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Abstract: Distributed density estimation in sensor networks has received much attention
due to its broad applicability. When encountering high-dimensional observations, a mixture
of factor analyzers (MFA) is taken to replace mixture of Gaussians for describing the
distributions of observations. In this paper, we study distributed density estimation based
on a mixture of factor analyzers. Existing estimation algorithms of the MFA are for the
centralized case, which are not suitable for distributed processing in sensor networks. We
present distributed density estimation algorithms for the MFA and its extension, the mixture
of Student’s t-factor analyzers (MtFA). We first define an objective function as the linear
combination of local log-likelihoods. Then, we give the derivation process of the distributed
estimation algorithms for the MFA and MtFA in details, respectively. In these algorithms,
the local sufficient statistics (LSS) are calculated at first and diffused. Then, each node
performs a linear combination of the received LSS from nodes in its neighborhood to obtain
the combined sufficient statistics (CSS). Parameters of the MFA and the MtFA can be
obtained by using the CSS. Finally, we evaluate the performance of these algorithms by
numerical simulations and application example. Experimental results validate the promising
performance of the proposed algorithms.
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1. Introduction

Sensor networks are composed of tiny, intelligent sensor nodes that are deployed over a geographic
region. This type of network has a broad range of applications, such as environmental monitoring,
precision agriculture and military surveillance [1–3]. Distributed estimation over sensor networks is
to estimate some parameters of interest through local computation and information exchange among
neighbor nodes. Compared to centralized estimation, it does not need to send observations collected by
all of the sensors to a powerful central node, so the complexity and resource consumption can be reduced.
Furthermore, distributed estimation is more flexible and robust to node and/or link failure [2,4]. Recently,
many distributed estimation algorithms have been proposed, such as distributed LMS [5], distributed
recursive least squares (RLS) [6], distributed source location [7], distributed power allocation [8],
distributed sparse estimation [9,10], distributed information theoretic learning [11] and distributed
Gaussian process regression [12].

Mixture of Gaussians (GMM) is a flexible and powerful probabilistic modeling tool for density
estimation. It has been used in several areas, such as pattern recognition, computer vision,
signal and image analysis and machine learning. When estimating parameters in the GMM by
the maximum likelihood criterion, the expectation maximization (EM) algorithm [13,14] is usually
adopted. It iteratively performs the expectation step (E-step) to calculate the conditional expectations
of unobserved/hidden variables and runs the maximization step (M-step) to estimate parameters of
data distributions based on the result of the E-step. However, when the dimension of observations is
high, the fitting performance of the GMM deteriorates or even the associated EM algorithm cannot
work [15]. The main reason is that the GMM cannot realize dimensionality reduction, which is to
compress highly-correlated components of observations. In this case, a mixture of factor analyzers
(MFA) [16,17] can be considered. The MFA combines local factor analysis in a form of a finite mixture.
As factor analysis can describe variability among high-dimensional observations in terms of potentially
low-dimensional latent factors, the MFA can carry out dimensionality reduction simultaneously when
finishing specific tasks. Moreover, in order to process the non-normality of data or outliers, normal
distributions in the MFA can be replaced by Student’s t-distributions, obtaining the mixture of Student’s
t-factor analyzers (MtFA) [18,19]. Therefore, the MFA and its extension MtFA are effective tools for
processing high-dimensional observations [20]. They have been successfully applied in the domains of
signal processing [21,22], bioinformatics [23,24] and other applied fields.

In sensor networks, GMM has been introduced for density estimation of observations [25–32]. The
estimation process for the GMM needs to be realized by distributed EM algorithms. According to the
way by which nodes communicate with each other, distributed EM algorithms can be classified into the
incremental type [25,26], the consensus type [27] and the diffusion type [28–32]. In the incremental
scheme [25,26], a long way from the first node to last node of the pre-selected path is needed. When
any node along the path fails, reliability problem may happen. In the consensus-based distributed EM
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algorithm for the GMM [27], a consensus filter, by which global statistics for each node is achieved,
is carried out between the E-step and the M-step at each iteration. The objective is to obtain the same
estimations for all nodes at each iteration. In the diffusion type of distributed estimation for the GMM,
each node exchanges information only with its neighbors through a diffusion cooperative protocol. Good
performance is obtained while communication overhead is kept low [2,4]. In this paper, we focus
on a diffusion type of distributed estimation. Among previous studies, a distributed model order and
parameter estimation algorithm for the GMM was proposed in [28]. Moreover, algorithm performance
was analyzed. In [29], a diffusion-based EM algorithm was presented for distributed estimation in
unreliable sensor networks. In this scenario, some nodes may be subject to data failures and report
only noise. The aim of the algorithm was to achieve the optimal performance within the whole range
of SNRs. In [30], information diffusion and averaging were considered and performed simultaneously.
In [31], an adaptive diffusion scheme was proposed. In [32], the performance of the diffusion-based EM
algorithm was analyzed. It could be considered as a stochastic approximation method [33] to find the
maximum likelihood estimation of the GMM.

As the MFA can handle high-dimensional observations, which are also usually encountered in sensor
networks, in this paper, we propose distributed density estimation algorithms for the MFA and its
extension MtFA. We represent these two algorithms as D-MFA and D-MtFA, respectively. Specially,
for each node in the sensor network, we define an objective function as the linear combination of
local log-likelihoods, whose combination weights are determined by the number of observations in the
corresponding neighbor nodes. After local sufficient statistics are computed, the current node calculates
its combined sufficient statistics by a linear weighed combination of these local sufficient statistics from
nodes in its neighborhood set. Finally, parameters of the MFA and MtFA are updated using the combined
sufficient statistics. Apart from the distributed processing of the MFA and the MtFA in this paper, there
are two other differences from the existing algorithms. First, in the relevant algorithms [25,27,28],
mixing proportions in the GMM are different at each node, whereas means and covariances are the same
throughout the network. On the contrary, in this paper, all of the parameters in the MFA or the MtFA are
the same throughout the network. Using this design, distributed clustering and classification can be done
in arbitrary nodes after the estimation process finishes. Second, for each node, the objective function is
directly defined. The combination of weights in the objective function is effectively designed.

