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Abstract: Geodetic Very Long Baseline Interferometry (VLBI) uses radio telescopes as 

sensor networks to determine Earth orientation parameters and baseline vectors between 

the telescopes. The TWIN Telescope Wettzell 1 (TTW1), the first of the new 13.2 m 

diameter telescope pair at the Geodetic Observatory Wettzell, Germany, is currently in its 

commissioning phase. The technology behind this radio telescope including the receiving 

system and the tri-band feed horn is depicted. Since VLBI telescopes must operate at least 

in pairs, the existing 20 m diameter Radio Telescope Wettzell (RTW) is used together with 

TTW1 for practical tests. In addition, selected long baseline setups are investigated. 

Correlation results portraying the data quality achieved during first initial experiments are 
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discussed. Finally, the local 123 m baseline between the old RTW telescope and the new 

TTW1 is analyzed and compared with an existing high-precision local survey. Our initial 

results are very satisfactory for X-band group delays featuring a 3D distance agreement 

between VLBI data analysis and local ties of 1 to 2 mm in the majority of the experiments. 

However, S-band data, which suffer much from local radio interference due to WiFi and 

mobile communications, are about 10 times less precise than X-band data and require 

further analysis, but evidence is provided that S-band data are well-usable over long 

baselines where local radio interference patterns decorrelate. 

Keywords: Very Long Baseline Interferometry (VLBI); VLBI Global Observing System 

(VGOS); Geodetic Observatory Wettzell; TWIN Telescopes Wettzell; VLBI correlation 

 

1. Introduction 

Geodetic VLBI telescopes observe radio sources at frequencies around 2 GHz (S-band) and 8 GHz 

(X-band). Signals from these distant quasi-stellar objects (Quasars) are received and recorded  

by at least two telescopes simultaneously. These signals are transferred to a correlator facility and  

cross-correlated. The geometrical delay between the signal arrival time at the two telescopes, as derived 

from the correlation process, is a measure of the baseline length [1,2]. Geodetic VLBI has become an 

important space geodetic technique, because it is the only state-of-the-art technique to establish a 

precision link between the inertial and the Earth-fixed reference frame. In addition, it is the only 

technique to determine the difference between the Coordinated Universal Time UTC, an atomic 

timescale, and UT1, the principal form of the Universal Time, which is tied to the rotation of the  

Earth [3,4]. 

1.1. VGOS—Modernization of Geodetic VLBI 

Increasing requirements such as accessibility to the global reference frame at a level of 1 mm,  

as required for unambiguous monitoring of sea level rise for instance, can hardly be met with 

traditional geodetic VLBI telescopes. The next generation VLBI technology and network, the VLBI 

Global Observing System (VGOS), was designed and published [5], corresponding requirements were 

set up [6] keeping existing challenges in mind [7]. 

One important aspect are high slew-speed antennas (around 12°/s in azimuth an 6°/s in elevation) 

that can collect observations from many more radio sources delivering an increased number of data 

samples and thus increased precision. Increasing antenna speed reduces source switching time and 

facilitates the application of small-aperture antennas (typical diameters of systems currently under 

realization are between 12 and 13.2 m). These antennas have to fulfill strong geometric stability 

requirements for geodetic purposes. Typical antenna apertures of current geodetic VLBI telescopes  

are between 20 and 40 m. Since aperture decreases in favor of increasing speed, antenna sensitivity 

will—in principle—also drop down. This drawback is compensated by the utilization of state-of-the-art 
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components, including a high degree of digital technology, as well as the use of broadband receiving 

systems which can capture signals in bands of up to 1 GHz. 

1.2. TWIN Telescopes of the Geodetic Observatory Wettzell 

The TWIN radio telescope pair at the Geodetic Observatory Wettzell, Germany, was officially 

inaugurated in May 2013 after completion of the mechanical construction. Although both antennas 

have the same appearance, their interior differs in terms of the receiving system. TWIN Telescope 

Wettzell 1 (TTW1), the first of the two new 13.2 m diameter telescopes, was finalized between  

June 2013 and May 2014 and entered its commissioning phase in June 2014. Although the design is 

closely aligned to the VGOS specifications [6] with a diameter slightly exceeding the corresponding 

requirement of 10–12 m, the main difference is the receiving system. In contrast to the second TWIN 

telescope, TTW2, which will feature a broadband feed horn from 2 to 14 GHz, TTW1 is equipped with 

a high-performance triple band feed horn featuring S-, X- and Ka-band frequency ranges in dual 

circular polarization mode. The main reason is to explore the possibilities for Ka-band geodetic VLBI 

up to 32 GHz, which has not been investigated in detail so far, and is also not a dedicated topic of this 

paper. However, it should be noted that X-band receiving capabilities of TTW1 are particularly broad 

ranging from approximately 6.8 up to 9.8 GHz making it usable for both legacy operations together 

with existing S-/X-band radio telescopes such as the 20 m Radio Telescope Wettzell (RTW) at 

Wettzell and future broad band telescopes such as TTW2. Section 2 of this paper will describe the 

technology behind TTW1 in comparison to the RTW telescope. 

1.3. TTW1 Performance Evaluation 

The initial performance evaluation is carried out at the local level. VLBI is a relative technique, i.e., 

two telescopes must sample identical radio sources synchronously. Such a local baseline is available 

using the 20 m RTW together with the 13.2 m TTW1. Of course, the use of RTW will limit usable 

frequencies and subsequent correlation and data analysis to the traditional S- and X-band frequencies 

in single-polarization mode. Nevertheless, an initial—albeit not fully comprehensive—performance 

evaluation is possible and suitable for serving as a first end-to-end test of the system. Correlation 

results will be presented in Section 3 of this paper. 

The advantage of using the short baseline of 123 m between RTW and TTW1 is that disturbing 

effects complicating very long baseline processing are almost not present here, except for local radio 

frequency interference. This is particularly true for tropospheric propagation effects. In fact, atmospheric 

refraction is still considered as one of the major challenges in microwave techniques such as VLBI [7], 

but the delay caused by refraction is very similar for closely spaced antennas, and hence cancels out in 

the correlation process. The drawback of local baseline analysis is that radio frequency interference 

will leave systematic patterns in the signal which are spatially correlated between RTW and TTW1 due 

to the short distance. Our experience with TTW1 is that the ring focal design of the new antenna, 

designed for particular broadband receiving capabilities, leads to an increased affliction to radio 

frequency interference, which is also present in the RTW, but less expressed since the passband is 

limited to just 900 MHz. 
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Consequently, as portrayed in Section 4, the local baseline between RTW and TTW1 can be 

determined with an accuracy of 1 to 2 mm (3D distance) using X-band data, but only about 10 times 

less precise in S-band. The frequency window that can be used in S-band in combination with the 

RTW telescope is naturally smaller compared to X-band. This leads to a decreased precision of the 

group delay, but does not fully explain the precision decrease actually observed. 

1.4. Paper Summary 

The following paper is divided into three main sections, starting with the technical description of  

the TWIN telescope TTW1. The basic characteristics of this ring focal antenna are given. The main 

design criterions are discussed, and the receiving system consisting of a tri-band feedhorn covering 

frequencies in S-, X- and Ka-band is depicted. Both the legacy S/X down-converter, used in 24 out of  

26 experiments presented in this paper, and the final tri-band down-converter are illustrated followed 

by the description of the backend. A detailed setup giving the channel bandwidths and sample rates for 

the two different types of experiments analyzed later in Section 4 is provided. 

Section 3 provides a summary with respect to VLBI baseline correlation featuring both correlation 

results for the short baseline between the 20 m telescope RTW and the new TTW1 as well as a long 

baseline correlation sample between TTW1 and Tsukuba. The problem of radio frequency interference 

(RFI) in S-band, in particular at local level, is addressed and also graphically illustrated. 

Finally, Section 4 provides the initial processing results. Most of the 26 experiments analyzed are 

“Intensives” (duration of 1 h). In addition, results of three experiments with a duration of 24 h are 

presented. The digital backend in use is a DBBC-2. Moreover, six experiments were additionally 

sampled with an ADS3000+ backend in parallel. Data analysis of the short baseline RTW-TTW1 data 

is carried out for S- and X-band separately, clearly revealing that RFI-problems in S-band do exist. 

