
 

Sensors 2015, 15, 18613-18640; doi:10.3390/s150818613 

 

sensors 
ISSN 1424-8220 

www.mdpi.com/journal/sensors 

Article 

Scalable and Cost-Effective Assignment of Mobile Crowdsensing 

Tasks Based on Profiling Trends and Prediction:  

The ParticipAct Living Lab Experience 

Paolo Bellavista, Antonio Corradi, Luca Foschini * and Raffaele Ianniello 

Dipartimento di Informatica—Scienza e Ingegneria (DISI), University of Bologna, Viale Risorgimento, 2, 

40126 Bologna, Italy; E-Mails: paolo.bellavista@unibo.it (P.B.); antonio.corradi@unibo.it (A.C.); 

raffaele.ianniello@unibo.it (R.I.) 

* Author to whom correspondence should be addressed; E-Mail: luca.foschini@unibo.it;  

Tel.: +39-51-20-93541; Fax: +39-51-20-93953. 

Academic Editor: Antonio Puliafito 

Received: 16 May 2015 / Accepted: 24 July 2015 / Published: 30 July 2015 

 

Abstract: Nowadays, sensor-rich smartphones potentially enable the harvesting of huge 

amounts of valuable sensing data in urban environments, by opportunistically involving 

citizens to play the role of mobile virtual sensors to cover Smart City areas of interest.  

This paper proposes an in-depth study of the challenging technical issues related to the 

efficient assignment of Mobile Crowd Sensing (MCS) data collection tasks to volunteers in 

a crowdsensing campaign. In particular, the paper originally describes how to increase the 

effectiveness of the proposed sensing campaigns through the inclusion of several new 

facilities, including accurate participant selection algorithms able to profile and predict user 

mobility patterns, gaming techniques, and timely geo-notification. The reported results show 

the feasibility of exploiting profiling trends/prediction techniques from volunteers’ behavior; 

moreover, they quantitatively compare different MCS task assignment strategies based on 

large-scale and real MCS data campaigns run in the ParticipAct living lab, an ongoing MCS 

real-world experiment that involved more than 170 students of the University of Bologna for 

more than one year. 
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1. Introduction 

The large availability of mobile devices with sensing capabilities, combined with the pervasive  

spread of communication infrastructures, gave rise, in recent years, to a number of platforms for Mobile 

Crowd Sensing (MCS). MCS is commonly referred to as a paradigm for distributed gathering of 

heterogeneous sensing data from pocket devices used by the crowds. In fact, the spontaneous widespread 

diffusion of Internet-connected sensor-equipped devices has enabled one to accurately trace world-

related information and (physical) activities of citizens, by taking advantage of people willing to 

collaborate toward a continuous data harvesting process, which is feasible and highly effective, in 

particular, in smart cities areas where people density is high and potential participants almost constantly 

bring their smartphones [1]. MCS solutions could be of extreme importance from the community/smart 

city managers perspective because they can enable the monitoring of areas that are still not covered by 

fixed monitoring infrastructures (noise pollution sensors, surveillance cameras, etc.). In addition, MCS 

may benefit from being citizen-centric, in the sense that it allows getting not only raw and locally 

processed sensing data but also (geo-located) constructive comments and suggestions by citizens. 

Moreover, MCS generally fosters a sense of participation because it allows people to be and feel active 

in the smart city monitoring-and-management loop, volunteering for the execution of given sensing 

activities (called tasks in the following) but also actively participating through their actions, which may 

impact and modify the physical world eventually (citizens as monitors but also actuators in the smart 

city). Finally, as recognized also by all major smartphone vendors, which are very recently starting to 

propose activity/geolocation sensing apps as part of their default distributions, sensed data represent an 

invaluable information big data depot, in order to foster the design and development of new and 

unforeseen services based on them. 

Motivated by this continuously increasing trend, several MCS platforms appeared to facilitate the 

management of the whole MCS workflow. Indeed, employing users and devices to collect data from the 

real world poses significant social and technical challenges. From the social perspective, it is crucial to 

motivate users to participate, for example, by providing useful crowdsensing-based services, handing 

out incentives, and fostering a sense of participation in a community [2,3]. It is important not to overload 

users with duties over the limit of what they can and feel to contribute in crowdsensing, and to keep 

them involved by avoiding that the MCS process becomes too repetitive, boring, or even annoying for 

them. From a technical point of view, it is of paramount relevance that sensing software running on user 

devices does not negatively impact on user quality of experience, with negative consequences on the 

quantity and quality of collected data. In any case, the boundary between social and technical challenges 

is not clear cut: for example, the minimization of the global resource overhead by considering a minimal 

subset of users in a crowdsensing campaign requires also analyzing geo-social profiles, identifying and 

inferring which users are most likely to successfully harvest the required data. These differentiated MCS 

strategies and policies, toward overall MCS optimization, are very important; however, while some first 

efforts in the past have addressed these issues with some initial theoretic discussions and simulative 

approaches [4], only a few seminal efforts used real and over-the-city MCS living labs, with the goal to 

draw consistent guidelines and lessons about the feasibility and effectiveness of employed optimization 

solutions in real MCS testbeds. 
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The ParticipAct project and living lab addresses all these issues with the overall goal of enabling  

a new class of MCS systems as large-scale testbeds usable by the many interdisciplinary research 

communities working on smart cities. Within the ParticipAct project, we have already addressed  

several related issues, which span from smartphone sensing and user activity detection [5] to enabling 

geo-localized tasks [6], from enabling people participation [7] to designing the overall architecture  

and living lab [8]. This paper makes an innovative and relevant step further by originally focusing on 

increasing the effectiveness of the proposed MCS campaigns along two primary solution guidelines.  

On the one hand, we propose and thoroughly assess different task assignment policies based on profiling 

and prediction of user mobility patterns, by also considering how the location and time of user 

notification influences the rates of task acceptance and completion. On the other hand, we introduce new 

facilities to gain higher user participation: (i) task co-creation, to let participants (and not only 

administrators/smart city managers) create and propose their own MCS tasks; and (ii) gamification, to 

increase user involvement through competition and virtual incentives. In addition, the paper reports a 

thorough performance assessment of the related and newly available platform facilities, by discussing 

and evaluating their strength and weaknesses, and drawing some important suggestions of general 

applicability and validity for the community of researchers working in this field. Finally, ParticipAct is 

available as an open-source platform that allows for fast development and deployment of large-scale 

MCS experiments with minimal intrusion and resource usage on both smartphone and server sides at 

http://participact.unibo.it/. 

The rest of the paper is structured as follows: Section 2 overviews the main project motivations  

and architecture design guidelines, while Section 3 describes the overall ParticipAct architecture  

and Section 4 delves into the details of the new gamification and co-creation facilities. Large space is 

devoted to Section 5 that reports a thorough evaluation, with experimental results collected during the 

first 16 months of MCS campaigns in the city of Bologna. An analysis of related work (Section 6) and 

an assessment of the current state of ParticipAct as well as of its future goals conclude the article. 