The rest of this paper is organized as follows. In Section 2, a brief overview of the MFA and
the MtFA are provided. In Section 3, the D-MFA algorithm and D-MtFA algorithm are formulated.
In Section 4, numerical simulations for the synthetic observations are performed to illustrate the
effectiveness and advantages of the proposed algorithms. Moreover, the application of these algorithms
to distributed clustering is also presented. Finally, conclusions are drawn in Section 5.

The acronyms mentioned in this paper are listed in the following.

Acronym list:
GMM Gaussian mixture model
EM expectation maximization
E-step expectation step
M-step maximization step
MFA mixture of factor analyzers
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MtFA mixture of Student’s t-factor analyzers
D-MFA distributed density estimation algorithm for the MFA
D-MtFA distributed density estimation algorithm for the MtFA
CSS combined sufficient statistics
LSS local sufficient statistics
S-MFA standard EM algorithm for the MFA
S-MtFA standard EM algorithm for the MtFA
NC-MFA non-cooperation MFA
NC-MtFA non-cooperation MtFA
D-GMM distributed density estimation algorithm for the GMM
D-tMM distributed density estimation algorithm for the Student’st-mixture model

2. Preliminaries: MFA and MtFA

2.1. Mixture of Factor Analyzers

Let the observed dataset be Y = {y1, ...,yN}. In the MFA, it assumes that each p-dimensional data
vector yn is generated as:

yn = µi + Aiun + eni with prob. πi (i = 1, . . . , I) (1)

where I is the number of mixing components. The corresponding q-dimensional (q < p) factor
un ∼ N (un|0, Iq) is independent of the eni ∼ N (eni|0,Di), where Di is a p × p diagonal matrix.
The parameter µi is the mean of the i-th analyzer, and Ai (p× q) is the linear transformation known as
the factor loading matrix. The so-called mixing proportions πi (i = 1, ..., I) are nonnegative and sum to
one. The standard EM algorithm for the MFA is given in [15,16].

2.2. Mixture of Student’s t-Factor Analyzers

Since the MFA adopts the normal family for the distributions of the errors and the latent factors,
it is sensitive to outliers. An obvious way to improve the robustness of this model for observations
having longer tails than normal is using the t-family of elliptically-symmetric distributions. Therefore,
the MtFA has been proposed in [18]. In the MtFA, it assumes that p-dimensional data vector yn is
generated in the same way as that in the MFA, as shown in Equation (1). However, the distributions
of q-dimensional (q < p) factor un and noise eni are t(un|0, Iq, νi) and t(eni|0,Di, νi), respectively.
In the above Student’s t distributions, νi is called the degree of freedom that controls the length of the
tails of the distributions. With this modification, the MtFA is more robust to outliers and can process the
non-normality of observations in a better way [23]. In essence, t(un|0, Iq, νi) and t(eni|0,Di, νi) can
be respectively regarded as average Gaussian scale distributionsN (un|0, Iq/wni) andN (eni|0,Di/wni)

with the Gamma distributed precision scalar wni, that is:

t(un|0, Iq, νi)=
∫

dwniN (un|0, Iq/wni)G(wni|νi/2, νi/2)

t(eni|0,Di, νi)=

∫
dwniN (eni|0,Di/wni)G(wni|νi/2, νi/2)
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where G(·) denotes the Gamma distribution. The standard EM algorithm for the MtFA is given in [14,18].

3. Distributed Estimation Algorithms for the MFA and MtFA

3.1. Network Model and Objective Function

Consider a sensor network with M nodes. The m-th node has Nm data observations
Ym = {ym,n}n=1,...,Nm (m = 1, ...,M), and ym,n denotes the n-th observation in node m. The
distribution of each p-dimensional observation ym,n is modeled by the MFA, defined in Equation (1).
It is noted that the factor associated with ym,n here is represented as um,n. The parameter set of the MFA
is Θ = {πi,µi,Ai,Di}i=1,...,I , which is to be estimated.

The network topology is described by a graph. Let W denote the distance that a node can
communicate via wireless radio links. Nodes m and l are connected if the Euclidean distance dm,l

between m and l is less than or equal to W . Moreover, a graph is connected if for any pair of nodes
(m,n), there exists a path from m to n. The neighborhood set of node m, denoted by Rm, is defined
as the one-hop neighbors of node m (including m itself). For example, in Figure 1, the dashed circle
represents the neighborhood set of node m, containing Node 1, Node 2, node l and node m itself.

 !"# $% &'()*+,-*,,./0'12//3%4% 4"4 4!4$4#500% 500%500 500 500#500# 500# 500" 500!500# 500$500" 500"500!500$500%
Figure 1. A sensor network consists of a collection of cooperating nodes. Node m only
exchanges information (e.g., local sufficient statistics (LSS) in the proposed D-MFA and
D-MtFA algorithms) with nodes in Rm.

In order to design the D-MFA and the D-MtFA algorithms, the objective functions should be carefully
specified at first. Here, we take node m in the sensor network for example. We define the objective
function Fm(Θ) of the MFA at node m as a linear combination of local log-likelihoods log p(Yl|Θ)

associated with nodes l in its neighborhood Rm.

