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Abstract:

 The [image: there is no content]-Nearest Neighbors ([image: there is no content]NN) query is an important spatial query in mobile sensor networks. In this work we extend kNN to include a distance constraint, calling it a [image: there is no content]-distant [image: there is no content]-nearest-neighbors ([image: there is no content]-[image: there is no content]NN) query, which finds the [image: there is no content] sensor nodes nearest to a query point that are also at [image: there is no content] or greater distance from each other. The query results indicate the objects nearest to the area of interest that are scattered from each other by at least distance l. The [image: there is no content]-[image: there is no content]NN query can be used in most [image: there is no content]NN applications for the case of well distributed query results. To process an [image: there is no content]-[image: there is no content]NN query, we must discover all sets of [image: there is no content]NN sensor nodes and then find all pairs of sensor nodes in each set that are separated by at least a distance [image: there is no content]. Given the limited battery and computing power of sensor nodes, this [image: there is no content]-[image: there is no content]NN query processing is problematically expensive in terms of energy consumption. In this paper, we propose a greedy approach for [image: there is no content]-[image: there is no content]NN query processing in mobile sensor networks. The key idea of the proposed approach is to divide the search space into subspaces whose all sides are [image: there is no content]. By selecting [image: there is no content] sensor nodes from the other subspaces near the query point, we guarantee accurate query results for [image: there is no content]-[image: there is no content]NN. In our experiments, we show that the proposed method exhibits superior performance compared with a post-processing based method using the [image: there is no content]NN query in terms of energy efficiency, query latency, and accuracy.
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1. Introduction

Advancements in wireless technology and sensors have enabled rapid development of mobile sensor networks in which moving sensor nodes are wirelessly connected. Recently, mobile sensor networks have received a lot of attention because they have a variety of applications, such as intelligent transportation systems [1], wildlife conservation systems [2], and battlefield surveillance systems [3].

The [image: there is no content]-nearest neighbors ([image: there is no content]NN) query is an important spatial query in spatial or multidimensional databases [4,5,6]. In mobile sensor networks, the [image: there is no content]NN query is to find the [image: there is no content] sensor nodes closest to the query point [image: there is no content]. The [image: there is no content]NN query can be used in vehicle navigation, wildlife social activity discovery, forest fire impact investigations, and squad/platoon searches on the battlefield [7].

Traditional [image: there is no content]NN query processing techniques assume the context that location data are collected in a centralized database [8,9]. Collecting a massive amount of sensed data to a centralized database incurs unnecessary and redundant message transmissions. These traditional techniques are infeasible for mobile sensor networks due to the high communication cost and energy consumption. Recently, in-network techniques have been proposed to overcome these problems. Representative [image: there is no content]NN query processing techniques are PT [10], KPT [11], DIKNN [12,13] and GDRKNN [14]. Studies of these methods have shown improved performance by using index and ad hoc geographic routing techniques. Especially, they have focused on reducing the number of transmissions because the greatest energy consumption by sensor nodes is due to communication.

This paper focuses on a novel spatial query problem, the [image: there is no content]NN query with a distance constraint, named [image: there is no content]-distant [image: there is no content]-nearest neighbors ([image: there is no content]-[image: there is no content]NN). The [image: there is no content]-[image: there is no content]NN query finds the [image: there is no content] sensor nodes nearest to the query point [image: there is no content] and at least separated from each other by a distance [image: there is no content]. One of main objectives of the [image: there is no content]NN query is to facilitate collection of sensor data samples around the query location in the applications [15]. However, since the existing [image: there is no content]NN query does not consider the distribution of the objects in the query result, it has the severe drawback that the objects sampled can be skewed only in a small area rather than the whole area of interest. If we need well distributed or wide coverage of the [image: there is no content]NN result in the applications of the [image: there is no content]NN query, the [image: there is no content]-[image: there is no content]NN query is more suitable because it finds well scattered objects over the area of interest. An example of [image: there is no content]-[image: there is no content]NN query is survival discovery on the battlefield [7]. Suppose we want to seek for the nearby survivals around a battlefield stronghold. While the [image: there is no content]NN query finds simply [image: there is no content] nearest survivals, our proposed [image: there is no content]-[image: there is no content]NN query can reveal the distribution of survivals around the battlefield stronghold.