2. ParticipAct Goals and Design Guidelines 

ParticipAct has the primary goal of realizing an efficient and easy-to-use playground in which to 

verify, practically in actual in-the-field deployment environments, any desired MCS strategy, as well as 

to identify the most suitable MCS policies depending on context and application requirements.  

The research goals of ParticipAct are manifold: 

 designing and testing a generic MCS architecture; 

 evaluating, on a large scale, scalable solutions for classifiers and machine-learning-based 

algorithms, specifically fitting MCS goals and requirements; 

 assessing the challenges of managing human resources involved in MCS; 

 maintaining high interest in participants in order to keep them active and involved. 

To pursue these goals, the ParticipAct experiment engages about 170 smartphone-provided students 

for more than one year of active participation: enrolled students, selected to provide a statistically 

relevant group of heterogeneous individuals, can passively collect data by their smartphones but can also 

be asked to perform requested activities, typically within their usual localities of physical presence. In 
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any case, they can voluntarily decide to either accept or refuse to collaborate toward the requested MCS 

actions, and they can also freely stop and abandon them at any time. 

ParticipAct is the complete supporting infrastructure that allows local actions and the client collection 

of data, is in charge of transferring sensed data to the ParticipAct back-end support, and takes over not 

only data harvesting, but also post-processing, mining, and maintenance. ParticipAct has already 

attracted much external interest and catalyzed other independent and parallel experiments, mainly within 

the city area of Bologna but also for larger communities. That has motivated us to organize the 

ParticipAct platform and its main experiment as a backbone for MCS, with the possibility to easily add 

and compose additional sensing activities and possibly to schedule and launch new related MCS 

campaigns. By considering in the ParticipAct architecture and the experiences already made with our 

platform, they have allowed us to define some distilled guidelines and principles to be taken into account 

in MCS campaigns and supports: 

 Minimal intrusion on client devices—smartphone computing overhead must be minimized in 

both active actions (e.g., completing a requested via explicit operations from users carrying the 

sensing smartphones) and passive actions (e.g., smartphone-based monitoring of cyber-physical 

indicators without direct involvement of the carrying users), as well as in local and distributed 

transmission phases. 

 Fast feedback and minimal delay in producing stream information—data must be quickly 

provided according to application- or deployment-specific policies that can be tuned and agreed 

on with policy administrators and controllers. 

 Openness and security—an MCS platform should share (a portion of or the whole) sensed data 

with other companion experiments within a precise security boundary, which enables sharing 

with and only with authorized apps. 

 Complete data management workflow—an MCS platform should support any step in the  

sensed data management cycle, from collection to communication, from post-processing and 

maintenance to mining and result provisioning. 

 Users’ involvement through gamification—users need to be continuously stimulated with proper 

incentives in order to avoid individual or group effects of interest decrease, loss of active 

participation, responsiveness degradation, etc. 

These features, better described in the following, together with technical details about their effective 

and efficient implementation, make ParticipAct a complete MCS platform, which encompasses the 

whole process from data collection to post-processing and mining. Moreover, ParticipAct contributes  

to the field by being available to the MCS community as an open source project to be used, refined,  

and extended. 

3. ParticipAct: Model and Architecture 

Smartphones are nowadays powerful and ubiquitously available sensors for data gathering in smart 

city scenarios. At the same time, in order to make MCS practically viable and effective in real  

wide-scale scenarios, it is necessary to have the possibility to orchestrate the whole MCS workflow,  

as pointed out in the previous section. In other words, common goals of any MCS platform should be to 
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include efficient capabilities of orchestrating crowdsensing campaigns, by delivering sensing tasks to 

the most promising citizens (the ones who are more likely to complete the assigned tasks), and of 

collecting sensing data by storing and processing them to better manage and control next campaigns. 

This section overviews the ParticipAct platform, which aims to make a step further in MCS by enabling 

a long and still running living lab that allows one not only to assess the MCS platform from a 

technological viewpoint but also to quantify its effectiveness in collecting data and in keeping people 

involved in the MCS loop. 

The ParticipAct platform, similarly to other MCS platforms, adopts a client-server architecture that 

includes a client, running on user devices to manage tasks and to run all required sensing activities by 

interacting with participants via their smartphones, and a server to store, process, and present collected 

results [9]. The ParticipAct client takes care of receiving tasks, asking users whether they want to run 

them, managing data collection, and uploading results. The ParticipAct server, instead, provides 

advanced management, storage, and analysis features for crowd-sensed data and consists of two main 

parts: the back-end that takes care of receiving, storing, and processing sensed data; and the 

crowdsensing manager that provides the administration interface to design, assign, and deploy sensing 

tasks. Finally, at the core of ParticipAct MCS campaigns, there are tasks, defined as fine-grained simple 

operations that are more likely to be completed by users. Sections 3.1–3.3 describe, respectively, the 

ParticipAct task model, client, and server architecture extensively. 

3.1. Task Model 

A task is a representation of a crowdsensing campaign to gather sensing indicators (considered 

relevant) at the desired quality level and with the desired coverage. In ParticipAct a task is modeled in 

terms of five fundamental components: 

 description: a textual/graphical representation, prompted to users, of what to do to complete  

the task; 

 duration: time span granted to a user in order to complete a given task, after having explicitly 

accepted it; 

 acceptance window: time boundaries for a user to accept a given task; 

 associated points: points granted to users who complete a given task successfully; 

 geographic area associated with the task: geographic boundaries inside which users can receive 

notification of the new task assignment and execute it successfully. 

In addition, any task is associated with a set of actions (either active or passive) to complete. During 

its life, a task can reach different states. Figure 1 shows the lifecycle of a ParticipAct task. The initial 

state is the creation of the task. After creation, the task passes to a state where it is listed as available. 

The task moves from the available state according to the transitions below: 

 if the task is rejected by the user, then it transits to refused state; 

 after a period of time greater than the acceptance window configured for that task, the task transits 

into ignored state; 

 if the task is accepted by the user, then it transits into execution state; 



Sensors 2015, 15 18618 

 

 

 if the task is geo-localized, then, at first, it passes to a hidden state to prevent the user to 

accept/reject it and, then, when the associated user traverses the area of interest, it becomes 

available. If, during the period in which the state is hidden, the acceptance window expires,  

then it passes directly to the ignored state. 

 

Figure 1. Task state lifecycle. Data collection is enabled only in the running state. States 

with a bold stroke reached through transitions represented with a bold arrow are kept in sync 

between clients and the server. 

During sensing data collection, execution may be stopped for two main reasons: either because the 

user decides to pause voluntarily collecting the data or, if the task is geo-localized, when the user exits 

from the area of interest. In any case, from each of these situations the task transits to a final state when 

the associated task duration ends. The task will then be evaluated (either successful or failed) by the 

ParticipAct platform based on the associated data that were collected. 