Fm(Θ) =
∑
l∈Rm

clm · log p(Yl|Θ) =
∑
l∈Rm

clm

Nl∑
n=1

log

(
I∑

i=1

πiN(yl,n|µi,Ai,Di)

)
(2)

where {clm}l∈Rm are some non-negative combination coefficients satisfying the condition∑
l∈Rm

clm = 1, clm = 0 if node l /∈ Rm.
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It should be emphasized that when defining Fm(Θ), we consider two important factors. First, as node
m can only communicate with its neighbors, it is reasonable to define Fm(Θ) as a combination of local
log-likelihoods log p(Yl|Θ), (l ∈ Rm). When estimating Θ, node m can make use of the information
from nodes in Rm. Due to the effect of information diffusion, each node can obtain all information
directly or indirectly from other nodes. Second, the contributions of different local log-likelihoods
log p(Yl|Θ), (l ∈ Rm) for the estimation of Θ at node m may also be different. The combination
coefficient clm weights the importance of information flow from the node l (l ∈ Rm). Therefore, how to
choose clm is important. Here, we adopt a simple, but effective mechanism that clm is determined by:

clm =
Nl∑

l′∈Rm
Nl′

(3)

If node l has a larger number of observations Nl, the information from this node makes a larger
contribution to obtain more accurate parameter estimations. Therefore, a larger combination coefficient
clm in Equation (3) can further make this contribution prominent. In the future, a more effective
implementation, such as an adaptive strategy [4], can be considered to determine these combination
coefficients better.

3.2. Distributed Density Estimation Algorithm for the MFA

After the objective functions Fm(Θ) (m = 1, ...,M) have been determined, the next task is to
estimate parameters Θ in the MFA by maximizing Fm(Θ). For node l, an I-dimensional binary
latent variable zl,n, which is associated with yl,n, is introduced. As the MFA is a mixture model,
zl,n,i(= 1) denotes that yl,n belongs to the i-th component of the MFA. The latent variables for
node l in the neighborhood Rm are Ul = {ul,n}n=1,...,Nl

, Zl = {zl,n}n=1,...,Nl
, (l ∈ Rm). Now,

Fm(Θ) (m = 1, ...,M) in Equation (2) can be expressed as:

Fm(Θ) =
∑
l∈Rm

clm ·

{
log
∑
Zl

∫
dUl p(Yl,Zl,Ul|Θ)

}

where:
p(Yl,Zl,Ul|Θ) = p(Zl|Θ)p(Ul|Zl,Θ)p(Yl|Zl,UlΘ) (4)

The three conditional probabilities in Equation (4) are:

p(Zl|Θ)=

Nl∏
n=1

I∏
i=1

π
zl,n,i

i

p(Ul|Zl,Θ)=

Nl∏
n=1

I∏
i=1

N (ul,n|0, Iq)zl,n,i

p(Yl|Zl,Ul,Θ)=

Nl∏
n=1

I∏
i=1

N (yl,n|µi + Aiul,n,Di)
zl,n,i

Here, we derive the distributed estimation algorithm with the aid of the standard EM algorithm [13].
First, we introduce two distributions q(Zl) and q(Ul|Zl) defined over the latent variables. For any choice
of q(Zl) and q(Ul|Zl), the following decomposition holds:
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Fm(Θ) =
∑
l∈Rm

clm · L(ql,Θ) +
∑
l∈Rm

clm ·KL(ql||pl) (5)

where:

L(ql,Θ)=
∑
Zl

q(Zl)

∫
dUlq(Ul|Zl) log

{
p(Yl,Zl,Ul|Θ)

q(Zl)q(Ul|Zl)

}
KL(ql||pl)=−

∑
Zl

q(Zl)

∫
dUlq(Ul|Zl) log

{
p(Zl|Yl,Θ)p(Ul|Zl,Yl,Θ)

q(Zl)q(Ul|Zl)

}
The verification of log-likelihood decomposition can be found in [34]. As Fm(Θ) as a combination

of local log-likelihoods, the whole decomposition can also be expressed by a combination of local
log-likelihood decompositions, as shown in Equation (5).

Moreover, KL(ql||pl) in Equation (5) is the Kullback–Leibler divergence between q(Zl)q(Ul|Zl) and
p(Zl|Yl,Θ)p(Ul|Zl,Yl,Θ), which satisfies KL(ql||pl) ≥ 0. Therefore, it can be seen from Equation (5)
that

∑
l∈Rm

clm · L(ql,Θ) ≤ Fm(Θ). In other words,
∑

l∈Rm
clm · L(ql,Θ) is a lower bound on Fm(Θ).

As direct maximization of the Fm(Θ) is difficult, it can be solved by the maximization of this lower
bound instead.

Suppose that the parameters estimated in the last iteration are Θold = {πold
i ,µold

i ,Aold
i ,Dold

i }i=1,...,I .
In the first stage, the lower bound

∑
l∈Rm

clm · L(ql,Θold) is maximized with respect to q(Zl)q(Ul|Zl)

while holding Θold fixed. From Equation (5), this maximum can be achieved when KL(ql||pl) = 0.
In other words, q(Zl)q(Ul|Zl) = p(Zl|Yl,Θ

old)p(Ul|Zl,Yl,Θ
old). Therefore, two conditional

distributions, p(Zl|Yl,Θ
old) and p(Ul|Zl,Yl,Θ

old), should be computed.
Concretely, for node l (l ∈ Rm), p(Zl|Yl,Θ

old) can be calculated by:

p(Zl|Yl,Θ
old) =

Nl∏
n=1

I∏
i=1

p(zl,n,i|yl,n)

where:

p(zl,n,i|yl,n) =
πold
i N(yl,n|µold

i ,Aold
i (Aold

i )T + Dold
i )∑I

i′=1 π
old
i′ N(yl,n|µold

i′ ,A
old
i′ (Aold

i′ )T + Dold
i′ )

(6)

Moreover, p(Ul|Zl,Yl,Θ
old) should also be obtained by:

p(Ul|Zl,Yl,Θ
old) =

Nl∏
n=1

I∏
i=1

p(ul,n|yl,n, zl,n,i) =

Nl∏
n=1

I∏
i=1

N(ul,n|ul,n,i,Ωi) (7)

The mean um,n,i and covariance Ωi are:

ul,n,i =gT
i (yl,n − µold

i )

Ωi = Iq − gT
i Aold

i (8)

where:
gi =

[
Aold

i (Aold
i )T + Dold

i

]−1 ·Aold
i (9)

is an intermediate variable introduced to simplify expressions in the following steps.
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When the above two conditional distributions have been obtained, q(Zl)q(Ul|Zl) is determined and
held fixed, and the lower bound

∑
l∈Rm

clm·L(ql,Θ) is maximized with respect to Θ to get new estimated
Θnew. This will cause the lower bound to increase, which will necessarily cause the corresponding
Fm(Θ) to increase.