The 3D-difference between the X-band results and the local terrestrial survey is less than 2 mm or 

equal to that value in 65% of the initial 24 experiments using the S/X down-converter. Long baseline 

processing is also performed to resolve the short baseline indirectly using S-band data for ionospheric 

delay reduction of the X-band group delays. These results show deviations from the surveyed  

3D-distance between 0.1 and 0.9 mm. As also indicated in the discussion of the correlation results in 

Section 3, this confirms that useful results can be obtained over long baselines using S-band data 

despite of the RFI-problems present. 

2. TTW1 Technical Aspects 

RTW, the first VLBI radio telescope at the Geodetic Observatory Wettzell, started operation in 1983. 

It was the first VLBI system in Germany exclusively dedicated to geodetic purposes and is frequently 

in use for experiments within the International VLBI Service for Geodesy and Astrometry (IVS [8]). 

Around 20 years later, the planning and realization of two new TWIN telescopes was initiated. 

2.1. Specifications and Basic Characteristics (Common to TTW1 and TTW2) 

The TWIN project comprises two fast slewing radio telescopes. Both telescopes are designed for 

continuous 24/7 operation (entire week, entire day). The TTW antennas follow a different reflector 
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concept compared to the RTW, see Figure 1: the ring focal design [9–11]. This antenna system unifies 

both, the advantages of a dual offset antenna, such as a high potential to reach low ground noise 

values, and the benefits of a Cassegrain telescope with respect to the mechanical stability, the control 

mode and the weight. It is optimized for broadband receiving system which usually have a wider flare 

angle of 65° compared to traditional feeds in geodetic VLBI like the RTW with 22°. 

 

Figure 1. Photograph of the new 13.2 m diameter TTW1 radio telescope (left,  

foreground) and the 20 m diameter RTW (right, background) at the Geodetic Observatory 

Wettzell, Germany. 

The main technical requirements and specifications for the TWIN telescopes are summarized  

in Table 1 below:  

Table 1. Major TWIN design criterions with explanations. 

Criterion Remarks 

Diameter of main  
reflector D = 13.2 m 

Trade-off between sensitivity and antenna speed as well as 
mechanical stability; RTW features an area of 314 m2, i.e.,  
2.3 times larger than the TWIN main reflector; compensation by 
state of the art broadband receiving system and signal processing. 

Ratio f/D = 0.29 

The ratio of focal length f versus the diameter D of the main 
reflector is a central criterion of the ring focal design for a  
superior antenna illumination efficiency at a flare angle of  
about 65°. 

Broadband capability  
f ≈ 1 to 40 GHz  

Antenna system shall include L-band for possible future support  
of GNSS satellite tracking applications (currently concentrated at 
1.2 to 1.5 GHz) and to fully cover Ka-band. 

Surface finish better than  
0.3 mm (RMS) 

Lower RMS of surface finish required the higher the frequency in 
use is; actually obtained RMS values from quality control are 
significantly smaller than this requirement. 
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Table 1. Cont. 

Criterion Remarks 

Motion velocities of 12 °/s in azimuth  
direction and 6 °/s in elevation 

Essential requirement for VGOS antennas to scan more radio 
sources in the same time interval; RTW telescope has maximum 
speeds of only 4 °/s and 1.5 °/s, respectively. 

Drive range ±270° in azimuth  
direction and 0–115° in elevation  

Provides overlaps for efficient and quick steering to subsequent 
radio sources scheduled; also needed for VLBI satellite 
applications (un-interrupted tracking in regions close to zenith). 

Balanced antenna design with  
high-performance bearings 

Antenna will not move downwards in an instable position 
potentially leading to damage in case of power loss. 

27 Bit Encoder with 0.0003° resolution State-of-the resolution for precise radio source pointing. 

Sub-reflector adjustable  
by a hexapod 

Compensation of structural deformation of main and  
sub-reflectors due to gravity; total path length error is required  
to be below 0.3 mm. 

Stable reference point with an  
axis offset of less than 5 arc-seconds 

Important stability requirement to precisely reference the VLBI 
measurements geometrically. 

The TWIN radio telescopes are particularly designed for the use as a geodetic measurement  

system. Since mechanical deformations directly deteriorate the accuracy of a VLBI measurement,  

the primary target was to develop an extremely stiff and stable radio telescope to get an optimal  

trade-off regarding the IVS requirements versus the budget available to the project. Since delays 

observed in VLBI can be directly related to length (and baseline vector) information, it is extremely 

important to minimize the “path length error”, which is the length deviation from an ideal line between 

the main reflector and the sub-reflector to the phase center of the feed horn. The path length error 

consists of a static part, caused by a phase center misalignment of the feed horn, and a dynamic part 

that is caused by the self-loaded deformation of the main reflector. The dynamic error was specified to 

be less than 0.3 mm. All elements, i.e., the main reflector, the elevation cabin as well as the yoke and 

the concrete tower were optimized to keep the path length stable at all defined loading conditions 

(wind gust up to 40 m/s; dead load, temperature gradients up to 30 K). The mechanical construction of 

both reflectors was aligned to achieve a high degree of stiffness with the help of a special backing 

structure. Additionally a so called hexapod compensates the vertical shift of the main reflector focal 

line when moving the antenna in elevation direction. 

2.2. Antenna and Reflectors 

The ring focal configuration is up to now a rarely used receiving system in radio astronomy.  

The shape of the main reflector of this configuration is geometrically generated by the offset section of 

a parabola at the focal line which is rotated at the antenna’s axis of symmetry. The result is a main 

reflector that creates a ring-shaped first focal line before the sub-reflector. Figure 2 illustrates the path 

of rays for such a ring focal design. The actual diameter of the TWIN antenna main reflector is 13.2 m. 

The advantage of this configuration is obvious: all microwaves that hit the area of the main reflector 

are directed to the most sensitive region of the feed system. This will enhance the aperture efficiency 

and minimize backward reflections at the sub-reflector. In contrary to the Cassegrain antenna 

configuration (as used for the RTW telescope), it is possible to mount the feed horn very closely to the 
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sub-reflector to avoid any significant degradation of the illumination efficiency by blockage and 

reflected rays back from the sub-reflector. The advantage of this geometric configuration is a ray 

distribution yielding aperture efficiencies of more than 80%. Numbers like that are not possible using a 

standard dual reflector antenna without having a shaped reflector system. 

 

Figure 2. Path of rays for a ring focal antenna design. Image by courtesy of VERTEX 

Antennentechnik, Germany [12]. 

A measure for the sensitivity of a radio telescope is the System Equivalent Flux Density (SEFD), 

which represents the flux density of a fictitious radio source that has the same noise power level as the 

antenna system itself [13,14]:  

EFF

SYS

A

Tk
SEFD

⋅= 2
 (1)

Since the SEFD comprises the impact of the system noise temperature TSYS and the effective 

antenna area AEFF, it is a convenient way to compare different antenna systems (k = Boltzmann 

constant). A lower SEFD results in a better sensitivity of the system, which leads to a lower integration 

time at a given signal-to-noise-ratio (SNR): 

( )
ν

S source
SNR t

SEFD
= ⋅  (2)

where S(source) is the flux density of the radio source in units of Jansky [Jy], t is the integration time 

in seconds [s] and ν is the bandwidth [Hz]. A wider bandwidth used for observing a radio source will 

yield a higher SNR. This is the reason for extending the bandwidth up to 1 GHz for each of the four 

bands to be recorded in the new VGOS radio telescopes compared to a maximum bandwidth of just 

200 MHz in S-band for the existing RTW (X-band: 900 MHz). 

Figures 3 and 4 illustrate the sensitivity of the TTW1 antenna system in both S- and in X-band. 

VGOS specifications essentially require the antenna efficiency to be better or equal to 60% [6] which 

is fulfilled for most parts of the S-band spectrum and considerably exceeded for the complete X-band 
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spectrum available from the tri-band feed horn. The SEFD is around 1500 to 1700 Jy in the S-band 

range intended for use, and around 750 Jy in X-band, which is a very encouraging result. Comparable 

values for the 2.3 times larger 20 m RTW are around 1200 Jy and 700 Jy, respectively. 
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Figure 3. System noise temperature TSYS in [K], antenna efficiency ETA in [%] and SEFD 

(y-axis numbering on the right) in [Jy] of the TTW1 antenna in S-band. 
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Figure 4. System noise temperature TSYS in [K], antenna efficiency ETA in [%] and SEFD 

(y-axis numbering on the right) in [Jy] of the TTW1 antenna in X-band. 

