
TR

)
P TR

0 (1− P0)N−TR
(28)
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(4) The system false alarm probability P R
FA for randomized detection can be written as:

P R
FA = α =

∑
k∈κR

(
N

k

)
P k

0 (1− P0)N−k

+ ω

(
N

TR

)
P TR

0 (1− P0)N−TR (29)

Similarly, the system detection probability P R
D is:

P R
D =

∑
k∈κR

(
N

k

)
P k

1 (1− P1)N−k

+ ω

(
N

TR

)
P TR

1 (1− P1)N−TR (30)

For randomized fusion strategy, the given false alarm probability α can be achieved by adjusting the
term ω

(
N
TR

)
P TR

0 (1 − P0)N−TR under the N-P criterion. However, for the non-randomized fusion rule
in [18], there always exists a gap between the required system false alarm probability α and PFA.

5.2. Asymptotic Performance Analysis for Identical Local Detection Performance Indices

In this subsection, the asymptotic performance analysis with respect to a large number of sensors is
carried out by using the CLT approximation when the local detection performance indices are equal to
each other. The fusion statistic Λ′BER is equivalent to the statistic N ′1 in terms of the system detection
performance. N ′1 follows the binomial distribution. For the CLT approximation performance evaluation,
the system false alarm probability and detection probability can be written as:

PFA = P (Λ′BER ≥ TC | H0) = Q

(
TC −NP0√
NP0(1− P0)

)
(31)

and:

PD = P (Λ′BER ≥ TC | H1) = Q

(
TC −NP1√
NP1(1− P1)

)
(32)

where P1 and P0 are given in Equations (21) and (22). TC is the fusion threshold under this case. Q(·)
is the complementary distribution function of the standard Gaussian. Clearly, NP0 and NP0(1 − P0)

are the mean and variance under H0 hypothesis. Similarly, NP1 and NP1(1 − P1) are the mean and
variance under H1 hypothesis. The CLT approximation does have a tractable performance evaluation.
From Equations (31) and (32), we have:

PD = Q

(
Q−1 (PFA)

√
P0(1− P0)−

√
N(P1 − P0)√

P1(1− P1)

)

According to the N-P criterion, it is required to maximize the system detection probability at the FC
while the system false alarm probability is below a given value α. When:

P1 − P0 = (1− 2Pe)(Pd − Pfa) > 0
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i.e., P1 > P0, under identical system alarm probability α = PFA, the system detection probability PD

can be enhanced when the number of sensor N increases due to the monotonic decreasing characteristic
of function Q(·).

5.3. Asymptotic Performance Analysis for Non-Identical Local Detection Performance Indices

For non-identical local detection performance indices, i.e., Pdi 6= Pdj for i 6= j, the closed-form
expression for the system detection performance is difficult to derive. Here, we resort to the asymptotic
performance analysis. The statistic ΛBER is the sum of independent random variables. This allows direct
application of the CLT approximation, and the limiting distribution under the H0 and H1 hypotheses is
Gaussian with respective mean and variance. The mean and variance under the H1 hypothesis are:

E(ΛBER | H1) =
N∑
i=1

[g(yi = 1)((1− Pe)Pdi + Pe(1− Pdi))

+ g(yi = 0)(PePdi + (1− Pe)(1− Pdi))]

∆
=

N∑
i=1

f(yi, Pdi)
∆
= µBER1 (33)

and:

Var(ΛBER | H1) =
N∑
i=1

[
E(g2(yi) | H1)− f 2(yi, Pdi)

]
∆
= σ2

BER1 (34)

where g(yi) is defined as:

g(yi) = log

[
Pdi + (Pe/(1− Pe))2yi−1(1− Pdi)
Pfai + (Pe/(1− Pe))2yi−1(1− Pfai)

]
(35)

and f(yi, Pdi) is defined as:

f(yi, Pdi) = g(yi = 1)((1− Pe)Pdi + Pe(1− Pdi))
+g(yi = 0)(PePdi + (1− Pe)(1− Pdi)) (36)

E(g2(yi) | H1) denotes:

E(g2(yi) | H1) = g2(yi = 1)((1− Pe)Pdi + Pe(1− Pdi))
+ g2(yi = 0)(PePdi + (1− Pe)(1− Pdi)) (37)

Similarly, the mean and variance under the H0 hypothesis are:

E(ΛBER | H0)
∆
=

N∑
i=1

f(yi, Pfai)
∆
= µBER0 (38)
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and:

Var(ΛBER | H0) =
N∑
i=1

[
E(g2(yi) | H0)− f 2(yi, Pfai)