As we can see from Figure 1, there is not a strict and expensive synchronization between clients and 

the server. In fact, to keep task client/server state perfectly synchronized, state changes should be allowed 

anytime clients can communicate them to the server, thus making state transitions very costly because 

network availability on mobile devices is often spotty. Conversely, some state changes do not need to 

be synchronized between clients and the server infrastructure because they are temporarily useful only 

on the client side (e.g., when a task is temporarily paused). That is the motivation of the state machine 

in Figure 1: only relevant task state transitions call for synchronization; in particular, transitions to 

available, refused, ignored, running, succeeded, and failed states are transparently synchronized with the 

server in the ParticipAct platform; if one of those transitions occurs when there is no data connectivity, 

the task state is implemented via a soft state to be automatically finalized as soon as the server 

acknowledges it. 
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3.2. The ParticipAct Client Architecture 

The ParticipAct client is the component in charge of receiving tasks, asking users whether they are 

willing to run them, managing data collection, and uploading results. The client allows an easy data 

collection from the user point of view: tasks are presented to users on their smartphone displays and data 

collection starts when the task is explicitly accepted, by requiring minimum user intervention. 

Functionally, the ParticipAct client consists of two macro-components: the task management one  

and the sensing management one (Figure 2). These components orchestrate the full lifecycle of  

tasks on user devices and are responsible for both interacting with users and efficiently accessing 

smartphone sensors. 

 

Figure 2. The architecture of the ParticipAct client. 

3.2.1. Task Management 

The task management macro-component is responsible for managing crowdsensing campaigns by 

delegating actions to active and passive sensing modules. It also takes care of overseeing the whole task 

lifecycle on smartphones. It has five main responsibilities realized by its components: (i) receiving tasks 

from the server and keeping their state synchronized; (ii) providing users with an interface to control 

task execution; (iii) implementing the Graphical User Interface (GUI) for active sensing actions with 

user interaction; (iv) commanding and managing sensing actions; and (v) uploading sensed data. 

The Task State Sync and Task State Management components are in charge of the first duty, by taking 

care of receiving new tasks and, in acceptance, by driving their full lifecycle. As stated previously, only 

important state transitions are communicated to the server and they occur only if the server acknowledges 

them. In addition, the Task State Management component gives users the opportunity of completely 

controlling the sensing process: whenever an available task is pushed to user devices, the task management 
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component gives users the opportunity to either accept or refuse it, thus allowing different dynamic 

levels of engagement by different users in the managed MCS campaigns. 

The GUI component enables sensing actions that require active user participation. Currently, 

ParticipAct supports four active sensing actions that allow to collect data available only through explicit 

user collaboration, thus enabling MCS scenarios such as collaborative journalism, urban photographic 

mapping, and geotagging. In particular, the supported active sensing actions are surveying, taking a 

picture, tagging a place, and moving to a place in a given time window. ParticipAct implements a custom 

GUI for any of them. 

Task Management also drives sensing actions: it starts/stops passive actions based on the current state 

of the task, i.e., when the user pauses data collection or when the user moves outside the target area in 

the case of geo-executed tasks. Actual activation/deactivation of sensors is demanded to the Passive 

Sensing component that sends appropriate requests to the Sensing Management macro-component. 

Finally, the Data Uploading component is in charge of retrieving sensed data and uploading them on 

the server. This process has to balance between uploading data as soon as possible to the server and 

minimizing the associated power consumed by radio interfaces. According to the minimal intrusion 

principle, ParticipAct data upload is geared towards minimizing its impact on battery lifetime.  

To accomplish this, ParticipAct batches data uploads and requires a minimum interval of five minutes 

(configurable to different values anyway) between two consecutive uploads, which grants the  

radio interface enough standby time [10]. Local Database temporarily stores data until the server 

acknowledges their reception, thus guaranteeing no data loss even in the presence of unreliable data 

connections and client device shutdown. 

3.2.2. Sensing Management 

The Sensing Management component plays a pivotal role in ParticipAct crowdsensing because it 

manages the access to all sensors available on smartphones and the collection and processing of their 

output. Sensing is a power-hungry process that should be carefully driven to avoid negative impact on 

users, again following the minimal intrusion principle, which is very relevant for practical adoption of 

MCS platforms. About sensing management, in ParticipAct we have distilled three design guidelines. 

First, sensing should promote availability of high-level inferences, meaning that while accessing sensors 

on a smartphone (e.g., accelerometer) is a relatively trivial process, providing high-level inferences (e.g., 

the user is walking/running/standing) is a much more valuable feature. Second, sensing should be 

resource-aware: sensing management should put effort in minimization of resource consumption  

to both reduce impact on battery lifetime and limit performance degradation effects on user devices. 

Third, sensing should be system-aware: the sensing system coexists with the runtime OS support and the 

other executing applications; with them, it competes for un-shareable resources (e.g., microphone and 

camera can be used only by one application at a given time); the sensing system should be able to 

transparently resolve conflicts and to promote a non-intrusive approach. 

These principles drove us to the development of our original sensing system, called Mobile  

Sensing Technology (MoST). MoST is our open-source Android sensing library that provides a uniform 

access layer to all physical and logical sensors, thus relevantly simplifying the duties of app developers. 

At the same time it carefully takes into account the concurrency issues associated with shared resource 
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access, thus making sensing un-intrusive and minimizing the related impact on the perceived quality of 

user experience. MoST is a general-purpose library, which can be integrated also in other smartphone-

oriented projects; in ParticipAct, we use it to effectively implement all the passive MCS sensing actions. 

The MoST architecture is based on two primary building blocks: Inputs and Pipelines. Inputs are any 

physical or logical sources of sensing data (e.g., accelerometer, gyroscope, GPS, app networking 

statistics, battery level), while Pipelines are components that receive, process, and fuse sensed data 

collected from one or more Inputs by forwarding resulting data to client applications. In its turn, MoST 

consists of two main subsystems (Figure 3): the Sensing subsystem and the Management subsystem. 

The Sensing subsystem has a two-layered architecture and manages all aspects of sensing, from 

accessing Inputs, to wrapping them into easy-to-manage local objects that are dispatched to Pipelines. 

Pipelines then forward their results to client applications. The Management subsystem, instead, drives 

and commands the configuration/management of the sensing process, by providing an entry point to 

external apps to request MoST services, by resolving concurrency issues for non-shareable resources 

(e.g., the microphone cannot be physically used by MoST during a phone call), and by controlling power 

management. For more details on MoST, we refer the interested readers to [11]. 

 

Figure 3. The MoST Architecture. 

3.3. The ParticipAct Server Architecture 

The ParticipAct server side provides management, storage, and analysis of crowdsensed data. At the 

highest level it comprises two main parts, as shown in Figure 4: the Back-end and the Crowdsensing 

Manager. The Back-end takes care of receiving, storing, and processing sensed data, while the 

Crowdsensing Manager provides the administrative interface to design, assign, and deploy sensing tasks. 
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Figure 4. The server-side architecture of ParticipAct. 

In a more detailed view, the Back-end consists of three macro-components: Data Receiver, Post 

processor, and Data Processor. Data Receiver receives data from clients (namely, from Data Uploading 

components) via a Representational State Transfer (REST) Application Programming Interface (API) [12]. 