2.3. Receiver System—Tri-Band Feed System 

The tri-band feed [15,16] implemented in the TTW1 antenna is a major extension compared to 

current receiving systems used in geodetic VLBI: three different frequency bands are combined 
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together in one feed. It consists of an interleaved coaxial waveguide system that enables a moderate 

bandwidth at S-Band (2.0 to 2.8 GHz) and a very wide bandwidth for both X- and Ka-Band (6.8 to  

9.8 GHz as well as 27 to 34 GHz). 

The radio signal sampled in geodetic VLBI systems is quasar noise. We decompose this signal into 

a right (RHCP) and left hand circular polarized (LHCP) fraction. The signals received in the S- and  

X-band waveguide sections are extracted by radially mounted turnstile junctions and then combined to 

right and left hand circular polarized signals via a 90° hybrid. For the Ka-band section, a circular 

waveguide tube acts as a feed horn in the center of the tri-band feed. The Ka-band signal is directly 

divided into RHCP and LHCP waves by a septum polarizer. The connection to the Dewar via the front 

plane is only possible for X- and Ka-band due to the big mechanical extensions of the S-band 

waveguides. The S-band signal itself is connected by very short coaxial cables to the other end of  

the Dewar. A graphical illustration is given in Figure 5. 

 

Figure 5. Tri-band feed horn; the part in marked in light brown constitute the main feed 

system, followed by the orthogonal mode transducer (OMT). The connected waveguides 

are combined by hybrid couplers to generate the LHCP and RHCP output signals.  

Also shown: The cylindrical Dewar with mounted cold head. Figure by courtesy of 

MIRAD AG, Switzerland. 

The Dewar is a high vacuum vessel, which contains the ultra-low-noise amplifiers (LNA),  

the precision directivity couplers and waveguide adapters. These are all cooled down to a particular 

temperature of 10 Kelvin. These cryogenic temperatures improve the inherent amplifier noise and 

phase stability of the received signals. A phase referencing signal (“phase calibration unit”, Pcal) is 

generated by a comb generator and injected in front of the LNA to define the phase reference at the 

inputs of the low-noise amplifiers [17]. The microwave outputs are connected by phase stable coaxial 

cables to the microwave down converter as depicted in the following section. 
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2.4. Initial and Final Down-Converters 

The down-converter completes the receiving system, together with the feed horn, the cooling 

system (Dewar) and the backend. An initial version limited to S- and X-band in single polarization 

mode was developed for demonstration of first light capabilities and in order to perform legacy 

operations together with the 20 m RTW telescope. The final down-converter features tri-band 

capabilities in dual-polarization mode. 

2.4.1. S/X-Band Down-Converter 

The down conversion of the microwave signals of a standard geodetic receiver is done by the 

superheterodyne principal, where each frequency band is converted by a single mixer stage, followed 

by an intermediate frequency amplifier and a low-pass filter. An additional driver stage provides  

the high intermediate-frequency (IF) power level required to get sufficient power at the digital  

data acquisition system (DAQ), which records 16 dedicated 4 or 8 MHz wide frequency bands,  

see Figures 6 and 7. 
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Figure 6. Block diagram of the initial TTW1 S/X-receiver developed for first light demonstration. 



Sensors 2015, 15 18777 

 

 

 

Figure 7. Photo of the Initial S/X-receiver. 

2.4.2. Tri-Band Down-Converter 

The VGOS requirements [6] defined for VLBI receiving systems are very demanding: a continuous 

2–14 GHz broad frequency spectrum is to be covered, and within this frequency range, an arbitrary 

selection of multiple bands with a bandwidth of 1 GHz wide band shall be selectable. This requirement 

triggered the development of a new concept for the microwave receiver, see Figures 8 and 9. 

Additionally, both microwave polarizations (LHCP and RHCP) must be available, and implemented 

such that compatibility with the new linear polarized broadband system like the “Elevenfeed”  

for the second TWIN telescope TTW2 can be achieved. These requirements lead to a substantially 

more complex hardware for the new broadband receiver. In essence, it is necessary to use an  

up-down-converter for X-band and a down-down-converter for the Ka-band to transfer all bands into 

the requested IF-bands. 

The key point is to achieve an effective and selectable down conversion of the microwave signals to 

different Nyquist zones, such as 0–512 MHz, 512–1024 MHz, 1024–1536 MHz and 1536–2046 MHz. 

A quadruple phase stable synthesizer is used as variable first local oscillator (LO) for the  

up-conversion. It is directly locked to a 100 MHz frequency reference derived from a hydrogen maser. 

This maser has a very high frequency stability of Δf/f ≈ 2 × 10−16 over short terms of up to 1000 s 

which is essential for precise geodetic VLBI. The Quasar signal received by the antenna and amplified 

by the LNAs yields a power level of 10−12 W or less; the typical spectral flux density of the radio 

sources used in geodesy is around 0.5 to 1.0 Jy (1 Jy = 10−26 W/m² Hz). Hence, a receiver with an 

excellent spurious and crosstalk rejection (>60 dB) had to be designed. 
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Figure 8. Tri-band down-converter block diagram for one selected polarization (RHCP). 

 

Figure 9. Picture of the IF-converter for the tri-band receiving system of TTW1. 
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2.4.3. Intermediate-Frequency (IF) Converter 

The IF-amplifier stage developed for TTW1 adjusts the down-converted microwave signal to yield 

a high signal integrity at the data acquisition (DAQ) system, see Figure 10. The main goal was the 

design of a universally useable module for all the necessary Nyquist frequency bands. Therefore,  

the IF-bandwidth was kept as high as possible (up to 1.5 GHz) in order to be able to supply all 

necessary IF-signals which the data acquisition system can support. The selection of the desired 

Nyquist zone is done in the DAQ-System itself. The IF-stage includes an improved broadband 

equalizer that compensates the frequency-dependent cable attenuation in the microwave receiver.  

Two amplifier stages were combined with a variable attenuator to get a level-adjustment at a magnitude 

of about 30 dB. A low-pass filter and a medium power amplifier, together with an RMS-to-DC 

converter, generates the suitable signal level at the input of the low temperature coefficient coaxial 

cables. An additional connection to an optical fiber transmitter is also foreseen. The power measurement 

is used to calculate the system temperature for each frequency band separately. All coaxial cables are 

terminated by an IF distribution system before reaching the DAQ-System (not shown in Figure 10). 
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Figure 10. IF-converter scheme and DAQ (data acquisition) system. 

2.5. Backend 

The main requirements for the recording system are defined by the previously stated number of 

signals to be received (up to three for S/X/Ka-band with a bandwidth of up to 1 GHz each) and the 
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number of polarizations (LHCP and RHCP). This yields six radio frequency bands to be converted 

down to intermediate frequency (IF) for registration—via a digital base-band conversion process—by 

the recording system. 

The recording of the received noise signals in the IF bands is realized by a digital base-band 

converter DBBC-2 [18]. This device samples the analog signals of up to four IF-bands synchronously 

with an amplitude resolution of 8 bits and a sampling frequency of 1 GSps (giga-samples per second). 

The DBBC is synchronized with the reference frequency (10 MHz) of the hydrogen maser. The statements 

in Section 2.4.2 apply to the DBBC: The IF frequency range is divided into frequency windows as 

mentioned in Section 2.4.2 (2nd paragraph) with help of frequency band filters. This warrants an  

alias-free signal processing of the IF bands sampled. The DBBC configuration is flexible: up to  

16 freely selectable frequency channels can be recorded with a bandwidth of 0.5–32 MHz each, either 

in direct down-converter mode (DDC) or using the polyphase filterbank mode (PFB). The latter can 

coherently record a frequency window as broad as 480 MHz. The DBBC-2 can manage two IF-inputs 

in PFB mode and provide outputs on the two available VLBI standard interface (VSI) ports. 