Concretely, the current lower bound is expressed as:∑
l∈Rm

clmL(ql,Θ)=
∑
l∈Rm

clm
∑
Zl

p(Zl|Yl,Θ
old)

∫
dUlp(Ul|Zl,Yl,Θ

old)

×
{
log p(Yl,Zl,Ul|Θ)− log

[
p(Zl|Yl,Θ

old)p(Ul|Zl,Yl,Θ
old)
] }

(10)

Discard the second logarithmic term unrelated to Θ in Equation (10); the objective function
represented by Qm(Θ) at node m is:

Qm(Θ)=
∑
l∈Rm

clm

Nl∑
n=1

I∑
i=1

p(zl,n,i|yl,n)p(ul,n|yl,n, zl,n,i)

×
{
zl,n,i log

[
πiN(ul,n|0, Iq)N(yl,n|µi + Aiul,n,Di)

]}

Now, parameters in Θ can be obtained by taking derivation of Qm(Θ) with respect to Θ.
First, πi and µi are updated to:

πi =

∑
l∈Rm

clm
∑Nl

n=1〈zl,n,i〉∑I
i′=1

∑
l∈Rm

clm
∑Nl

n=1〈zl,n,i′〉
(11)

and:

µi =

∑
l∈Rm

clm
∑Nl

n=1〈zl,n,i〉yl,n∑
l∈Rm

clm
∑Nl

n=1〈zl,n,i〉
(12)

respectively. Subsequently, by performing derivation of Qm(Θ) with respect to Ai, we have:

Ai =

∑
l∈Rm

clm
∑Nl

n=1〈zl,n,i〉(yl,n − µi)〈ul,n〉T∑
l∈Rm

clm
∑Nl

n=1〈zl,n,i〉 · 〈ul,nuT
l,n〉

(13)

Finally, the expression of Di can be obtained in the same way,

Di = diag

{∑
l∈Rm

clm
∑Nl

n=1〈zl,n,i〉
[
(yl,n − µi)(yl,n − µi)

T −Ai〈ul,nu
T
l,n〉AT

i

]∑
l∈Rm

clm
∑Nl

n=1〈zl,n,i〉

}
(14)

where diag{·} denotes the operator setting off-diagonal terms to zero. In Equations (11)–(14), 〈zl,n,i〉 is
the expectation of zl,n,i given by Equation (6). 〈ul,n〉 and 〈ul,nu

T
l,n〉 can be obtained from Equation (7),

which are:
〈ul,n〉 = ul,n,i and 〈ul,nu

T
l,n〉 = Ωi + ul,n,iu

T
l,n,i (15)

respectively. Substituting Equation (15) into Equations (13) and (14), we have:

Ai = Vigi(g
T
i Vigi + Ωi)

−1 (16)
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and:
Di = diag

{
Vi −Ai(g

T
i Vigi + Ωi)A

T
i

}
(17)

where:

Vi =

∑
l∈Rm

clm
∑Nl

n=1〈zl,n,i〉(yl,n − µi)(yl,n − µi)
T∑

l∈Rm
clm
∑Nl

n=1〈zl,n,i〉
(18)

From Equations (11), (12) and (16)–(18), we can see, when estimating parameters Θ at node m, that
three combined sufficient statistics (CSS) must be obtained, represented as:

CSS(1)
m [i]=

∑
l∈Rm

clm · LSS(1)
l [i]

CSS(2)
m [i]=

∑
l∈Rm

clm · LSS(2)
l [i]

CSS(3)
m [i]=

∑
l∈Rm

clm · LSS(3)
l [i] (19)

where:

LSS
(1)
l [i]=

Nl∑
n=1

〈zl,n,i〉

LSS
(2)
l [i]=

Nl∑
n=1

〈zl,n,i〉 · yl,n

LSS
(3)
l [i]=

Nl∑
n=1

〈zl,n,i〉 · yl,n · yT
l,n (20)

LSSl = {LSS(1)
l [i], LSS

(2)
l [i], LSS

(3)
l [i]}i=1,...,I are local sufficient statistics (LSS) of node l.

Therefore, CSS in node m is a linear combination of the LSS of nodes in Rm. If node l has a large
number of observations, the accuracy of calculated LSSl should be high and should make an important
contribution to the CSS of node m. A relatively large clm in Equation (3) can make this contribution
prominent, obtaining accurate estimation of Θ.

In the following, we summarize the realization process of the D-MFA algorithm.
Step 1 (Initialization): This initializes the parameters {πi,µi,Ai,Di}i=1,...,I . Each node l broadcasts

the number of its observationsNl to its neighbors. When receiving this information, each node calculates
the combination coefficient by Equation (3).

Step 2 (Computation): Each node l in the sensor network computes 〈zl,n,i〉, Ωi and gi

by Equations (6), (8) and (9), respectively. Then, it computes three local sufficient statistics
LSSl = {LSS(1)

l [i], LSS
(2)
l [i], LSS

(3)
l [i]}i=1,...,I according to its own observations Yl, by Equation (20).

Step 3 (Diffusion): Each node l in sensor networks diffuses its local sufficient statistics LSSl, as
shown in Figure 1.