Figure 1 shows comparisons of results between the [image: there is no content]NN and the [image: there is no content]-[image: there is no content]NN queries when [image: there is no content] is set to 4. Given the query point [image: there is no content], the result for the [image: there is no content]NN query is [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content], which are skewed in a small area and cover only the left side of the query point. When [image: there is no content] increases from 4 to 5, the right side is still not covered because [image: there is no content] is selected additionally. The result for the [image: there is no content]-[image: there is no content]NN query is [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content], which covers the wider area in a well distributed way.

Figure 1. Comparisons of results between the [image: there is no content]NN and the [image: there is no content]-[image: there is no content]NN queries.
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Considering the limited computing power and batteries of sensor nodes, processing a [image: there is no content]-[image: there is no content]NN query is problematically expensive in terms of energy consumption in mobile sensor networks. For [image: there is no content] sensor nodes, n[image: there is no content] is the number of cases possible for selecting [image: there is no content] sensor nodes. Moreover, we need to verify the [image: there is no content]-distant constraint between each pair of sensor nodes k[image: there is no content] times for each case. To compute the [image: there is no content]-[image: there is no content]NN query for all the cases, a great number of message transmissions would be required, which would incur huge battery consumption. Especially, sensor nodes located far away from the query point require large battery consumption because they must transmit messages to the query node through several intermediate sensor nodes.



In this paper, we propose a greedy approach for [image: there is no content]-[image: there is no content]NN query processing in mobile sensor networks. The key idea of the proposed approach is to divide the search space into subspaces whose sides are all [image: there is no content]. By selecting [image: there is no content] sensor nodes from the other subspaces near the query point, we can obtain accurate query results for [image: there is no content]-[image: there is no content]NN. The proposed approach has several challenging issues, including estimating the search space, dividing the search space with the [image: there is no content] constraint, and traversing between the subspaces. We present efficient solutions for each of these challenges. In our experiments, we show that the proposed method exhibits superior performance compared with a post-processing based method using the kNN query in terms of energy efficiency, query latency, and accuracy.

The rest of the paper is organized as follows: Section 2 reviews the existing [image: there is no content]NN query processing techniques. Section 3 presents the proposed [image: there is no content]-[image: there is no content]NN query in detail. Section 4 reports the performance evaluation through various experiments. Finally, Section 5 provides the conclusions for the paper.



2. Related Work

Wireless sensor networks (WSNs) are composed of many devices that sense, store, and transmit data. WSNs have limitations in processing queries because the sensors have limited power supplies, are vulnerable to failure, and have the dynamic property that their availability can vary over time.

[image: there is no content]NN queries retrieve the [image: there is no content] sensor nodes nearest to a point of interest indicated by users, called a query point in WSNs. The [image: there is no content]NN query can be used to search in border detection and ecological monitoring. [image: there is no content]NN queries in WSNs have been actively studied to optimize performance given the above limitations of WSNs. [image: there is no content]NN query processing approaches can be categorized as either fixed index or dynamic index. Fixed-index approaches use a stationary structure based on an R-tree or a spanning tree [10]. These approaches have the critical problem of maintaining the index when the sensor nodes are mobile. Dynamic-index approaches propagate the [image: there is no content]NN query gradually along itineraries to collect data from sensors in a specific region [11,12,13].

The approaches using a fixed-index structure [10] have several problems. The major problem is that index nodes become system bottlenecks because all the query messages are aggregated by index nodes designated cluster heads. Moreover, large numbers of unnecessary hops from the query point are required because all the query messages are routed along the index hierarchy. This overhead causes significant performance degradation in a large WSN.

To overcome these issues, approaches that do not use the fixed index structure have been proposed [11,12,13]. KPT [11] assumes a location-aware sensor network and estimates a conservative boundary that includes at least [image: there is no content] sensor nodes to avoid messages’ flooding the entire network. However, mobile sensors cause problems in this approach because KPT assumes that the nodes are stationary. The reconstruction cost of the tree is considerably large when the sensor nodes are moving. Moreover, the conservative boundary expands dramatically with increasing [image: there is no content]. Some sensor nodes may even turn aside from the boundary during tree construction.