A number of experiments were performed in the period between July 2014 and March 2015 to test 

the TTW1 performance. Regarding the configuration, two types of experiments were carried out with 

different setups as outlined in the following tables. In essence, the setup of the 24 h experiments 

(Whisp1/2 and Euro130, Table 2; indicated by a “W” or “E” in the corresponding tables in analysis 

Section 4) differs from the Intensive experiments (Table 3; indicated by an “I” in the corresponding 

tables in the analysis Section 4). 

Table 2. Setup for the sessions Whisp1, Whisp2 and Euro130 in direct down-converter 

mode (DDC mode; LO = local oscillator [frequency], IF = intermediate frequency). 

Frequency 

Band 
Channel 

Radio 

Frequency 
LO IF 

Channel 

Bandwidth 
Upper/Lower 

Sideband 

Sample 

Rate 

Channel 

Spacing 

Total 

Span 

(MHz) (MHz) (MHz) (MHz) (MSps) (MHz) (MHz) 

X-Band 1 8210.99 8080 130.99 4 USB/LSB 8 + 8   

X-Band 2 8220.99 8080 140.99 4 USB 8 10  

X-Band 3 8250.99 8080 170.99 4 USB 8 30  

X-Band 4 8310.99 8080 230.99 4 USB 8 60  

X-Band 5 8420.99 8080 340.99 4 USB 8 110  

X-Band 6 8500.99 8080 420.99 4 USB 8 80  

X-Band 7 8550.99 8080 470.99 4 USB 8 50  

X-Band 8 8570.99 8080 490.99 4 USB/LSB 8 + 8 20 360 

S-Band 9 2212.99 2020 192.99 4 USB 8   

S-Band 10 2227.99 2020 207.99 4 USB 8 15  

S-Band 11 2237.99 2020 217.99 4 USB 8 10  

S-Band 12 2267.99 2020 247.99 4 USB 8 30  

S-Band 13 2287.99 2020 267.99 4 USB 8 20  

S-Band 14 2292.99 2020 272.99 4 USB 8 5 80 

Total  

Data Rate 
      128   
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Table 3. Setup for the “Intensive” sessions in direct down-converter mode (DDC mode; 

LO = local oscillator [frequency], IF = intermediate frequency). 

Frequency 

Band 
Channel 

Radio 

Frequency 
LO IF Channel 

Bandwidth 

Upper/Lower 

Sideband 

Sample 

Rate 

Channel 

Spacing 

Total 

Span 

(MHz) (MHz) (MHz) (MSps) (MHz) (MHz) 

X-Band 1 8210.99 8080 132.99 8 USB/LSB 16 + 16   

X-Band 2 8220.99 8080 172.99 8 USB 16 40  

X-Band 3 8250.99 8080 272.99 8 USB 16 100  

X-Band 4 8310.99 8080 432.99 8 USB 16 160  

X-Band 5 8420.99 8080 652.99 8 USB 16 220  

X-Band 6 8500.99 8080 772.99 8 USB 16 120  

X-Band 7 8550.99 8080 832.99 8 USB 16 60  

X-Band 8 8570.99 8080 852.99 8 USB/LSB 16 + 16 20 720 

S-Band 9 2212.99 2020 205.99 8 USB 16   

S-Band 10 2227.99 2020 225.99 8 USB 16 20  

S-Band 11 2237.99 2020 245.99 8 USB 16 20  

S-Band 12 2267.99 2020 275.99 8 USB 16 30  

S-Band 13 2287.99 2020 325.99 8 USB 16 50  

S-Band 14 2292.99 2020 345.99 8 USB 16 20 140 

Total  

Data Rate 
      256   

2.5.1. Digital Signal Representation 

The digital representation of the analogue input is realized via parallel processing signal structures, 

numerical oscillators (NCO) and digital filters implemented in FPGA-chips. The signals are processed 

by down-conversion into separate base-band channels, more precisely into 16 base-band channels in 

DDC mode and 15 base-band channels in PFB mode. The sample rate in each base-band channel is 

fixed to 32 MSps and the amplitude resolution is two bits. The adjustment of the necessary base-band 

channel bandwidth and the distinction between 1 and 2 bit sampling is done in the setup of the Mark 

5B+ data recorder by setting a decimation factor and an appropriate track selection mask. The sampled 

signals are of real representation (not complex). The total data rate is given by the data rate of each 

base-band and the amplitude resolution. Thus, the recorded total data rate of a VLBI observation can 

be chosen by adjusting these parameters (e.g., 256 Mbps for an Intensive experiment). Using the 

maximum of two VSI outputs, a maximum data rate of 2 GSps can be reached. One standard VLBI 

recording system of type Mark 5B+ [19,20] is connected to each output of the DBBC. The sample 

clock rate of each base-band channel is decimated to 32 MHz at the VSI output. 

The classical VLBI data recording system of the 20 m RTW for S- and X-band (single polarization, 

RHCP) splits the X-band into 10 channels and the S-band signal into six channels. The IF bandwidth is 

200 MHz in S-band and 900 MHz in X-band. A maximum overall data rate of 1 GSps with all these  

16 base-band channels in use and a data rate of 32 MHz per base-band as well as an amplitude 

resolution of 2 bits is obtained. 
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2.5.2. Full Recording Configuration for TTW1 

The final configuration of the recording system for TTW1 in full DDC mode comprises three DBBCs 

with 6 Mark 5B+ data recorders, see Figure 11. The data are processed and sampled at a maximum 

speed of 6 GSps. In contrast, the full sampling of 1 GHz broad signals in PFB mode will require  

six DBBCs and 12 Mark 5B+ units, since one DBBC-2 will be required for processing of each single  

IF band. Consequently, the data rate would double to 12 GSps which is the limit in this TTW1 

configuration design, i.e., without using alternative recording techniques. 
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Figure 11. Illustration of the TTW1 base-band conversion and recording system. 

2.6. Operating and System Monitoring Software 

The monitoring and control software of the new TWIN radio telescopes follows the approach to 

connect distributed software agents. Software agents are intelligent, autonomous units, which split 

complex technical environments into manageable tasks in the software system. The agents are able  

to make own decisions for their specific scenarios and environments to meet their delegated  

objectives [21,22]. Each device to be controlled or monitored follows the design of such agents.  

It collects data from the according hardware. This information is evaluated to make scheduling and 

controlling decisions using predefined metrics with defined guidelines and parameters. The process 

results in the commanding of new activities on the hardware. Therefore critical, security relevant 

determinations are processed directly in these agents, which optimize the processing workflow. It is 

the basis for the used monitoring and control infrastructure. 

The communication between and with the agents uses a specially developed communication  

middleware. The background are Remote Procedure Calls (RPC) of Sun Microsystems that build up an 

abstraction layer, which extends functionalities of the communication hardware and process in a 

standardized, safe and homogenized form ([23], p. 2). The basis is a software generator “idl2rpc.pl”, 



Sensors 2015, 15 18783 

 

 

which was especially developed in Wettzell, using the programming language Perl. It reads an 

interface definition and creates all functionalities and services of a server and client system, where the 

client request services from a service offering server. 

The software components created are integrated into the NASA Field System [24], which is 

globally used to operate VLBI radio telescopes. It is the layer for the controlling and monitoring as a 

central control system. The system organizes the centralized controlling of observations with a 

predefined schedule file. Additionally, it offers several programs to deal with data or error situations or 

to plot data. The NASA Field System even defines its own command line interface to realize scripts 

for VLBI-observation schedules. 

As an extension to the Field System the remote control software “e-RemoteCtrl” [25] is used to 

enable a global remote control and automation. The software was partly developed within the  

EU-project “Novel EXplorations Pushing Robust e-VLBI Services (NEXPReS)”. It allows a secure 

access of several, globally distributed observers to a monitoring and control server, using a tunnel-ing 

technique on the basis of the Secure Shell. The server can retrieve data or inject commands directly to 

the NASA Field System, while the access is restrictively defined with user rights and access roles.  

The server is the final decision-making instance. The software “e-RemoteCtrl”, which was designed 

and developed at the Geodetic Observatory Wettzell, is already globally in use. Among other things,  

it is also the backbone for the operation of the remotely controlled telescopes of the geodetic and 

astronomical VLBI-network AuScope in Australia [26]. 