Data Receiver acknowledges each received data to allow data removal from the local database at the 

client side. Data are then cleaned up and prepared for long-term storage by Post-processor components, 

namely Interpolation and Integration. Interpolation improves data collection by filling in missing data 

points that can be inferred with sufficient accuracy. A notable case is geolocation data that on Android 

devices are available via the Google geolocation API, which dynamically switches between different 

techniques to infer user position (i.e., GPS, Wi-Fi, and cellular 3G); this causes location accuracy to 

range and suddenly change from few meters (e.g., for GPS) to thousands of meters (e.g., for cellular 3G 

only). Interpolation substitutes data outliers, whose accuracy is significantly worse than the ones of 

temporally close data points, by substituting them with a simple linear interpolation of the more accurate 

data points; more sophisticated interpolation algorithms are simply pluggable in the ParticipAct 

architecture, but they are out of the scope of this specific paper. Integration, instead, aims at aggregating 

data in time and space. It collapses all the data, of any type, collected in the same 5 min window in a 

single row to enable time-based indexing of all sensed data and to successively speed-up the execution 

of temporal queries. It also aggregates data in space by creating a geographical view of sensed data, and 

storing it in a Geographic Information System database (GIS) for spatial querying. Finally, Data 

Processor exploits those time-based and space-based views to tailor user profiles for fast identification 

of users who are more likely to successfully execute a task according to ParticipAct assignment policies, 

as detailed in Section 3.2.2. Data Processor is also responsible for determining points (incentive 

mechanisms) to assign to every user for each task. As described in Section 4.2, each user receives 

different points based on her reputation; points are determined before creating the campaign and 

calculated on each user profile; each user will see on her own smartphone the points that will be earned 

after the successful completion of the currently considered task. 
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Crowdsensing Manager is the administrator-facing part of ParticipAct. Web Administration  

Interface (Figure 5) allows smart city managers to interact with the ParticipAct platform and supports 

full-administration of the whole MCS process, including management of user profiles, design and 

assignment of tasks, and data review. A core function of the Web Administration Interface is its ability 

of tapping into results provided by the Data Processor, in order to automatically assign tasks to users 

who are more likely to successfully execute them. Task State Sync, instead, is in charge of keeping task 

state synchronized between clients and the server by pushing new tasks on designated clients and 

receiving all state change updates (e.g., task accepted/refused and task completed with success/failure). 

Among the several server functionalities supported in ParticipAct, in the next two sub-sections, we 

present two core features that represent hard technical challenges in the practical deployment of a  

real-world and widely adopted MCS platform: data transport and task assignment. 

 

Figure 5. Screen capture of the ParticipAct Web Administration Interface. This figure shows 

the interactive page that allows to define the geo-notification area of a task. 

3.3.1. Data Transport 

An essential feature of a crowdsensing system is power-efficient, secure, and reliable data transport 

from clients to the long-term storage hosted on the back-end. Power efficiency is achieved on the client 

side (see also Section 4.1) by batching data transfers to minimize the number of times that network 

interfaces have to turn on to transmit data. Another important factor to reduce power consumption is 

limiting the amount of data that is actually transferred. To achieve this, ParticipAct serializes data bulks 

by using the highly efficient protobuf format [13], which significantly reduces the CPU consumption and 

data memory footprint if compared with native Java serialization and verbose serialization formats  
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such as eXtensible Markup Language (XML) and also JavaScript Object Notation (JSON). Moreover, 

sensed data has often a low entropy (e.g., geolocation data usually differ in a limited way in a short  

time-span), which makes them highly compressible. ParticipAct exploits this aspect by having clients 

compressing all outgoing data with the lightweight—yet power-effective—gzip algorithm [14]. 

As regards security, authentication is provided by enforcing the usage of HTTP Basic Authentication 

for all user requests [15]. Data integrity and confidentiality is guaranteed by industrial standards for 

encryption: all REST and Web requests are available only via HTTPS over TLSv1 [16]. Moreover, 

HTTPS strengthens HTTP Basic Authentication, which by itself is a weak authentication mechanism 

prone to network sniffing attacks, by guaranteeing that user names and passwords are never sent in 

plaintext over the Internet. Finally, ParticipAct achieves reliability with a two-phase commit protocol to 

grant that all data are transferred from clients and stored at the back-end. 

3.3.2. Task Assignment 

MCS task assignment is defined as the process of identifying the users who are more likely to accept 

and complete a task based on profiling, applicable context, and for example history of daily movements. 

Efficient task assignment is widely recognized to be a central key performance indicator for state-of-the-art 

MCS platforms, being the most crucial factor in achieving good MCS results by minimizing the 

resources consumed for users’ incentivizing. For these motivations, we have concentrated significant 

research efforts within the ParticipAct project to design and dynamically manage task assignment 

policies, by including articulated and original task management solutions and by devoting  

relevant efforts to assignment policy assessment and evaluation. Given the relevance and strong 

originality of this aspect, we have decided to dedicate the following Section 3.4 to go into  

in-depth technical details about the ParticipAct solutions for task assignment, as well as to have an  

in-depth discussion about lessons learnt, in particular in terms of acceptance, completion rates, and times 

of assigned tasks (either geo- or non-geo-notified), by considering tasks with different levels of 

complexity and duration. 

3.4. The ParticipAct Task Assignment Policies 

ParticipAct enables effective scheduling of geo-executed tasks through four main different policies, 

specifically designed and optimized for MCS campaigns, namely, random, recency, frequency,  

and dbscan, detailed in the following. Additional task assignment policies are easily pluggable in the 

platform via a related dynamic API. 

The random policy selects a random subset of all available users, regardless of their position history, 

based on the user ratio parameter, which is defined as the percentage of all available users to be  

assigned to the task, from 0% up to 100%. It is an uninformed policy and we introduce it as the baseline 

solution, primarily to be used for the sake of comparison with the other more aware and informed task 

assignment policies. 

The recency policy prioritizes the assignment of tasks to users who have been recently in the  

geo-execution area. This policy relies on the assumption that those users may return in the same area  

in their everyday commuting routine. Moreover, the recency policy ranks all potential candidates 

according to how recently they have been in the geo-execution area, from the most to the least recent. 
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Similarly to the random policy, it may be configured with user ratios from 0% up to 100%, defined  

as the portion of candidates (starting from higher ranked ones) to select for an active role in the  

MCS campaign. 

The frequency policy assumes that the people who visited more frequently the geo-execution area of 

the considered task are the best candidates to select; in other words, this policy implicitly assumes that 

those users usually stay or regularly attend the area. In particular, it selects users who have been in the 

target area in the past and ranks them according to the time that they spent there compared to the time 

spent in other places. In addition, as for recency, this policy supports user ratio setting in order to further 

limit the number of assigned candidates. 