]
∆
= σ2

BER0 (39)

where E(g2(yi) | H0) is defined as:

E(g2(yi) | H0) =g2(yi = 1)((1− Pe)Pfai + Pe(1− Pfai))
+ g2(yi = 0)(PePfai + (1− Pe)(1− Pfai))

(40)

By using the CLT approximation, the system false alarm probability can be written as:

PFA = P{ΛBER ≥ Γ | H0} = Q

(
Γ− µBER0

σBER0

)
(41)

where Γ is the threshold of the fusion statistic. The corresponding detection probability is:

PD = P{ΛBER ≥ Γ | H1} = Q

(
Γ− µBER1

σBER1

)
(42)

It is interesting to find that the accuracy of CLT approximation depends not only on the number of
sensors, but also on the local detection performance indices and received SNRs [18].

5.4. Deflection Coefficient Performance Analysis

In addition to the CLT approximation, an alternative performance analysis can be made through
the deflection coefficient [34,35]. The optimal detection performance of the LRT-based fusion rule
can be obtained by maximizing the deflection coefficient when a Gaussian signal in Gaussian noise
is detected [20]. The deflection coefficient is defined as:

D(Λ) =
[E(Λ | H1)− E(Λ | H0)]2

Var(Λ | H0)
(43)

where E(· | Hj), j ∈ {0, 1} is the mean under Hj hypothesis and Var(· | Hj) is the variance under
Hj hypothesis.

From Equation (43), when the local detection performance indices are equal to each other, the
deflection coefficient is given as:

d2
1 =

[E(Λ′BER | H1)− E(Λ′BER | H0)]2

Var(Λ′BER | H0)

=
N(P1 − P0)2

P0(1− P0)
(44)

Similarly, when the local detections of the deflection performance indices are not equal, the deflection
coefficient is given as:

d2
2 =

[E(ΛBER | H1)− E(ΛBER | H0)]2

Var(ΛBER | H0)
(45)
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where E(ΛBER | H1) and E(ΛBER | H0) are the means given in Equations (33) and (38), respectively.
Var(ΛBER | H0) is the variance given in Equation (39). Unlike the closed-form performance analysis
that needs the distribution of the fusion statistic, the deflection coefficient only requires the first and the
second order moments under the H1/H0 hypothesis.

5.5. Practical Issues

The PAC is assumed for MRC, EGC, two-stage CV and the proposed LRT-BER fusion rule. When
each sensor simultaneously transmits a signal to the FC via such a PAC, which can be realized through
frequency division multiple access, the bandwidth requirement for the sensor network is large, especially
for the large-scale sensor network. When each sensor transmits a signal by TDMA, a large detection
delay is required. The bandwidth requirement or detection delay is equal for identical scale networks.

Under the PAC assumption, the type-based distributed detection strategies are proposed in [36,37],
where the power consumption for signal transmission is established. The same power consumption
model can be employed in the LRT-BER fusion rule, which is given as:

PE =
N∑
i=1

E[Ei · (ui)2] (46)

where E[·] denotes the expectation and Ei denotes data symbol transmit power. Note that all of these
fusion rules are based on the PAC assumption. Thus, the power consumption for signal transmission are
identical for all of these fusion rules. Further, the proposed fusion rule LRT-BER at the FC requires more
power consumption due to the information decoding, which is not required for MRC, EGC, two-stage
CV and LRT-CS.

6. Numerical Results

In this section, numerical results of the proposed LRT-BER for BPSK, DPSK and 2FSK modulations
under the Rayleigh, Ricean and Nakagami-m fading envelope are given according to the performance
evaluation in Section 5. Furthermore, the performance comparison with the existing MRC, EGC and
LRT-CS rules is carried out under the N-P criterion. For the case of identical local detection performance
indices, we first give the detection performance of the proposed fusion rule by using the closed-form
system detection performance (Equations (29) and (30)). Then, the system detection performance of the
proposed fusion rule is compared to the existing fusion rules.

6.1. Performance Evaluation of the Proposed LRT-BER Fusion Rule

Figure 3 shows the receiver operating characteristic (ROC) curves of the proposed LRT-BER fusion
rule in Equation (16). The false alarm probabilities and the detection probabilities are assumed to be
identical for all sensors. In this experiment, we use Pfa = 0.1 and Pd = 0.6. We consider two different
SNRs of the received signals, γb = −5 dB and γb = 5 dB. The number of sensors is N = 10 and
N = 20, respectively. BPSK modulation is used, and the Rayleigh fading envelope is assumed.