3. Baseline Correlation 

This section specifically deals with the VLBI data correlation using the DiFX software correlator [27]. 

These tests consisted of running VLBI experiments using a geodetic dual-band setup as detailed in 

Section 2.5, and thereafter performing the cross correlation [28]. During the data analysis after the 

correlation process, we could establish the quality of the TTW1 data with respect to other antennas that 

are regularly used and are known to be reliable and well calibrated (i.e., the RTW and the Tsukuba 

antenna in Japan). Note that a performance assessment regarding the baseline results in terms of 

coordinate differences is given in the following Section 4. 

3.1. X-Band Correlation Results 

Figure 12 shows one scan on the baseline between TTW1 and Tsukuba in X-band. The left side 

shows the single band delay (SBD) in μs, i.e., the amplitude output of the correlator integrated over the 

scan duration. On the right the averaged power spectrum is plotted that is the Fourier transform of the 

SBD into the frequency domain (red = phase, blue = amplitude). The peak of the SBD is well defined 

and centered at zero as one would expect after the correlation and the residual delay correction.  

To have good fringes one expects to see the phase (red line) well aligned, as is visible in the plot.  

The signal-to-noise ratio (SNR) obtained from this scan was 101. 
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Figure 12. Correlator output for the baseline Tsukuba/TTW1 at 8.4 GHz. (left) Single band 

delay (SBD); (right) Fourier transform of the SBD, i.e., averaged power spectrum. The red 

line corresponds to the phase and the blue line to the amplitude of the fringe visibilities. 

We then calculated the theoretical SNR for the source observed within the scan considered (radio 

source ICRF J175132.8 + 093900, flux density at X-band is about 3 Jy). Given the effective sampled 

bandwidth of 64 MHz (8 BBC channels each 8 MHz wide) and the integration time of 15 s, the  

a priori SNR is about 100. This operation was repeated for all the tests for both frequency bands. The 

differences between the a priori and the measured a posteriori) SNR are statistically not significant 

indicating that the TTW1 performed well. 

3.2. S-Band Correlation Results 

The band at 2.3 GHz (S-band) is contaminated by radio frequency interference (RFI), typically 

caused by telecommunication satellites. Such contamination is present on almost all the baselines. 

However, on the long baselines, which are the ordinary scenario in VLBI, the correlator fringe rotator 

wraps the RFI phases many times within one integration period (1 s). In most cases, this reduces the 

amplitudes of the RFI close to zero. In contrast, on the very short baselines between TTW1 and RTW, 

the correlator fringe rotator does not wind up the phases of the RFI, hence the RFI is not attenuated 

and corrupts the data. Figure 13 shows the RFI spectrum common to the TTW1 and RTW as obtained 

using the astronomical image processing system AIPS [29,30]. 

The abscissa is the frequency and the ordinate is the time in hours. The strong vertical lines on the 

left side of the plot are caused by RFI. Some lines are thin in frequency and are present for the whole 

experiment (possibly signals broadcast from telecommunication satellites). Some others appear only 

for a certain period of time (possibly nearby interference). 

From the RFI analysis we can conclude that the observables obtained over the short baseline 

TTW1/RTW are in parts unusable. In contrast, those obtained on long baselines between TTW1  

and—in this case—Tsukuba, are well-usable for further geodetic analysis, also see Figure 14:  

if RFI had been present, it would have been visible as spikes on the amplitude part of the  

cross-correlation spectrum, which instead is clean, and the signal-to-noise level is appropriate for  

S-band measurements. 
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Figure 13. RFI spectrum common to TTW1 and RTW (ordinate: time in hours; abscissa: 

frequency). The left part of the picture depicts the S-band where one can see vertical white 

lines that represent radio frequency interference. 

 

Figure 14. Correlator output for the baseline Tsukuba/TTW1 at 2 GHz. The radio source is 

ICRF J172727.6 + 453039. 

4. Initial Processing Results 

The initial results from 26 experiments carried out in between June 2014 and March 2015  

are presented in this section with a focus on coordinate precision at the local level. For this purpose, 

the 123 meter baseline between the “old” RTW telescope and the “new” TTW1 telescope is analyzed. 

The advantage of this method, which in fact is very short baseline interferometry rather than very long 

baseline interferometry as commonly practiced, is that a number of problematic error sources virtually 

cancel out over short baselines, in particular atmospheric propagation delays. In contrast, local RFI is a 

significant problem. We assume that RFI is mainly present in S-band and hardly in X-band as 

illustrated in Section 3. Consequently, we analyze S- and X-band separately. Finally, the reference 

points of all instruments at the observatory are regularly measured via a precise local network survey, 

so reference data are available including the new TTW1. The reference point of all VLBI telescopes  
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at the Observatory is defined as the intersection point of the azimuth and the elevation axes.  

The disadvantage is that the RTW telescope sets the limits: Only conventional S-band and X-band data 

can be compared in the analysis (also see Section 2.5.1). 

Note that 23 experiments are of the “Intensive” type. The associated backend setup is detailed in 

Table 3. The setup for the three 24-h experiments is given in Table 2. Twenty four experiments were 

carried out using the S/X down-converter (Section 2.4.1) and two initial ones with the tri-band  

down-converter (Section 2.4.2). The digital backend in use is a DBBC-2 with results being presented in 

Table 4 (S-band) and Table 5 (X-band). Additionally, six experiments were sampled with an 

ADS3000+ in parallel, and are presented separately in Table 6 (S-band) and Table 7 (X-band). 

4.1. Data Analysis 

Data analysis is primarily carried out using an in-house software developed for data quality analysis 

as well as local network adjustment of radio telescope data collected over short distances. In addition, 

the Calc/Solve software package [31,32] is used for processing selected experiments for purposes of 

comparison. This is a well-known package and wide-spread within the geodetic VLBI community. 

4.1.1. Short-Baseline in-House Software of Geodetic Observatory Wettzell 

The basic observation equation for the group delay τG between RTW and TTW1 to radio source q 

reads [3,4]: 

( )qqqqqG bztbytbx
c

δ⋅+δ⋅⋅+δ⋅⋅⋅−=τ sincossincoscos
1

 (3)

where c is the speed of light, bx, by, bz are the geocentric coordinate differences between RTW and 

TTW1 (baseline components, the key parameters of interest in our analysis), tq is the Greenwich hour 

angle to radio source q (a function of its right ascension α and Greenwich apparent sidereal time 

GAST) and δq is the declination of the radio source. 

The RTW and TTW1 telescopes are currently connected to individual hydrogen masers. A common 

oscillator base is planned for the near future, but as long as this is not the case, the differences in clock 

behavior need to be compensated. This is done via a clock error polynomial, so the observation 

equation is expanded as follows: 

( ) 
=

Δ⋅+δ⋅+δ⋅⋅+δ⋅⋅⋅−=τ
n

i

i
iqqqqqG tabztbytbx

c 0

sincossincoscos
1

 (4)

where ai are the clock error coefficients and Δt is the time difference between the current observation 

epoch and the initial observation epoch (the first data records collected). The polynomial is a linear 

function (n = 1) for experiments that last about one hour and is expanded accordingly for longer 

experiments. Both short experiments (1 h) and long experiments (24 h) have been conducted within the 

scope of this study. 

The baseline components between both telescopes are precisely known from terrestrial surveying. 

In this paper we will focus on the 3D distance d3D between the two telescopes which is: 

2 2 2
3 123.3070 mDd bx by bz= + + ≈  (5)
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The accuracy (standard deviation) of this distance is σ < 0.7 mm. Actual positioning results from 

data analysis are compared to this reference value. 

Several reductions and corrections are usually applied to observations, radio source positions or 

antenna positions [2,4]. Not all of such possible refinements are taken into consideration in this initial 

study. The radio source positions are reduced to the current observation epoch taking into account 

reductions due to precession, nutation and annual aberration. A navigation grade algorithm is applied 

for the in-house software [33] and should feature arc-second accuracy sufficient for the initial data 

analysis in this study. The reduction from the Conventional International Origin (CIO) to the 

instantaneous pole as well as equator and Greenwich meridian are carried out with the help of the  

pole position and Earth rotation data from the International Earth Rotation and Reference Systems 

Service (IERS). 