The dbscan policy uses the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) 

algorithm to cluster past user location traces [17]. DBSCAN is a density-based clustering algorithm 

based on the idea that the density of points inside a cluster is much higher than that of the points outside 

the cluster, and that the density of points outside a cluster is much lower that the density of any other 

cluster. DBSCAN has several properties that make it well-suited for the problem of MCS task 

assignment: it does not require knowing the number of clusters to be determined a priori, it can detect 

arbitrarily-shaped clusters, it is robust to noise and outliers, and it is optimized to run on  

GIS-enabled databases. Our dbscan policy runs the DBSCAN algorithm over all past user positions and 

clusters those users who actually spend a sizeable amount of time in the target geo-execution area as 

potential candidates. Then, it selects users in a cluster that intersects the geo-execution area. Like all 

other policies, dbscan allows selecting a proper user ratio setting; however, differently from recency and 

frequency, since dbscan does not provide a ranking, the dbscan policy randomly determines the final set 

of selected users. 

Note that all the above task assignment policies are sensitive to the size of location history used.  

In our work, we have decided to consider only a limited time window for the geolocation history of the 

last days before the considered task starts for each user (default configuration in ParticipAct is two 

weeks). If we consider all the history of a user, we can select, with higher probability, users who have 

changed routines and are not capable to complete that kind of task. Anyway, it is possible to modify that 

window size or even indicate specific hours of the day and/or specific days of the week in order to 

determine, with a finer grained approach, users who can complete tasks in a more specific time window. 

One primary lesson learnt from our large-scale ParticipAct experience (and the associated  

in-the-field deployment of MCS campaigns involving large sets of users) is that the choice of the task 

assignment policy has a relevant impact on MCS results and efficiency. Therefore, in the experimental 

results section (Section 5), we will devote wide space to extensively report about our original efficiency 

metrics to assess the performance of task assignment policies in MCS campaigns and the associated 

performance indicators/lessons learnt deriving from our in-the-field measurements. 

4. Users’ Involvement in ParticipAct: Gamification and Task Co-Creation 

An original functionality of the most recent releases of the ParticipAct platform is the support of novel 

gamification and task co-creation features, with the primary goal to maintain a high level of participation 

and interest among the involved users. With the term gamification, we intend here the use of game design 

elements capable of fostering user engagement in context external to games, such as competition, 
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success, and reward. By following these concepts, we have implemented in ParticipAct a general gaming 

framework based on three core elements, namely, reputation, ranking, and badges, in order to qualitatively 

and quantitatively experiment and evaluate the positive effects of the gamification approach in the 

specific context of MCS campaigns. 

4.1. Reputation 

Inside ParticipAct, we have implemented the concept of reputation with the primary goal of 

expressing and quantifying the reliability of a user towards a particular kind of task. In fact, every user 

has a reputation value for each specific type of action that she can execute. This reputation value 

summarizes the ability, and, consequently, the probability, that a user can complete that particular 

request, which is most relevant in managing the effectiveness and efficiency of MCS campaigns.  

This value evolves over time depending on the type of interaction between the associated user and the 

ParticipAct platform. In particular, the reputation value will increase every time a user completes with 

success a task containing that particular action and decrease every time a user will not complete a task 

that the user had previously accepted to complete. The overall user reputation will also vary, but in a 

slower and weaker way, when a user simply accepts or refuses any type of task, independently to the 

result of its execution (either completed successfully or failed). The rationale is in motivating users to 

accept a high number of tasks but, even more, not to fail in executing the accepted tasks. From the 

perspective of user-side awareness and visibility, the ParticipAct smartphone app shows the own current 

level of reputation (overall and for each type of action) to give user an immediate feedback on her MCS 

level of engagement. 

4.2. Ranking and Points 

Starting from reputation, the ParticipAct admin (e.g., a smart city manager organizing and optimizing 

MCS campaigns) can specify a policy for points/incentives assignment. The ParticipAct architecture is 

structured to simplify the addition of newly defined incentive policies at provisioning time, with no need 

to suspend or re-start the associated MCS campaign; different policies can be concurrently enforced for 

different situations and/or different tasks. 

In particular, our ParticipAct server implements four different incentive policies based on two main 

concepts: reputation and level. As already stated, in ParticipAct we intend for reputation the direct ability 

and reliability of a user to complete a specific kind of action; reputation has a value between  

0 and 100. For level, instead, we mean a mapping of the user reputation inside the 60–120 range for 

assigned points; we made this choice in order to limit diversity in points between users and to assign 

some non-zero points to users with still no reputation for a specific action. The incentive policies 

implemented in ParticipAct are four: 

 Average level—the number of points to assign to a user is determined using the average value of 

levels of each kind of actions that compose the task; 

 Average reputation—like the previous policy, but directly using the reputation value: 
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 Sum level—the number of points to assign to a user is calculated using the sum of the levels of 

each kind of actions that compose the task; 

 Sum reputation—like the previous policy but directly using the reputation value. 

Gamification experiences in other fields have demonstrated that users acquire points incentivized by 

the competing desire of climbing the leaderboard. Points are scarcely effective without a comparison 

term, so we have implemented a ParticipAct functionality that is capable to track position inside the 

leaderboard for every user and to show the situation on the participant smartphone. It is also possible to 

find friends through standard and widespread social networks and showing a personalized leaderboard 

reduced to friends. An additional feature that we have decided to implement is the aging of points: points 

automatically decrease over time; in this way, it is possible to remix leaderboard and keep users on the 

bottom alive, with the easier possibility to climb the board in the next MCS campaigns. 

4.3. Badges 

As a further incentive, we have implemented in ParticipAct the concept of unlockable badges.  

They may associate with a given task: when this task is completed with success, a badge appears  

on the completing user’s smartphone. Or they may associate with an action type: after successfully 

completing a task with a specific action type, a type-related badge is prompted on the user  

smartphone. Badges for a given task have usually short-term validity and usage; for long-term influence,  

a badge associated with a series of tasks, completed with success and with specific action types,  

is most appropriate. 

4.4. Task Creation 

To involve users even more deeply in ParticipAct MCS campaigns, we have also decided to give 

them the capability of new task definition. Users can access ParticipAct platform functionality similar 

to MCS administrators: they can define a task campaign involving other users by accessing the tools 

provided ParticipAct for this purpose. In this way, users are directly involved in the process of data 

gathering; most important, involvement can increase while stimulating crowd-oriented creativity; 

moreover, this encourages final users to understand better the capabilities of the platform and to be aware 

of its possible limitations. 

Users can define new tasks either through the smartphone app or through the ParticipAct Web server 

and, by using a guided and controlled process, can submit new tasks to the ParticipAct administrator. 

The user-generated tasks, before starting the flow seen in Figure 1, undertake a new  

sub-flow where they stay in an idle state while waiting for the administrator to approve them.  

If approved, points are assigned to the user that proposed the new task and the task is prompted to other 

users, thus beginning its associated task flow. In conjunction with the support of social relationships and 

consideration of users’ friendships, it is possible to suggest administrators to assign tasks to task creators’ 

friends, thus stimulating direct cooperation/competition with friends and increasing active participation. 
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5. Experimental Results and Lessons Learnt 

We claim that the ParticipAct experience is interesting and unique inside the field of MCS for 

different motivations. First, it is a real-world deployment of a complete MCS platform with interesting 

features. Second, it has allowed to collect a complete and very large dataset of crowdsensed information, 

involving a large number of participants for a very long time duration. Third, the thorough analysis of 

those collected data has originally allowed us to point out lessons learnt and solution guidelines to 

maximize the ParticipAct platform strengths and to define best practices for future MCS platforms. This 

section first defines novel and suitable metrics to compare task assignment policies for MCS campaigns, 

then presents a quantitative assessment of our assignment policies for geo-executed tasks, and finally 

shows a comparison of task acceptance and completion rates/times for different kind of tasks. 