Step 4 (Combination): When node m (m = 1, ...,M ) receives the local sufficient statistics from all
of its one-hop neighbor nodes l (l ∈ Rm), it computes the combined sufficient statistics {CSS(1)

m [i],
CSS(2)

m [i], CSS(3)
m [i]}i=1,...,I by Equation (19).
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Step 5 (Estimation): Nodem (m = 1, ...,M ) estimates πi, µi, Ai and Di according to Equations (11),
(12), (16) and (17), respectively. Here, we substitute Equation (19) into Equations (11), (12) and (18),
reformulating the estimation step as follows:

πi=
CSS(1)

m [i]∑I
i′=1CSS

(1)
m [i′]

µi=
CSS(2)

m [i]

CSS(1)
m [i]

Ai=Vigi(g
T
i Vigi + Ωi)

−1

Di=diag
{
Vi −Ai(g

T
i Vigi + Ωi)A

T
i

}
where:

Vi =
CSS(3)

m [i]− 2CSS(2)
m [i] · µi + CSS(1)

m [i] · µiµ
T
i

CSS(1)
m [i]

Step 6 (Termination): Node m (m = 1, ...,M ) calculates its current local log-likelihood as:

log p(Ym|Θnew) =
Nm∑
n=1

log

(
I∑

i=1

πiN(ym,n|µi,Ai,Di)

)
where superscript “new” denotes the newly estimated parameters at the current iteration. If
log p(Ym|Θnew) − log p(Ym|Θold) < ε, node m enters the terminated state; else, go to Step 2 and
start the next iteration. It is noted that the terminated nodes do no computation or communication in the
following iterations. If one node cannot receive information from a neighbor node in the next iteration,
the node will use the received and saved LSS information from that neighbor node at the last iteration
when updating CSS. When there is no message communication or information exchange in the network,
implying all nodes reach the terminated state, the algorithm ends.

3.3. Distributed Density Estimation Algorithm for the MtFA

Compared to the MFA, the main difference of the MtFA is that it has an additional degree of
freedom parameter νi (i = 1, ..., I). Therefore, the parameter set of the MtFA to be estimated is
Θ = {πi,µi,Ai,Di, νi}i=1,...,I . Moreover, apart from Zl and Ul, the latent variable
Wl = {wl,n,i}n=1,...,Nl

i=1,...,I should be introduced, explained in Section 2.2. Similarly, for node m in a sensor
network, a linear combination of local log-likelihoods associated with nodes in Rm is defined as:

Fm(Θ) =
∑
l∈Rm

clm · log p(Yl|Θ) =
∑
l∈Rm

clm

Nl∑
n=1

log

(
I∑

i=1

πi · t(yl,n|µi,AiA
T
i + Di, νi)

)
(21)

The derivation process of the D-MtFA algorithm is similar to that of the D-MFA, except that in Step 2,
the posterior distribution of p(wm,n,i|ym,n, zm,n,i) and p(um,n|ym,n, zm,n,i, wm,n,i) should be computed,
and in Step 5, νi needs to be estimated. We put this derivation in the Appendix in detail and directly
describe the D-MtFA algorithm here.

Step 1 (Initialization): This initializes the values of the parameters {πi,µi,Ai,Di, νi}i=1,...,I . Each
node l broadcasts the number of its observations Nl to its neighbors. When receiving this information,
each node calculates the combination coefficient by Equation (3).
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Step 2 (Computation): Each node l in the sensor network computes five local sufficient statistics
LSSl = {LSS(1)

l [i], LSS
(2)
l [i], LSS

(3)
l [i], LSS(4)

l [i], LSS
(5)
l [i]}i=1,...,I according to its observations Yl,

given as:

LSS
(1)
l [i]=

Nl∑
n=1

〈zl,n,i〉

LSS
(2)
l [i]=

Nl∑
n=1

〈zl,n,i〉 · 〈wl,n,i〉

LSS
(3)
l [i]=

Nl∑
n=1

〈zl,n,i〉 · 〈wl,n,i〉 · yl,n

LSS
(4)
l [i]=

Nl∑
n=1

〈zl,n,i〉 · 〈wl,n,i〉 · yl,ny
T
l,n

LSS
(5)
l [i]=

Nl∑
n=1

〈zl,n,i〉 · log〈wl,n,i〉 (22)

The expressions of expectations 〈zl,n,i〉 and 〈wl,n,i〉 in Equation (22) are given in the Appendix.
Moreover, the intermediate variables Ωi and gi should also be prepared for simplifying expressions
in Step 5, shown in the Appendix.

Step 3 (Diffusion): Each node l in the sensor network diffuses its local sufficient statistics LSSm, as
shown in Figure 1.

Step 4 (Combination): When node m (m = 1, ...,M ) receives the local sufficient statistics from all
of its one-hop neighbor nodes l (l ∈ Rm), it calculates the combined sufficient statistics, shown as:

CSS(H)
m [i] =

∑
l∈Rm

clm · LSS(H)
l [i] H = 1, 2, 3, 4, 5 (23)

Step 5 (Estimation): Node m (m = 1, ...,M) estimates the parameters of the MtFA:

πi =
CSS(1)

m [i]∑I
i′=1CSS

(1)
m [i′]

(24)

µi =
CSS(3)

m [i]

CSS(2)
m [i]

(25)

Ai = Vigi(g
T
i Vigi + Ωi)

−1 (26)

Di = diag
{
Vi −Ai(g

T
i Vigi + Ωi)A

T
i

}
(27)

where:

Vi =
CSS(4)

m [i]− 2CSS(3)
m [i] · µT

i + CSS(2)
m [i] · µiµ

T
i

CSS(1)
m [i]

(28)

In addition, νi is updated by solving the following equation:

log
(νi
2

)
− ψ

(νi
2

)
+ 1− CSS(5)

m [i]− CSS(2)
m [i]

CSS(1)
m [i]

− log

(
νoldi + p

2

)
+ ψ

(
νoldi + p

2

)
= 0 (29)
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where ψ(·) is the digamma function and νoldi is the value of νi on the last iteration of this algorithm.
Equation (29) can be solved by some numerical methods, i.e., the Newton method.