Possible corrections due to antenna structure are not applied. Such effects have not been investigated 

in case of the new TWIN telescopes, and are not considered to be of major concern here. Tropospheric 

and ionospheric propagation delays essentially cancel out over the short baseline of just 123 m, 

because both troposphere as well as ionosphere are spatially correlated. However, note that a small 

residual tropospheric delay error will be present in the results due to the height difference of 3.4 m 

between the two reference points. A future version of the analysis software is planned to take this 

effect into consideration. Earth tide reductions are not applied for the same reason. Radio source 

structure corrections are not applied. 

The retarded baseline reduction τRTB accounts for the fact that both antennas are not motionless 

during the signal travel time from one telescope to the other. In fact, the Earth is rotating, so a 

reduction essentially accounting for diurnal aberration [1,4] is applied: 

( )qqqq
G

RTB tXtY
c

δ⋅⋅−δ⋅⋅⋅τ⋅ω−=τ cossincoscos 22  (6)

where X2 and Y2 are the two coordinate components of the second telescope in the processing chain 

(RTW), ω is the angular velocity of the Earth and τG is the group delay observation (not corrupted by 

clock errors). Although the baseline between RTW and TTW1 is small, this reduction can amount to a 

couple of tens of millimeters. So, it is taken into consideration to avoid accuracy losses. 

4.1.2. Calc/Solve Parametrization Setup 

Selected experiments were analyzed independently by the VLBI group at the Institute of Geodesy 

and Geoinformation of the University of Bonn. The solutions were generated with the VLBI analysis 

software package Calc/Solve applying least squares adjustments. Based on observations involving 

several VLBI telescopes and radio sources, different parameter types, such as coordinates of stations, 

Earth orientation parameters or radio source positions as well as clock and tropospheric model parameter 

corrections can be estimated. 

In this initial study, a typical parametrization setup for independent sessionwise VLBI data analysis 

was chosen. The telescope coordinates were estimated with the positions of the radio sources fixed to 

the International Celestrial Reference Frame ICRF2 [34]. The solution was performed using hard 

constraints including no-net-translation (NNT) and no-net-rotation (NNR) conditions [35] with  

three equations each in order to eliminate the datum defect. The clock parameters were modeled by a 
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quadratic polynomial with additional continuous piecewise linear functions (CPWLF) with a temporal 

resolution of 60 min. The zenith wet delays (ZWD) as the wet part of the tropospheric delay were 

estimated as one offset parameter and no troposphere gradients were considered in this initial study. 

The Vienna Mapping Function 1 (VMF1) was used for tropospheric mapping [36]. 

4.2. Experiments 

The TTW1 telescope performed 24 experiments in parallel with the RTW between June 2014 and 

February 2015 using the initial S/X-band receiver as sketched in Section 2.4.1. In addition, two other 

experiments were observed using the brand-new tri-band receiver (Section 2.4.2). These experiments 

were conducted on 23 February 2015 and 2 March 2015, totaling in 26 experiments during the TTW1 

commissioning phase so far. The complete list of the S-band results is given in Table 4. Most of these 

were standard experiments conducted routinely by RTW for the International VLBI Service for 

Geodesy and Astrometry and accompanied by TTW1. The majority of the experiments is of type  

“I”—“Intensives” [37,38]. These experiments are one hour long, and the target is the determination of 

ΔUT1 = UT1 − UTC. Although this type of experiment is not optimized for baseline vector 

determination, it is still possible to derive the vector between TTW1 and RTW. For our analysis we 

also used one IVS-Euro session [39], type “E”, and two other dedicated experiments (Whisp, “W”). 

These sessions were 24 h long and by far contain the largest number of observations between TTW1 

and RTW. 

Note that the TTW1 phase calibration unit [17] was disabled during the majority of the experiments 

(only RTW phase calibration was on), because the fringe rate on such a short baseline is low, hence it 

corrupts the cross-correlation leaving visible only the tones of the phase calibration unit. This may 

introduce an additional error. 

The default backend for TTW1 is the DBBC-2, Section 2.5. A few experiments were also recorded 

using both a DBBC-2 and a Japanese ADS3000+ [40]. This was implemented to investigate certain 

technical problems in S-band which, in the end, turned out to be radio-frequency interference. 

4.3. Discussion of Results 

Tables 4 and 5 show the S-band results of the VLBI group delay analysis, and Tables 6 and 7 show 

the X-band results. The type of experiment is explained in Section 4.2 (I = Intensive, 1 h; E = Europe, 

24 h; W = Whisp, 24 h). The number of scans in the result tables is identical to the number of group 

delays observed (successfully correlated) over the corresponding baseline. The actual number of delays 

used in the least-squares adjustment process, solving for the baseline components as well as the clock 

polynomial, is given in column “accepted scans”. Observations classified as corrupted or unhealthy are 

summarized in column “rejected scans”; these scans did not become part of the adjustment procedure. 

A conventional outlier detector based on empirical precision estimates was used here [41]. 

The standard deviation of unit weight before the start of the adjustment (“σ0 a priori”) is computed 

from the standard deviations of the group delays as determined from the correlation process.  

The standard deviation of unit weight after completion of the adjustment procedure (“s0 a posteriori”) 

is computed from the residuals taking the individual weight of the observations into account. It is an 

empirically derived number. A priori and a posteriori standard deviations of unit weight should have a 
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similar magnitude. If the a posteriori values are substantially higher than the a priori ones then either 

the a priori information is too optimistic (i.e., the data quality is poorer than expected), or there are 

problems in the data modeling (e.g., an inappropriate compensation of clock error drift—actually not 

observed here). The variances of the parameters are scaled by the a posteriori variance of unit weight. 

Table 4. Results obtained from S-band group delays using the DBBC backend. The last 

two experiments were measured using the tri-band down-converter (see Section 2.4.2). 

Date Type Scans 
Accepted 

Scans 

Rejected 

Scans 

σ0  

a Priori 
s0  

a Posteriori 
3D  

Difference 

(ps) (mm) (ps) (mm) (mm) 

2 June 2014 I 11 11 100% 0 0% 124 37 11,079 3321 −2478.9 

16 June 2014 I 13 11 85% 2 15% 88 26 70 21 −84.7 

23 June 2014 I 20 20 100% 0 0% 89 27 245 74 54.3 

7 July 2014 I 18 16 89% 2 11% 104 31 158 47 22.5 

21 July 2014 I 15 15 100% 0 0% 95 29 207 62 0.7 

20 August 2014 E 213 204 96% 9 4% 124 37 185 55 −0.6 

27 August 2014 W 556 531 96% 25 4% 159 48 298 89 13.7 

22 September 2014 I 12 9 75% 3 25% 148 44 111 33 151.1 

29 September 2014 I 9 8 89% 1 11% 95 28 821 246 −381.7 

6 October 2014 I 11 7 64% 4 36% 83 25 20 6 −377.8 

20 October 2014 I 10 6 60% 4 40% 114 34 3 1 100.4 

23 October 2014 W 927 739 80% 188 20% 374 112 552 165 −21.4 

3 November 2014 I 21 17 81% 4 19% 142 42 427 128 −85.0 

10 November 2014 I 12 6 50% 6 50% 140 42 10 3 −57.0 

17 November 2014 I 19 16 84% 3 16% 137 41 202 61 −40.4 

24 November 2014 I 13 11 85% 2 15% 76 23 197 59 −151.3 

1 December 2014 I          rejected 

22 December 2014 I 18 18 100% 0 0% 99 30 182 55 53.0 

29 December 2014 I 18 17 94% 1 6% 117 35 371 111 −12.4 

5 January 2015 I 21 16 76% 5 24% 141 42 784 235 −260.7 

12 January 2015 I 13 13 100% 0 0% 135 40 33,961 10,181 3959.3 

19 January 2015 I 17 17 100% 0 0% 117 35 486 146 155.2 

26 January 2015 I 20 16 80% 4 20% 86 26 163 49 68.3 

2 February 2015 I 22 19 86% 3 14% 83 25 238 71 −84.0 

23 February 2015 I 25 18 72% 7 28% 75 23 138 41 9.8 

2 March 2015 I 17 17 100% 0 0% 110 33 25,533 7655 2989.8 
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Table 5. Results obtained from X-band group delays using the DBBC backend. The last 

two experiments were measured using the tri-band down-converter (see Section 2.4.2). 