5.1. MCS Evaluation Metrics 

A widespread and internationally recognized consensus on the evaluation metrics for the analysis of 

MCS campaign performance has still to be reached in the research community, because of the lack of 

wide MCS datasets with real-world results about task assignment policies as well as task acceptance and 

completion. This paper also provides a contribution to the MCS community of researchers by proposing 

novel and usable MCS evaluation metrics. 

Let us focus first on the MCS metrics that can assess the effectiveness of task assignment policies. 

The number of assigned users is defined as how many candidate users a given policy assigns a specific 

task. Precision measures the percentage of success of a given policy, namely, whether selected users 

where the ones who actually executed the assigned task successfully. For this evaluation, True Positives 

(TP) users are the ones selected by a policy and who actually carried out the task, while False Positives 

(FP) are the users selected by a policy but not executing the task. We define precision as the ratio between 

TP and TP + FP. Moreover, True Negative (TN) users are the ones who have not been selected and did 

not execute the task, while False Negatives (FN) the users who have not been selected but did execute 

the task anyway. Accuracy is a percentage and accounts for the proportion of true results (both true 

positives and true negatives) in the population. More formally, accuracy is the ratio between TP + TN 

and TP + FP + TN + FN, that quantifies how good is each policy in correctly classifying user behavior 

and predicting whether they will (TP) or will not (TN) execute a task. Finally, we originally introduce 

some simple metrics to evaluate task acceptance and completion. Acceptance rate and completion rate 

represent the percentages of users (evaluated over all involved people) who, respectively, accepted and 

completed the task. Similarly, acceptance and completion times represent the duration of the interval 

required to, respectively, accept and complete a task. 

5.2. Evaluation of ParticipAct Task Assignment Policies 

The experimental assessment of a large scale crowdsensing system in a realistic scenario poses 

significant social, technical, and logistic challenges. In a long-running effort to test ParticipAct, we are 

currently maintaining a large deployment that involves 173 volunteers, all of them students of University 

of Bologna from different courses and year, that are attending on either the Bologna campus (123 students) 

or Cesena campus (50 students). Although, as for other similar experiments, it is an open question if 



Sensors 2015, 15 18629 

 

 

obtained results could hold in a more general scenario, we believe the ParticipAct dataset is large enough 

(in time and space) to draw some first important observations, rather realistic for urban setting scenarios. 

In fact, it is important to underline that Bologna and Cesena university campuses are not self-contained: 

they comprise several dozens of different buildings spread over these two metropolitan areas. For this 

reason, volunteers’ path and behavior are not limited to a specific area but related to the whole urban 

territory that coincides with the same area of all citizens living in the same smart city. 

Of course, we cannot present all the tests we have done in the first ParticipAct period, because we 

have triggered many different campaigns. In this section, we present a quantitative assessment of  

our assignment policies for geo-executed tasks. In the next section, we present an analysis of acceptance 

ratio for different types of tasks proposed to our volunteers, and we compare differences of acceptance 

based on notification type (namely, geo-notified or not). 

As regards deployment aspects, we provided each volunteer with a Samsung I8190 S III Mini with 

pre-installed ParticipAct client. The ParticipAct client reports user geolocation every 180 s, thus 

allowing us to have very precise mobility traces. On the server side, ParticipAct was developed as a 

Spring MVC web application hosted on Apache Tomcat 7.0. The server hosting the web application uses 

an Intel i5 3210 M 2.5 GHz CPU, with that 8 GB of RAM, and is connected via a 100 Mbit connection 

to the server hosting the database that stores all crowdsensed data. The database server uses an Intel 

Xeon E31240 3.3 GHz CPU and 8 GB of RAM, and runs PostgreSQL v9.1 DBMS, that has been 

enhanced with PostGIS v1.5 to run geographical queries. All geolocation traces of users have been stored 

in a GIS-enabled table to allow fast geographical queries. 

Figure 6 shows the number of candidate users selected by each policy (over the total of 173 volunteers) 

for various geo-executed tasks; we considered four geo-notified tasks (graphs on the left) and four  

only geo-executed, but non-geo-notified (graphs on the right). For all tasks, we have analyzed the 

ParticipAct collected data to understand which performance values would have been achieved if users 

had been selected by different policies and by using different user ratios in the range [10%, 100%]. In the 

following, all results represent average values over, respectively, the four geo-notified and the four non-

geo-notified tasks. Because they were executed by the same population and were associated to urban 

areas with similar characteristics, they have comparable completion/failure rates. 

  

Figure 6. Number of candidates selected by each policy in case of geo-notified (left) and 

non-geo-notified (right) tasks. 
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As expected, the random policy shows the worst performance. Recency, frequency, and dbscan 

policies always select about twenty users or less, with dbscan selecting very few users compared to 

recency and frequency, always below five users as the average value. These policies (except the random 

one) significantly limit the number of users assigned to a task by not affecting the final success of the 

MCS campaign, thus reducing the workload of users and the “process costs”, e.g., in terms of  

resource-consuming incentives to be attributed to users completing the assignment successfully. 

  

Figure 7. Accuracy on geo-notified (left) and non-geo-notified (right) tasks. 

  

Figure 8. Precision of geo-notified (left) and non-geo-notified (right) tasks. 

Figures 7 and 8 report precision and accuracy performance results, by showing that all of them have 

specific strengths and weaknesses, depending on deployment conditions and MCS campaign-specific 

constraints, for instance about user ratio. The recency and frequency policies perform slightly similar 

and it is important to state that the list of assigned users produced by recency and frequency contain the 

same set of users, but ranked differently: this is why, with 100% user ratio, they reach exactly the same 

results. At the same time, let us also rapidly note that some (minor) oscillations in Figure 8 are due to 

the fact that, notwithstanding the good number of users involved in the ParticipAct MCS campaigns, the 

cardinality of participants is still sufficiently low to exhibit stochastic fluctuations, especially for 

recency. If compared with recency and frequency, the dbscan policy has a higher accuracy and shows 

overall a very stable behavior for all considered metrics. Most important, it obtains those results with a 

very low number of assigned users, thus confirming DBSCAN ability to capture and cluster routinely 

user behaviors. Finally, a very important lesson learnt from our analysis is that geo-notification should 
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be applied whenever possible: indeed, notifying potential candidates only when they enter the interested 

geo-execution area allows one to boost the task completion rate and, consequently, the associated 

precision. We believe that this is due to the fact that candidates who are notified beforehand (non-geo-

notified) tend to forget completing the task as they reach the geo-execution area. 