Step 6 (Termination): Node m (m = 1, ...,M ) calculates its current local log-likelihood
log p(Yl|Θnew), expressed in Equation (21). The superscript “new” denotes the newly-estimated
parameters at the current iteration. The termination condition of the algorithm is the same as that in
the D-MFA algorithm.

4. Experimental Results

4.1. Synthetic Data

In this subsection, we test the performances of the proposed algorithms on synthetic data. Here,
we consider a sensor network composed of 100 nodes to evaluate the estimation performance of the
proposed algorithms. Nodes are randomly placed in a square of 5 × 5. The communication distance is
taken as 0.8. In this setting, the connected graph reflecting network topology is shown in Figure 2.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Figure 2. Network connection.

In the first 30 nodes (Node 1–Node 30), each node has 80 observations. In the next 40 nodes
(Node 31–Node 70), each node contains 100 observations. In the last 30 nodes (Node 71–Node 100),
each node has 120 observations. All of the 10-dimensional observations in the 100 nodes are assumed
to be generated from three-component Gaussian mixtures. The parameters are as follows:

(π1, π2, π3) = (0.3, 0.5, 0.2);
µ1 = (3 3 3 3 3 0 0 0 0 0), µ2 = (0 0 0 0 0 0 0 0 0 0),
µ3 = (−3 − 3 − 3 − 3 − 3 0 0 0 0 0);
Σ1 = diag(1 1 1 1 1 0.1 0.1 0.1 0.1 0.1),
Σ2 = Σ1, Σ3 = Σ1.

We adopt several models to represent the distributions of these observations, and the task is to estimate
parameters in the models. Here, we compare the performance of four schemes. In the first scheme, the
standard EM algorithm for the MFA (S-MFA) is implemented in a centralized unit using all observations
from 100 nodes. In the second scheme, the D-MFA algorithm proposed in Section 3.2 performs
simultaneously in all nodes. In the third scheme, the EM algorithm for the MFA runs in each node using
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only local observations of that node. In other words, there is no information exchange among nodes.
We abbreviate it as non-cooperation MFA (NC-MFA) for description convenience. In the last scheme,
the distributed EM algorithm for the GMM (D-GMM) is implemented. In the D-GMM, the objective
function is similar to that of the proposed D-MFA, except that MFA is replaced by GMM. It should
be emphasized that the centralized unit is assumed to be always reliable in the S-MFA under ideal
conditions. However, this condition is not always fulfilled when the centralized unit fails. Therefore, the
S-MFA is seldom adopted in sensor networks. The aim is to test whether the estimation performance of
the D-MFA can approach that of the S-MFA.

In the initialization of these MFA schemes, the dimension of factors are set to five.
(π0

1, π
0
2, π

0
3) = (1/3, 1/3, 1/3), {µ0

1,µ
0
2,µ

0
3} are set as randomly-selected observations in the those

nodes. The initial elements in {D0
1,D

0
2,D

0
3} and {A0

1,A
0
2,A

0
3} are generated by standardized normal

distributions. In order to make the estimation results visible, the principal component analysis is
performed for observations, obtaining the two largest eigenvalues and the associated eigenvectors. Then,
the observations, the estimated means µi (i = 1, 2, 3) and the covariances Σi (Σi = AiA

T
i + Di) after

the termination of the algorithms can be projected into 2D principal subspace [34]. Figure 3 illustrates the
results of the estimated parameters at the 2D principal subspace in these four schemes. In this figure, the
estimated mean µi of each component is denoted by “+”, and the estimated covariance Σi is represented
by shaded ellipse. Concretely, in Figure 3a, parameters can be correctly estimated by the S-MFA, as the
centralized unit can use all of the observations directly. In Figure 3b–d, the results of a randomly-selected
node are given. For the NC-MFA, the appropriate parameters are incorrectly estimated, as it can only
use its own observations, which also happens in other nodes. For the D-GMM, as it is based on GMM,
it cannot describe and process high-dimensional observations well. Finally, in the D-MFA, each node
can receive the calculated LSS from nodes in its neighborhood set and combine them for parameter
estimation. Compared to GMM, MFA can reflect the properties of these high-dimensional observations
more accurately. Therefore, the estimated means and covariances are correct in the D-MFA, as shown
in Figure 3b. The other nodes have the same results as this selected node, which are not given here due
to space limitation. Moreover, as the same observations and models are used in three MFA schemes, the
changes of the average log-likelihood over all nodes in the S-MFA, log-likelihood of the D-MFA and the
NC-MFA are shown in different lines in Figure 4. We can see that as the iteration increases, the D-MFA
is convergent. Its convergence performance approaches that of the S-MFA.

In order to further show the estimation accuracy of the D-MFA at all of the nodes in a sensor network,
we select two kinds of parameters (π1, π2, π3) and µ1, giving the estimation results of these parameters.
In Figure 5, the estimated (π1, π2, π3) in the D-MFA and the NC-MFA at all 100 nodes are provided.
In the NC-MFA, each node cannot correctly estimate parameters due to limited observations and no
information exchange with other nodes, shown by dashed lines. On the contrary, after the D-MFA
converges, the estimated values (π1, π2, π3) in all 100 nodes approach their true values (0.3, 0.5, 0.2).
In Figure 6, we compare all of the vector components in µ1 estimated by these three MFA schemes. It
is noted that for the D-MFA and the NC-MFA, we give the mean and standard deviation of each vector
component over 100 nodes to reflect the whole performance of network. We can clearly see that the
S-MFA can correctly estimate µ1, as it can use all of the observations. For the D-MFA, the mean of
estimated µ1 in each vector component approaches the corresponding true value (3 3 3 3 3 0 0 0 0 0),
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while the mean of µ1 obtained by the NC-MFA is not consistent with true value. Moreover, the standard
deviation of D-MFA is smaller than that of the NC-MFA. Since the other parameters lead to similar
results, we omit them here.