In Figure 3, both the closed-form performance evaluation in Equations (29) and (30) and the
CLT approximation performance evaluation in Equations (31) and (32) are included. The label “CF”
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denotes the closed-form performance evaluation, and the label “CLT” denotes the CLT approximation
performance evaluation. We can see that as the system false alarm probability increases, the system
detection probability increases. Note that there is a gap between the CLT approximation and the
closed-form performance evaluation under the same condition. This is because the CLT approximation
performance evaluation is based on the assumption with a large number of sensors. However, for the
setup of Figure 3, there is only 10 or 20 sensors. It can be observed that when the number of sensors
increases, such a gap decreases. Furthermore, the gap under the SNR γb = −5 dB is smaller than
that under the SNR γb = 5 dB. Besides, the detection performance of a single sensor system has been
marked in the intersect of the two lines Pd = 0.6 and Pfa = 0.1. The fusion system based on LRT-BER
fusion rule can significantly enhance the system detection performance under the case of received SNR
γ̄b = 5 dB. However, for γ̄b = −5 dB and N = 10, the fusion system only slightly outperforms a
single sensor system. This is because the degradation due to the communication channel leads to larger
transmission error between sensors and the FC.

To examine the relationship between the detection performance of the proposed LRT-BER
Equation (16) and the physical layer specifications (modulation, reception mode and the channel
characteristics), several experiments are given. Figure 4 gives the system detection probability as a
function of SNR. The system false alarm probability is PFA = 0.01. The number of sensors is N = 20.
The closed-form performance evaluation is used. In terms of the statistic characteristics of the flat and
slow fading channel, Rayleigh fading, Ricean fading with factor K = 2 and Nakagami-m fading with
m = 2 are considered. Figure 5 describes the ROC curves. The false alarm probability is PFA = 0.01,
and the SNR is set to γb = −5 dB. Other parameters are the same as they are in Figure 4.
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Figure 3. ROC curves for the likelihood ratio test (LRT)-bit error (BER) fusion rule based
on central limit theorem (CLT) and closed-form (CF) performance evaluation with N = 10
and N = 20. Average received SNRs are assumed to be SNR = −5 dB and SNR = 5 dB.
Each local detection index is assumed to be equal to each other (Pfa = 0.1, Pd = 0.6). BPSK
modulation is used, and the Rayleigh fading envelope is assumed.
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Figure 4. Detection probability of the LRT-BER fusion rule as a function of different
received SNRs for BPSK, 2FSK and DPSK modulations with N = 20. Rayleigh fading,
Ricean fading with factor K = 2 and Nakagami-m fading with m = 2 are considered.
Pfa = 0.1, Pd = 0.6, and PFA = 0.01.
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Figure 5. ROC curves for the LRT-BER fusion rule based on CF closed-form performance
evaluation with N = 20. The average received SNR is γ̄b = −5 dB. Each local detection
index is assumed to be equal to each other (Pfa = 0.1, Pd = 0.6). The system alarm probability
is PFA = 0.01.

From these two figures, it can be observed that the LRT-BER fusion rule with coherent BPSK
modulation performs better than that with the other modulations for the identical statistic characteristics
of the channel. This is because the BER of the BPSK modulation is smaller than that of 2FSK and
DPSK modulations, which can be derived from Equations (7), (9) and (10). For identical modulation, the
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LRT-BER fusion rule with the Nakagami-2 assumption outperforms that with the Ricean-2 and Rayleigh
assumption. The fusion rule with Rayleigh fading assumption exhibits the worst detection performance.
This behavior can be explained easily. The Rayleigh fading assumption is the worst case, since the
line of sight component of the received signal is not included. In Figure 5, we also give the detection
performance of a single sensor system, which is marked as the intersection of the dashed lines. We can
find that the detection performance of the proposed fusion rule with BPSK and 2FSK can be enhanced by
fusing. However, when the DPSK modulation is employed, the fusion system does not provide enhanced
performance. This is caused by the large transmission error of DPSK modulation, which is also derived
from Equations (7), (9) and (10). From the above results, we can conclude that the non-ideal transmission
channel can deteriorate the system detection performance and even exhibits worse performance than a
single sensor.