5.3. Task Acceptance and Completion Analysis 

We have learned from direct experience and in-the-field measurements that selecting the most 

appropriate assignment policy can lead to significantly better MCS results. Anyway, other non-negligible 

aspects affect the MCS campaign efficiency, such as the different modes with which users can be 

involved in participating to different kinds of tasks. To better understand and analyze the impact of 

different task types assignment based on context, we have thoroughly investigated this behavior through 

our huge dataset of historical data about task assignments. In particular, Figure 9 reports results on 

acceptance and completion for different kinds of tasks. Figure 9a shows the difference in geo-notified 

(on the left) and non-geo-notified (on the right) tasks; for this purpose, we considered eight tasks  

either geo-executed or non-geo-executed and they all have similar characteristics in term of task type, 

area of execution and notification, and duration. The reported results confirm that geo-notification allows 

improving acceptance and completion rates respectively by 52% and 423%. Figure 9b, instead, reports 

acceptance and completion rates for different types of tasks, from passive and more easy-to-complete 

(shorter and simpler) on the left, to more and more complex ones on the right. Users are more willing to 

accept and complete passive tasks (without need of user intervention, such as GPS monitoring) and 

simple active tasks (with limited actions). Instead, for complex task that aggregate multiple actions, users 

tend to be less willing to participate and complete them. 

  

Figure 9. Acceptance (a) and completion (b) rate for different types of task. 

Another relevant factor for crowdsensing campaigns management is the acceptance/completion rate 

dependency: in order to better understand this relationship and to originally contribute with real world 

data about this, our results analysis continues by showing the Complementary Cumulative Distribution 

Function (CCDF) for acceptance (Figure 10a) and completion (Figure 10b) times for geo-notified and 

non-geo-notified tasks, by considering the same tasks and users of Figure 9a. In particular, Figure 10b 

reports the latency for receiving crowdsensed data results (time interval between task creation and result 
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reception). This performance indicator is useful to understand (and then confirm expectations from) 

crowd behaviors. In fact, as expected, acceptance time has demonstrated to be higher for geo-notified 

tasks for the motivation that, in this case, task notification is delayed until users enter the task notification 

area. The completion time, instead, is relatively lower in the case of geo-notified tasks because they are 

typically notified in the area and then completed by users right away, typically in less than 15 min.  

This confirms an expected behavior (however, in-the-field, real-world experimental results about that 

are original in the related literature) but is central for easy and effective improvement of the efficiency 

of crowdsensing campaigns through automated frameworks, such as ours, capable of selecting 

dynamically the most proper scheduling and priority strategies in order to optimize domain-specific 

constraints on economic budget and other key performance indicators. 

  

Figure 10. CCDF of acceptance (a) and completion (b) time (in seconds) for geo-notified 

and non-geo notified tasks. 

Let us note that the experimental data collected in ParticipAct are very rich and well-suited for a 

number of possible aims and further analysis, e.g., with the goal of user profiling. Just to provide an 

example and for the sake of briefness, let us mention the fact that we worked on aggregating information 

based on the different Schools where ParticipAct volunteers are enrolled. Figure 11 shows users’ 

responses to two different sets of tasks. The first set relates to photo tasks where users are required to 

take pictures of different city venues. The second set is a collection of riddle tasks where users have to 

reply by guessing a word that has connections with all other proposed words. As we can see from  

Figure 11, riddle tasks have demonstrated much higher completion rates among Humanities students, by 

confirming the expected users’ profiling, while Medicine and Economics students seem to be more 

interested in photo tasks, probably also due to the fact that their Schools are located in the city center. 

Finally, our profiling analysis has quantitatively confirmed to us that we have to carefully consider the 

consolidation of our collected results by taking into account some possible bias effects stemming from 

the fact that that the majority of our volunteers (135 out of 170) are from the School of Engineering and 

Architecture: different dynamic weights are under consideration in order to smoothen these bias effects, 

with the general idea that wider population generally means wider statistical validity but with the need 

of correction metrics based on population diversity and other factors, such as usually lower motivation 

in wider sets of involved volunteers. 
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Figure 11. Ratio of success by users’ university course. 

5.4. Participation 

Here, we start by presenting a performance indicator aimed to assess the involvement degree of  

our volunteers; then, we focus on the gamification features presented in Section 4, by reporting  

some quantitative results capable of quantitatively pointing out about their effects in real-world 

deployment scenarios. 

Figure 12 shows the level of participation of our volunteers to the proposed crowdsensing campaigns 

by displaying how many users completed how many tasks. As expected, the distribution has a bell shape 

with a long tail: Most users have completed around 30 tasks; a good number of volunteers completed 

more tasks, from 31 to 71+; finally, some users have completed more than 100 tasks by exhibiting much 

more interest in ParticipAct involvement than average users; no one completed all the proposed tasks. 

 

Figure 12. Number of tasks completed by users. 
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ParticipAct experiment, the users were less prone to accept new tasks: the rate of acceptance of a new 

task settles to 15.8% and the rate of users ignoring new tasks settles to 78.5%, thus showing a symptom 

of limited interest towards our MCS campaigns. After introducing the presented gamification features, 

ParticipAct acceptance rate is returned back to significantly better levels, such as 25.5%, after two months 

from the new version deployment; in our comparison, we used simple routinely tasks with comparable 

completion complexity in order to avoid effects related to differences in task nature. 

Another important element, not covered by significant in-the-field performance results in the  

related MCS literature, is exactly how much incentive strategies (e.g., points rewarding) can affect 

participation. Figure 13 shows that our in-the-field real-world experience has demonstrated that “level” 

strategies have much higher impact and are more effective in terms of users’ response. In particular, via 

analysis results and users’ questionnaires, we have found that the main reason of this more effective impact 

is in the fact that they are “more generous” and “more rapid” ways for users to climb their leaderboard. It is 

also interesting to notice that “level” strategies should not be abused because they can also have the negative 

side effect to extend the difference between the first and last users in the leaderboard, with a non-negligible 

negative effect on de-incentivizing users who are currently low ranked. 

 

Figure 13. Point assignment strategies comparison. 

About social relationships and friendship, Figure 14 reports experimental data on how many friends 

the considered ParticipAct volunteers have among the ParticipAct users themselves. We can notice that, 

notwithstanding the relatively large community of ParticipAct users, they are structured into friendship 

groups of limited size: most users have only one friend involved in the MCS campaign, and only one 
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the usual case for citizen volunteers in a large city, where population is organized in small groups (if 
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ParticipAct users are organized in small groups from their graduation courses from different schools, 

which are typically located in different parts of the city of Bologna. 
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Figure 14. Number of users with a specific number of friends. 

 

Figure 15. Participation in administrator’s task and user’s task. 
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incentivizing within small communities (e.g., individuals solicited to accept task assignments by  

their friends). Anyway, the evident and measurable result is that community-based task creation is 

demonstrating itself to be a valuable way to keep the users’ interest in actively participating in MCS 

campaigns high. 