Figure 3. Scatter plot of observations with the estimated parameters at 2D principal
subspace using different schemes: (a) S-MFA; (b) D-MFA; (c) NC-MFA; (d) D-GMM.
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Figure 4. Log-likelihood changes of three MFA schemes during 30 iterations.
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at 100 nodes.
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Figure 6. The mean and standard deviation of all of the vector components in estimated µ1

over 100 nodes.

For the D-MtFA algorithm, we test its performance and compare it to the S-MtFA, the NC-MtFA and
the D-tMM. It is noted that the S-MtFA, the NC-MtFA and the D-tMM can be realized by replacing
Gaussian distributions in the S-MFA, the NC-MFA and the D-GMM with Student’s t-distributions,
respectively. Here, observations are generated by mixtures of Student’s t-distributions. The parameters
{πi,µi,Σi}i=1,2,3 are unchanged while ν1 = ν2 = ν3 = 5. In Figure 7, the scatter plot of observations
with the estimated parameters at the 2D principal subspace is shown. It is noted that for the D-MtFA,
the NC-MtFA and the D-tMM, the results of a randomly-selected node are given. From this figure,
we can see several observations located out of ordinary regions, which can be taken as outliers. The
S-MtFA in the centralized unit, shown in Figure 7a, can grasp the distributions, as it can make use



Sensors 2015, 15 19062

of all observations. On the contrary, the performance of the NC-MtFA and the D-tMM are bad. The
reasons are similar to those of NC-MFA and D-GMM, which have been explained. When implementing
the D-MtFA, parameters can be accurately estimated, while the property of robustness to outliers is
still maintained, as shown in Figure 7b. In summary, the proposed D-MFA and the D-MtFA can
accurately estimate parameters in a distributed way when each node in sensor network has part of the
high-dimensional observations.

Figure 7. Scatter plot of observations with the estimated parameters at the 2D principal
subspace using different schemes: (a) S-MtFA; (b) D-MtFA; (c) NC-MtFA; (d) D-tMM.

4.2. Real Data

In several countries, there are monitoring sites located in different regions, whose tasks are to detect
nutritional ingredients in the wine samples. These sites form a sensor network, in which each site only
communicates with its neighbors and can implement local computations. The wine samples sent to these
monitoring sites may belong to different cultivars. Therefore, in each monitoring site, these samples
need to be classified, which is good for analyzing in-depth the relationship of nutritional ingredients in
the wine and their cultivars. It is certain that the more the references are available for each site, the better
the results will be. Therefore, the network and cooperation between sites are required.

In this subsection, we consider the wine cultivar clustering problem as a simulation of the above
scenario. The database of this problem is the wine dataset, which is one of the most popular datasets in
the UCImachine learning repository [35]. In this wine dataset, 178 samples are collected from a chemical
analysis of wines grown in three different cultivars in Italy (the No. 1∼No. 59 samples belong to the
first class; the No. 60∼No.130 samples belong to the second class; the No. 131∼No. 178 samples
belong to the third class). Each sample has 13 attributes, so the dimension of observations is 13. The
sensor network is composed of eight nodes, represented as eight monitoring sites. The average number
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of nodes in the neighborhood set is two, and the graph is guaranteed to be connected. The average
number of samples in each site is 22.

Clustering belongs to the unsupervised learning paradigm in machine learning. When the D-MFA (or
the D-MtFA) is adopted for clustering, initial values of parameters in the D-MFA are set, which are the
same as those in Section 4.1. Then, the corresponding algorithm derived in Section 3.2 (or Section 3.3) is
performed. After algorithm converges, an additional computation step based on the estimated parameters
Θ at node m is carried out to obtain 〈zm,n,i〉 by Equation (6). Finally, the cluster decision for each
observation ym,n is:

Cm,n = argmaxIi=1〈zm,n,i〉. m = 1, ...M, n = 1, ..., Nm

The clustering results of the D-MFA at Node 1∼Node 8 are shown in Figure 8.
In this figure, blue “◦” represents correctly-clustered observations, while red “×” denotes
wrongly-clustered ones. From these figures, we can see that the correct ratio in eight nodes are
100%, 100%, 95.2%, 95.5%, 100%, 95.5%, 100%, 92.9%. There are five wrongly-clustered
observations in all. The correct ratio in the entire network is 97.2%. In order to compare the performance
of the D-MFA with that of the S-MFA, we perform the D-MFA and the S-MFA algorithms 20 times. The
average correct ratio of these 20 runs by the D-MFA is 96.9%, approaching that by the S-MFA, which is
98.2%. The reason for the small performance gap between the S-MFA and the D-MFA may be that the
number of observations for each node is small and the dimension is relatively high. The accuracy of the
calculated LSS in Step 2 of the D-MFA are a little worse than those global sufficient statistics obtained
by all of the observations in the E-step of the S-MFA. For the NC-MFA, as the number of observations
in this example at each node is small, the clustering cannot be implemented. For the D-GMM, as the
dimension of observations is high, it also cannot finish the task of this example effectively. Moreover, as
there are no outliers in this dataset, the clustering result of the D-MtFA is the same as that of the D-MFA,
which is not shown here. In summary, we can use the proposed schemes to realize distributed clustering.
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Figure 8. Clustering results of the wine dataset at (a–h) Node 1∼Node 8.
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5. Conclusions

In this paper, we propose a distributed density estimation method base on a mixture of factor analyzers
in sensor networks. First, a linear combination of local log-likelihoods associated with nodes in its
neighborhood (including itself) is defined as the objective function. In this objective function, the
combination coefficients are determined by the number of observations in corresponding nodes. Then,
the D-MFA and the D-MtFA algorithms are derived. In these algorithms, the combined sufficient
statistics of each node are used to estimate parameters, which can be obtained by performing a linear
combination of local sufficient statistics from nodes in its neighborhood. Finally, we evaluate the
performances of the proposed algorithms and apply them to the tasks of clustering and classification.
Experimental results show that they are promising and effective statistical tools for processing the
high-dimensional datasets in a distributed way in sensor networks.