6.2. Performance Comparison with the Other Fusion Rules

In this experiment, the detection performance of MRC, EGC, two-stage CV and LRT-CS is compared
to the proposed LRT-BER fusion rule. Figure 6 gives the ROC curves of these fusion rules. The number
of sensors is N = 6. We assume that the local detection performance indices are equal to each other
(Pfa = 0.1 and Pd = 0.6). The received SNR is set to γ̄b = 5 dB, BPSK modulation and Rayleigh fading
are considered. Since there is no closed-form performance evaluation for MRC and LRT-CS fusion rules
proposed in [20], here the CLT approximation performance evaluation is employed. It can be observed
that LRT-BER and LRT-CS exhibit a small deviation and perform better than MRC, EGC and two-stage
CV. The performance of the MRC is worse than that of the other fusion rules.
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Figure 6. Comparison of ROC curves for LRT-BER, maximum ratio combiner (MRC),
equal gain combiner (EGC) and LRT-channel statistics (CS) with six sensors, γb = 5 dB,
Pfa = 0.1, Pd = 0.6. BPSK modulation and Rayleigh fading assumption are considered.
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In addition to the CLT approximation, the deflection coefficient in Equation (43) for the mentioned
fusion rules is given in Figure 7. A zoom-in display of the deflection coefficient under the low SNR
scenario is also included. The local detection performance indices are assumed to be identical for all
sensors. In this experiment, we use Pfa = 0.1 and Pd = 0.6. BPSK modulation is employed. The
number of sensors is N = 6 and N = 18, respectively. Figure 7 shows that the EGC method that
requires the minimum amount of information performs better than the MRC under a wide range of
received SNR. The only exception is that MRC slightly outperforms EGC under very low SNR (e.g.,
SNR < −5 dB). Furthermore, LRT-CS and the proposed LRT-BER present a small deviation. This is
consistent with the results in Figure 6.
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Figure 7. Deflection coefficient of MRC, EGC, LRT-CS, two-stage CV and LRT-BER
statistics with six and eighteen sensors, respectively, Pfa = 0.1, Pd = 0.6. BPSK modulation
and the Rayleigh fading assumption are considered.

In practice, sensors have different local detection performance. Furthermore, the received SNRs are
not identical. Thus, we examine the detection performance of MRC, EGC, two-stage CV, LRT-CS, as
well as the proposed LRT-BER fusion rule under the case of different local detection performance and
different SNRs. Figure 8 gives the ROC curves for N = 10 sensors by using the CLT approximation
performance evaluation. The solid lines are the detection performance of the mentioned fusion rules with
the setting of local detection probability Pd = [0.43, 0.75, 0.68, 0.74, 0.75, 0.32, 0.75, 0.68, 0.70, 0.70].
In order to illustrate the system performance improvement caused by one sensor, the case with the fourth
sensor local detection probability Pd(4) = 0.99 (the local detection probability of Sensor 4 changes from
0.74 to 0.99) is also included in Figure 8. The dashed lines give the results with such case. The average
SNRs are γ̄b = [5.6, 8.0, 6.0, 8.5, 6.8, 10.0, 5.0, 5.0, 5.1, 5.1] dB. The local false alarm probabilities are
assumed to be equal to each other, which are set to Pfa = 0.1. BPSK is employed, and Rayleigh fading
is assumed.

From the figure, we can see that when the local detection probabilities, as well as the received
SNRs are not equal to each other, the proposed LRT-BER fusion rule outperforms significantly the
other fusion rules. The detection performance of LRT-CS is better than MRC, EGC and two-stage CV.
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Furthermore, the MRC fusion rule presents the worst detection performance. Further, when one of the
sensors improves the detection probability from Pd(4) = 0.74 to Pd(4) = 0.99, the improvement of the
system detection probability PD (the difference between the solid line and the dashed line in Figure 8)
due to the increasing of local detection probability of one sensor is larger than that of LRT-CS. Thus, we
can concluded that the proposed fusion rule LRT-BER is more robust than the LRT-CS.
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Figure 8. ROC curves of LRT-BER, MRC, EGC and LRT-CS statistics with different local
detection probabilities and different received SNRs by using the CLT approximation. The
local false alarm probability is Pfa = 0.1. BPSK modulation and the Rayleigh fading
assumption are considered.

7. Conclusions

The problem of decision fusion for distributed detection under the non-ideal communication channel
in WSNs is investigated in this paper. As the BER is able to characterize all uncertainties of the
received data at the FC, an LRT-based fusion rule with non-ideal channel using BER is proposed.
When the local detection performance indices of sensors are equal to each other, the closed-form
system detection performance is derived. When the local detection performance indices of sensors are
not identical, the CLT approximation and the deflection coefficient are used to describe the detection
performance. Numerical results are presented to demonstrate the performance of the LRT-BER fusion
rule. Furthermore, the performance of the proposed LRT-BER is compared to that of MRC, EGC,
two-stage CV and LRT-CS. The proposed LRT-BER fusion rule provides the most robust detection
performance compared to the mentioned fusion rules. However, the local detection performance indices
and the received SNR are required for the proposed LRT-BER. The fusion rule under unknown local
detection performance indices and SNR will be studied in our future work.
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