6. Related Work 

Interest in crowdsensing has seen a tremendous growth in the recent years, in both industrial and 

academic research, thus promoting the development of several relevant MCS platforms. A complete 

crowdsensing system covers several different research topics, including signal processing, machine 

learning, distributed systems, and social sciences; accordingly, there are several research efforts in the 

literature focused on each of these aspects, considering often each of them separately. A significant 

original aspect of the ParticipAct approach is that our platform tries to tackle the whole stack of technical 

and social problems related to MCS, which poses evidently significant challenges. In the following, 

without ambition of completeness, we overview and discuss some of the most relevant efforts in the 

area, by comparing them against ParticipAct. We start presenting the MCS solutions that are more distant 

from ParticipAct, either for application-specific purposes rather than general-purposes or because it is 

only including a subset of all needed MCS functions; then, we terminate the section with those closer to 

our platform in both goals and supported facilities. The section is concluded with a brief overview of the 

very few and seminal MCS living labs focused on MCS dataset collection, whose approach is very close 

to our project. 

Starting with the solutions focusing on task assignment management, Ohmage is a healthcare-oriented 

system that exploits smartphones to collect both passively and actively information about users [18]. 

Ohmage system architecture, similarly to ParticipAct, comprises an Android app to collect data and a 

back-end that allows to administer data requests and then to visualize and analyze the collected data. 

Differently from ParticipAct, Ohmage has no means to tie data requests to a specific geographic area, 

thus reducing its usefulness for smart city scenarios that could require users to be in a specific place to 

effectively execute a task. 

Vita is a system that stresses the relevance of providing crowdsensing as a service integrated with 

usual software and supports sensing task assignment based on user profiles [19]. To achieve the first 

goal, Vita relies on BPEL4PEOPLE, a Business Process Execution Language extension that enables 

orchestration of human-driven sensing tasks within the Web Services technology ecosystem [20].  

To achieve the second goal, Vita assigns tasks and users to a so-called “social vector”, which is a concise 

representation of user resources and knowledge; the social vector is exploited to assign tasks to users 

whose profile suggests that they may be willing to accept those tasks and have enough resources to 

complete them successfully. While Vita provides a nice support for non-geo-executed tasks, it 

completely lacks support for advanced task assignment policies for geo-executed tasks based on user 

movement history. 

Matador is a crowdsensing software that focuses on context awareness to optimize task assignment 

while minimizing battery consumption [21]. In particular, Matador assumes that a task is defined by 

geographical and temporal dimensions, and should be assigned to users that are within the given 

geographical area in the given time window; to that purpose, Matador drives the sampling time of user 
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positions to minimize battery consumption, by dynamically switching between network-based geolocation 

(power-efficient but inaccurate) and GPS (power-hungry but more accurate). ParticipAct adopts a more 

proactive approach and, differently from Matador, allows us to assign geo-executed tasks to volunteers 

based on their past mobility history, without assuming constant communications at runtime but only 

requiring lightweight and infrequent geo-localization sampling at client devices. 

USense is a middleware for community sensing that strongly decouples users collecting data and 

managers requiring MCS data: managers specify which kind of data they need and USense matches them 

with people meeting the requirements [22]. A notable feature of USense is its flexible policies for 

smartphone sensors duty cycling, which enables the reduction of battery consumption for sensing 

activities. Similarly to USense, also the MoST sensing core of ParticipAct supports duty cycling of 

passive sensing activities. 

The Medusa framework focuses on algorithms to define crowdsensing tasks [23]. Medusa is based 

on a domain-specific programming language that provides high-level abstractions to specifically define 

crowdsensing tasks, and employs a distributed system that coordinates the execution of those tasks 

between smartphones and a cluster in the cloud. By providing programming abstractions for the 

definition of the tasks, Medusa is complementary to our ParticipAct work, but at the current stage of its 

implementation, it lacks task assignment management support of geo-executed tasks. In addition, 

similarly to Matador and Vita, it also lacks the signal processing and machine learning support to 

automatically collect high-level inferences about user activities. 

Finally, other research efforts, complementary to ParticipAct, were directed towards  

energy-/cost-efficient crowdsensing. In [24], authors presented an energy-efficient mobile crowdsensing 

framework where data transmissions of collected data were operated during a phone call. By this method, 

operations requested for transfer were shared with phone calls, and that allowed a significant savings in 

energy. In CrowdTasker [25], instead, the same authors focused on task assignment using incentives 

with the objective to maximize the sensing task coverage for a specific location while operating under 

budget constraints. 

As regards large experiments aimed to build large crowdsensing datasets, the ParticipAct collected 

dataset is a relevant sample (and the basis the model) for the mobility of students in the Emilia Romagna 

region in Italy. The data collection campaign, which is still running, began in December 2013. Our 

ParticipAct smartphone client, among other things, tracks the location of its device by using the Google 

location APIs (by fusing GPS and WiFi Hot Spot coordinates) by using a sampling scan period of 150 s. 

Note also that the mobility in ParticipAct is unrestricted: users live in town or sub-urban areas; some of 

them commute daily by train, while others walk or move by bike; this unrestricted mobility is often a 

realistic feature not present and considered in other MCS experiments. 

A dataset with technical characteristics similar to the ParticipAct one is the MDC Nokia  

dataset [26,27]. In MDC, the data were collected from 2009 to 2011, by involving 185 users in the Lake 

Geneva region (CH). The MDC users carried a Nokia N95 phone, with an application that periodically 

collected several local data, such as GPS, Bluetooth sightings, visited places, SMS, phone calls, and 

other sensor data. The sampling period for all the collected data (including GPS and Bluetooth traces) 

was 600 s in MDC, which is significantly larger than in ParticipAct. Furthermore, ParticipAct closely 

mimics a more realistic MCS scenario where users should be able to freely decide whether they accept 

a task or refuse it, while in MDC data collection is compulsory to all participants. 
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Let us rapidly and finally notice that, in the literature, there are some other platforms tested over  

real deployment environments, but most of them focus on collecting data from sensors without user 

involvement. What ParticipAct do is also to provide a platform for defining and proposing tasks 

associated to actions, both passive and active ones from the user’s point of view. 

7. Conclusive Remarks and Directions of Future Work 

In this paper, we have presented ParticipAct, our ongoing crowdsensing project at the University of 

Bologna that involves 173 students that are currently participating in a large-scale and long-running 

experiment of MCS campaigns. Even if the MCS topic has attracted much research interest recently, 

there is still lack of real-world large-scale MCS datasets and Living Labs able to truly verify any step in 

the whole MCS process, from mobility to task scheduling, from task acceptance to task completion. 

Hence, we strongly believe that the ParticipAct experience could pave the way to a new generation of 

effective, efficient, real-world, and highly scalable crowdsensing testbeds, with relevant lessons learnt 

towards the realization of significant MCS campaigns working as effective monitoring solutions for the 

Smarter Cities of our near future. 

The encouraging results achieved so far within the ParticipAct project are stimulating our further 

research work in the field. In particular, we are primarily working along two research directions.  

On the one hand, we are realizing new smart city services and applications based on the use and 

specialization of the ParticipAct MCS platform. On the other hand, we are extending the ParticipAct 

task (co-)creation facility to support also the definition and instantiation of more complex task 

workflows, for instance, to let a participant slit her task into subtasks to delegate to friends, with possible 

hierarchical collection of sub-results at delegated participants. 
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