In our future work, we will investigate distributed algorithms that can automatically determine the
structure of MFA, e.g., the number of components. We also intend to design adaptive strategies to adjust
combination coefficients more flexibly. Moreover, the coverage problem [36] in a sensor network is
important when implementing distributed algorithms. We will consider this issue in the future.
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Appendix

A. Derivation of the D-MtFA Algorithm

In this Appendix, we give the derivation of the D-MtFA after defining the objective functionFm(Θ) in
Section 3.3. After introducing three distributions q(Zl), q(Wl|Zl) and q(Ul|Wl,Zl), the decomposition
shown by Equation (5) holds, where:

L(ql,Θ) =
∑
Zl

q(Zl)

∫
dWlq(Wl|Zl)

∫
dUlq(Ul|Wl,Zl)× log

{
p(Yl,Ul,Wl,Zl|Θ)

q(Zl)q(Wl|Zl)q(Ul|Wl,Zl)

}

KL(ql||pl)=−
∑
Zl

q(Zl)

∫
dWlq(Wl|Zl)

∫
dUlq(Ul|Wl,Zl)

× log

{
p(Zl|Yl,Θ)p(Wl|Zl,Yl,Θ)p(Ul|Wl,Zl,Yl,Θ)

q(Zl)q(Wl|Zl)q(Ul|Wl,Zl)

}
In the first stage, three conditional distributions are needed to compute. Concretely, p(zl,n,i|yl,n) at

node l is:

p(zl,n,i|yl,n) =
πold
i t(yl,n|µold

i ,Aold
i (Aold

i )T + Dold
i , νoldi )∑I

i′=1 π
old
i′ t(yl,n|µold

i′ ,A
old
i′ (Aold

i′ )T + Dold
i′ , ν

old
i′ )

(A1)

The conditional distribution of wl,n,i given zl,n,i and yl,n is obtained:

p(wl,n,i|zl,n,i,yl,n) = G
(
wl,n,i

∣∣∣νoldi + p

2
,
νoldi +Wl,n,i

2

)
(A2)

where:
Wl,n,i = (yl,n − µold

i )T
[
Aold

i (Aold
i )T + Dold

i

]
(yl,n − µold

i )

The expectations 〈zl,n,i〉 are given by Equation (A1), and 〈wl,n,i〉 can be obtained from Equation (A2),
which is:

〈wl,n,i〉 =
νoldi + p

νoldi +Wl,n,i

The conditional distribution of ul,n given wl,n,i, zl,n,i and yl,n can be computed:

p(ul,n|wl,n,i, zl,n,i,yl,n) = N(ul,n|ul,n,i,Ωi

/
〈wl,n,i〉)

The mean ul,n,i and Ωi are:

ul,n,i =gT
i (yl,n − µold

i )

Ωi = Iq − gT
i Aold

i

where:
gi =

[
Aold

i (Aold
i )T + Dold

i

]−1 ·Aold
i

is an intermediate variable introduced to simplify expressions in the following stage. Moreover, the
expectations 〈ul,n〉 and 〈ul,nu

T
l,n〉 are:

〈ul,n〉=ul,n,i and

〈ul,nu
T
l,n〉=Ωi

/
〈wl,n,i〉+ ul,n,iu

T
l,n,i
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Similar to the D-MFA, when the first stage finishes, the current lower bound is:

Qm(Θ)=
∑
l∈Rm

clm

Nl∑
n=1

I∑
i=1

p(zl,n,i|yl,n)p(wl,n,i|yl,n, zl,n,i)p(ul,n|yl,n, zl,n,i, wl,n,i)

×
{
zl,n,ilog

[
πiN(ul,n|0, Iq)G(wl,n,i|νi/2, νi/2)N(yl,n|µi + Aiul,n,Di)

]}

Now, at node m, parameters can be obtained by taking derivation ofQm(Θ) with respect to Θ. First,
we obtain:

πi =

∑
l∈Rm

clm
∑Nl

n=1〈zl,n,i〉∑I
i′=1

∑
l∈Rm

clm
∑Nl

n=1〈zl,n,i′〉
(A3)

and:

µi =

∑
l∈Rm

clm
∑Nl

n=1〈zl,n,i〉 · 〈wl,n,i〉yl,n∑
l∈Rm

clm
∑Nl

n=1〈zl,n,i〉 · 〈wl,n,i〉
(A4)

respectively. By substituting Equations (22) and (23) into Equations (A3) and (A4), we can obtain
Equations (24) and (25).

Subsequently, by respectively performing derivation of Qm(Θ) with respect to Ai and Di, we have:

Ai =

∑
l∈Rm

clm
∑Nl

n=1〈zl,n,i〉 · 〈wl,n,i〉(yl,n − µi)〈ul,n〉T∑
l∈Rm

clm
∑Nl

n=1〈zl,n,i〉 · 〈wl,n,i〉 · 〈ul,nuT
l,n〉

(A5)

and:

Di = diag

{∑
l∈Rm

clm
∑Nl

n=1〈zl,n,i〉〈wl,n,i〉
[
−Ai〈ul,nu

T
l,n〉AT

i (yl,n − µi)(yl,n − µi)
T
]∑

l∈Rm
clm
∑Nl

n=1〈zl,n,i〉

}
(A6)

By substituting 〈zl,n,i〉, 〈wl,n,i〉, 〈ul,n〉, 〈ul,nu
T
l,n〉 into Equations (A5) and (A6) and by considering the

simplified expressions in Equations (22), (23) and (28), we can obtain Equations (26) and (27).
Finally, by performing derivation ofQm(Θ) with respect to νi, the update equation for νi is obtained,

shown by Equation (29).
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