Date Type Scans 
Accepted 

Scans 

Rejected 

Scans 

σ0  

a Priori 
s0  

a Posteriori 
3D  

Difference 

(ps) (mm) (ps) (mm) (mm) 

2 June 2014 I 25 19 76% 6 24% 11 3 13 4 −0.8 

16 June 2014 I 24 24 100% 0 0% 7 2 13 4 −2.3 

23 June 2014 I 22 22 100% 0 0% 7 2 11 3 −1.7 

7 July 2014 I 22 22 100% 0 0% 9 3 10 3 0.4 

21 July 2014 I 19 19 100% 0 0% 10 3 13 4 −2.0 

20 August 2014 E 224 222 99% 2 1% 10 3 14 4 1.1 

27 August 2014 W 661 653 99% 8 1% 15 4 24 7 −1.8 

22 September 2014 I 20 20 100% 0 0% 14 4 19 6 4.4 

29 September 2014 I 28 28 100% 0 0% 14 4 17 5 7.9 

6 October 2014 I 24 20 83% 4 17% 7 2 10 3 −7.9 

20 October 2014 I 21 21 100% 0 0% 11 3 14 4 −1.6 

23 October 2014 W 999 947 95% 52 5% 18 5 35 11 −0.8 

3 November 2014 I 27 27 100% 0 0% 7 2 12 3 −0.6 

10 November 2014 I 30 30 100% 0 0% 15 4 15 5 −4.0 

17 November 2014 I 22 21 95% 1 5% 10 3 12 3 −4.0 

24 November 2014 I 35 35 100% 0 0% 11 3 12 4 −1.5 

1 December 2014 I 24 24 100% 0 0% 9 3 10 3 1.8 

22 December 2014 I 29 28 97% 1 3% 9 3 10 3 −1.1 

29 December 2014 I 32 32 100% 0 0% 9 3 14 4 0.2 

5 January 2015 I 33 30 91% 3 9% 14 4 16 5 −0.2 

12 January 2015 I 25 22 88% 3 12% 30 9 33 10 −2.4 

19 January 2015 I 25 25 100% 0 0% 9 3 12 4 −1.2 

26 January 2015 I 32 29 91% 3 9% 17 5 19 6 7.4 

2 February 2015 I 31 28 90% 3 10% 11 3 12 4 1.6 

23 February 2015 I 29 27 93% 2 7% 9 3 19 6 8.2 

2 March 2015 I 17 16 94% 1 6% 20 6 25 7 20.8 

Table 6. Results obtained from S-band group delays using the ADS3000+ backend. 

Date Type Scans 
Accepted 

Scans 

Rejected 

Scans 

σ0  

a Priori 
s0  

a Posteriori 
3D  

Difference 

(ps) (mm) (ps) (mm) (mm) 

7 July 2014 I 19 19 100% 0 0% 122 37 132 40 155.6 

21 July 2014 I 19 16 84% 3 16% 105 32 176 53 −42.5 

27 August 2014 W 564 532 94% 32 6% 155 47 294 88 15.7 

22 September 2014 I 14 12 86% 2 14% 133 40 274 82 134.8 

24 November 2014 I 26 24 92% 2 8% 114 34 264 79 −88.9 

1 December 2014 I 20 19 95% 1 5% 124 37 145 44 116.1 
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Table 7. Results obtained from X-band group delays using the ADS3000+ backend. 

Date Type Scans 
Accepted 

Scans 

Rejected 

Scans 

σ0  

a Priori 
s0  

a Posteriori 
3D  

Difference 

(ps) (mm) (ps) (mm) (mm) 

7 July 2014 I 22 22 100% 0 0% 9 3 9 3 −1.2 

21 July 2014 I 23 19 83% 4 17% 9 3 11 3 0.3 

27 August 2014 W 662 641 97% 21 3% 14 4 26 8 −2.0 

22 September 2014 I 20 19 95% 1 5% 14 4 12 4 −9.1 

24 November 2014 I 35 34 97% 1 3% 11 3 10 3 −0.2 

1 December 2014 I 24 24 100% 0 0% 8 2 9 3 0.7 

The differences of the estimated spatial distance between the two telescopes and the reference value 

from precision local surveying in the last column of Tables 4–7 indicate the level of agreement. 

4.3.1. S-Band Results 

As already outlined in the correlation section of this paper, RFI is present in S-band and destroys 

the signal on short baselines. The old RTW telescope applied sharper band-pass filters and thus can 

mitigate the problem to a certain extent. In contrast, the ring focal design for broadband signal 

reception used for the TWIN telescopes is considerably more sensitive to RFI effects. S-band results 

are indeed expected to be less precise compared to X-band data, because group delay precision is a 

function of the signal bandwidth which is only approximately 200 MHz in S-band for RTW in our 

legacy mode, whereas it is 720 MHz in X-band. However, the discrepancy between S- and X-band 

results is drastic and underlines significant RFI problems. In many cases, the outcome is simply not 

usable in geodetic VLBI. 

In order to demonstrate the suitability of the TTW1 telescope on a long baseline for the use of both, 

X- and S-band data, we analyzed one 24-h session (20 August 2014) including six telescopes all over 

Europe. In this analysis, we investigated in particular the influence of the ionosphere correction term to 

the group delay observations as a simple linear combination of two group delay observables (X- and  

S-band). In this context, we generated a solution excluding the observations of the RTW-TTW1 

baseline in Wettzell to determine its baseline length only with observations from long baselines 

throughout Europe. Comparing this solution (including X- and S-band data) to the results obtained by 

the Whisp sessions using the short RTW-TTW1 baseline (using X-band data only) leads to an evidence 

of the suitability of the S-band data. The results of this study are shown in Section 4.3.3. 

4.3.2. X-Band Results 

In contrast to the results retrieved from S-band group delays, the results derived from X-band group 

delays are very encouraging and satisfactory, regarding the use of both the DBBC (Table 6) as well as 

the ADS3000+ backend (Table 7). Figure 15 shows a histogram of the 3D differences (reference  

distance from local survey) and is related to the 24 experiments listed in Table 4. The deviation is  

less than or equal to 2 mm in 16 experiments. The three experiments covering 24 h each, Europe  

(20 August 2014), Whisp1 (27 August 2014) and Whisp2 (23 October 2014) are off by +1.1, −1.8 and 

−0.8 mm respectively. 
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Regarding the data sampled with the ADS3000+ (Table 7), we can see that one Intensive 

experiment (22 September 2014) with 20 observations (19 in use, one was rejected) shows a difference 

of around −9.1 mm, whereas the corresponding experiment sampled with the DBBC deviates by 4.4 mm 

which is also higher than the majority, but only half of the deviation of the ADS3000+. 

The number of rejected scans is moderate in most cases. Only eight scans out of 661 group delays 

were rejected in the Whisp experiment adjustment, and only two scans in the Europe experiment.  

The percentage is higher, although not yet critical, in the second Whisp experiment (23 October 2014) 

with 52 rejections (5%). The first Intensive experiment analyzed resulted in six rejections (24%) with the 

first five observations clearly being gross errors (residuals between 3 and 22 ns corresponding to  

0.95 to 6.8 m), probably due to a failure during VLBI correlation. The situation is different for the 

Intensive carried out on 6 October 2014 with four rejections (17%): In this case, the observations 

identified as outliers had residuals around 27 to 51 ps (8 to 15 mm), which is higher than for the 

accepted data (only up to 14 ps), but still at a level of magnitude not indicating gross failures in the 

correlation or sampling process. 

 

Figure 15. Histogram of the 3D distance discrepancies as found from X-band results in 

Table 6. The number of occurrences (24 experiments with the initial S/X-band receiver) is 

given in y-direction, the histogram bin in x-direction. 

As far as the two experiments conducted using the new tri-band receiver (23 February and 2 March 

2015) are concerned, we find a slightly higher deviation from the nominal 3D distance compared to  

the results obtained using the initial S/X-band receiver. Although these two initial results are not 

enough to draw clear conclusions regarding the performance of the tri-band system, separate technical 

investigations revealed some minor shortcomings which have to be mitigated: An apparent problem in 

the third Nyquist zone (1024–1536 MHz) visible as significant DC-level in the cross-power spectrum 

of the correlator report could be identified as a inappropriately adjusted power level at the input of the 

digital down-converter (DBBC-2). 
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The standard deviation of unit weight a posteriori agrees reasonably well with that a priori. 

Looking at Table 6 (DBBC backend), all standard deviations a posteriori are slightly higher (10 to  

35 ps) than a priori (7 to 30 ps), but at a similar level. Regarding the ADS3000+ backend (Table 7), 

we can see even slightly smaller or equal standard deviations a posteriori in three cases out of the six 

experiments performed. 

Quick Glance at the Whisp1 Experiment (27 August 2014) 

Both the DBBC and the ADS3000+ were integrated for the first Whisp experiment observed by the 

TTW1 telescope. The receiving system is, of course, identical, but the backend and recording was 

implemented independently. Figures 16 (DBBC) and 17 (ADS3000+) show a plot of the maximum 

residuals in a coordinate system featuring right ascension α (x-direction) and declination δ (y-direction). 

Note that one and the same radio source was observed multiple times. In this diagram, however,  

the source can only be plotted at its unique α,δ-coordinates which do not change in time. As a 

consequence, only the maximum (unsigned) residual is plotted. 

 

Figure 16. Color-coded maximum residual per radio source for the “Whisp1” experiment 

(27 August 2014) in X-band using the DBBC backend. The coordinate system is right 

ascension α (x-direction, in hours) versus declination δ (y-direction, in degrees). The radio 

source name is printed with the max. residual in units of millimeters below. Minimum and 

small residuals in blue and green, large and maximum residuals in orange and red. 
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When comparing the two diagrams we do not see any systematic patterns. The results obtained with 

the DBBC and the ADS3000+ backend appear to be stochastically independent. We consider this to be 

an indication that no dominant systematic error effects are introduced via the receiving chain, because 

such effects should yield similar patterns in the residual plot. In our case, the distribution appears to be 

random, although this topic might still require a more detailed investigation. Note that the phase 

calibration unit of TTW1 was disabled for the local experiments as mentioned in Section 4.2. 

4.3.3. Alternative VLBI Data Analysis Using Calc/Solve 

In addition to the in-house software used at the Geodetic Observatory Wettzell, the VLBI group at 

the Institute of Geodesy and Geoinformation of the University of Bonn performed a comparative data 

analysis using the Calc/Solve software package and the corresponding solution setup described in 

Section 4.1.2. 

 

Figure 17. Color-coded maximum residual per radio source for the “Whisp1” experiment 

(27 August 2014) in X-band using the ADS3000+ baseband converter. The coordinate 

system is right ascension α (x-direction, in hours) versus declination δ (y-direction,  

in degrees). The radio source name is printed with the max. residual in units of millimeters 

below. Minimum and small residuals in blue and green, large and maximum residuals in 

orange and red. 
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We selected experiments with 24-h observation periods for our comparisons. Up to now, only  

three experiments have been observed which cover the full 24-h period (Europe-130 on 20 August 2014, 

Whisp1 on 27 August 2014 and Whisp2 on 23 October 2014). These data are processed for the estimation 

of station coordinates on a session-by-session basis: 

Short baseline analysis: Only X-band observations on the short 123 m baseline between RTW  

and TTW1 are included in the first solution setup, from which the relative telescope coordinates  

are estimated. The baseline lengths are deduced from the coordinate results and listed in Table 8.  

The resulting baseline lengths RTW-TTW1 differ only in the range of a few millimeters for the  

three experiments. We compare the individual results to the mean of the two Whisp sessions here.  

One reason to exclude the Europe session from this mean is that the number of observations is 

significantly smaller than for the two Whisp sessions. The second reason is that we want to establish 

reference results which are completely independent of the Europe session because we use these 

session’s data in Section 4.3.1 for validating the S-band data. 

Table 8. Results obtained from X-band group delays using the DBBC backend and the 

VLBI analysis software package Calc/Solve. 

Date Type No. Obs. 

3D Distance and 
Std. Deviation 

Mean Length and 
Std. Deviation 

Residuals 

(mm) (mm) (mm) (mm) (mm) 

20 August 2014 E 219 123,307.4 15.1 
123,307.5 12.0 

−0.16 
27 August 2014 W 652 123,307.1 14.8 −0.39 
23 October 2014 W 1000 123,307.9 15.8 0.39 

The resulting reference baseline length from VLBI data analysis differs only 0.5 mm from the  

value obtained by terrestrial measurements. Thus, the determination of the small baseline length  

RTW-TTW1 was accomplished rather successfully. 

Long baseline analysis: In addition to the baseline vector determination, the quality of the S-band 

data is further investigated in the following. As outlined and discussed in Section 3.2 as well as  

Section 4.3.1, S-band data are of inferior quality due to remaining RFI problems in the single S-band 

data. In order to demonstrate the suitability of the S-band data, in particular for long baseline processing 

using either the TTW1 or the RTW telescope and a partner telescope, we focus on one 24-h session 

including both, small distances at Wettzell as well as long baseline lengths throughout Europe. For this 

purpose, the data from the Europe-130 experiment (20 August 2014), which consists of six VLBI 

stations (Madrid, Spain; Metsahovi, Finland; Ny Alesund, Norway; Zelenchukskaya, Russia; TTW1 

and RTW in Wettzell, Germany) are used. 

In this test analysis, we deliberately excluded the observations of the short 123 m baseline between 

RTW and TTW1 and determined the vector between these telescopes only with observations on the 

long trans-European baselines. Here, the X-band group delay observables are corrected for ionospheric 

refraction through the co-linear S-band observations. 

Analysis yields a Wettzell local vector length of 123.3089 m which agrees very well with the mean 

of the Whisp sessions (123.3075 m) as well as the reference distance from local surveying (123.3070 m) 
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considering the fact that the results were deduced from completely independent session types. It should 

be mentioned that the shortest baseline is the one to Madrid with a length of about 1650 km. 

In conclusion, regarding the short TTW1-RTW baseline, the S-band data are indeed affected by  

RFI problems as mentioned in Section 4.3.1. However, as indicated in Section 3.2, the S-band can  

be successfully used for ionosphere calibration on the long trans-European baselines leading to 

satisfactory results. 

5. Conclusions and Outlook 

TTW1, the first of the two new TWIN VLBI radio telescopes at the Geodetic Observatory Wettzell, 

Germany, is a fast-moving antenna system that was developed according to VGOS standards in major 

parts. The main difference between TTW1 and the second TTW2 telescope is the use of a tri-band feed 

horn with reception capabilities in S-, X- and Ka-band, whereas a 2–14 GHz broadband feed will be 

used for TTW2. The commissioning phase for TTW1 started in June 2014. During this period,  

the antenna accompanied selected standard experiments in parallel (“tag-along mode”) with the existing 

20 m RTW radio telescope. Most of these experiments where so-called “Intensives” with a duration of 

one hour each. In addition, three extra experiments with a duration of 24 h where conducted. 

Correlation results indicate a very satisfactory quality of the X-band data, but radio frequency 

interference problems in the S-band. However, correlation on long baselines causes local RFI to 

decorrelate. This principle yielded a successful demonstration regarding the initial processing  

results. Local positioning performance using X-band data shows deviations of usually less than 2 mm  

(3d distance between TTW1 and RTW) in the majority of the experiments. 

Despite of the fact that long baseline correlation of S-band data yields useful group delays, internal 

investigations reveal that TTW1 is more affected by RFI problems due to its broad band design (ring 

focus antenna) compared to the traditional RTW system. Consequently, one of the action items is to 

investigate technical solutions for more efficient RFI resistance carefully, using sharp band-pass filters 

for instance, and to implement suitable solutions accordingly. Moreover, the initial results presented in 

this paper are based on group delays obtained in RTW-compatible mode. More and extensive tests 

exploiting the advanced features of this VGOS antenna are pending, in particular data sampling in 

dual-polarization mode, usage of broader frequency bands (1 GHz) in correlation as well as the 

analysis of Ka-band data. The latter two aspects can be dealt with as soon as the TTW2 or another 

suitable partner telescope is becoming available. 
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