The itinerary-based [image: there is no content]NN (IKNN) approach [12,13] has been proposed to solve these issues. This approach uses both sequential and parallel itinerary processing approaches instead of the tree structure. Two formats have been proposed for the itinerary in IKNN: spiral and parallel. With the spiral itinerary format, the query dissemination starts at the node closest to the query point and follows an itinerary in the form of a spiral. When the number reaches [image: there is no content], the query dissemination is stopped, and the result is sent back to the originator. With the parallel itinerary format, the query dissemination also starts at the node closest to the query point, but it then follows two parallel itineraries. The query stores the number of nodes that answered the query. Neighbor nodes in the different itineraries sum their counts to calculate the total number of nodes that answered the query.

The density-aware itinerary-based [image: there is no content]NN (DIKNN) approach [13] divides the region of interest into cone-shaped areas centered at the query point. In each area, an itinerary is created along which a [image: there is no content]NN query is propagated. Itinerary information exchanges occur when itineraries encounter a sector border. When a KNN query reaches a [image: there is no content]NN boundary, the last query node in each sector sends the partial results directly to the source node. Through good estimation of the [image: there is no content]NN boundary, DIKNN improves its query latency over IKNN. However, the accuracy of the [image: there is no content]NN boundary estimation is critical. Although the [image: there is no content]NN approach dynamically adjusts its estimated [image: there is no content]NN boundary, redundancy still exists in the [image: there is no content]NN query result of DIKNN because the partial [image: there is no content]NN query results from all sectors are sent back to the source node without any validation. Furthermore, itinerary structures developed in IKNN and DIKNN do not explore the issue of optimizing the number of [image: there is no content]NN query threads.

[image: there is no content]NN boundary estimation methods have been proposed to improve the performance of the [image: there is no content]NN query. The grid division routing mechanism based[image: there is no content]NN (GDRKNN) [14] controls the query boundary expansion based on the number of [image: there is no content]NN sensors in wireless sensor networks of skewness distribution. The extended explosion method (EXP) [16] estimates the [image: there is no content]NN boundary based on the density of sensor nodes in the entire sensor network where the density of sensor nodes is not uniform.

Many studies have proposed ways to optimize the performance of the [image: there is no content]NN query in various environments or conditions [17,18]. Xie et al. [17] proposed [image: there is no content]NN query processing method in wireless and robot networks (WSRNs). Huang at al. [18] proposed an efficient algorithm to process the [image: there is no content]NN query for moving objects in a grid-based sensor network.

However, to the best of our knowledge, no research has been done on [image: there is no content]NN processing considering distance constraints between nearest neighbors in WSNs. We focus on searching for the [image: there is no content] nearest neighbors that satisfy the constraint that each sensor node is separated away from ever other by at least a distance l.



3. l-k-Nearest-Neighbors Query Processing

In this section, we first provide a formal definition of our [image: there is no content]-[image: there is no content]NN problem in Section 3.1. We then describe the overall process of [image: there is no content]-[image: there is no content]NN in Section 3.2 and explain core phases of [image: there is no content]-[image: there is no content]NN in detail in Section 3.3 and Section 3.4.


3.1. Problem Definition

The [image: there is no content]-[image: there is no content]NN problem is formally defined as follows:


	Definition 1 ([image: there is no content]-distant [image: there is no content]-nearest neighbor problem). Given a set [image: there is no content] of sensor nodes, a query point [image: there is no content] and valid time [image: there is no content], find a subset [image: there is no content] of [image: there is no content] with [image: there is no content] nodes (i.e., [image: there is no content], [image: there is no content]=[image: there is no content]) such that at time V, [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content], [image: there is no content], [image: there is no content], where [image: there is no content] denotes the Euclidean distance function.


	We assume that the sensor nodes are randomly distributed and moving in wireless sensor networks. Each sensor node's movement direction and velocity are randomly determined. All sensor nodes have their own storage and computing power to process queries. Each sensor is aware of its own location via GPS or other localization technique, such as beaconing.


	We define new concepts to traverse the search space for [image: there is no content]-[image: there is no content]NN.


	Definition 2 (sector). Given a query point [image: there is no content], a sector is the fan-shaped area[image: there is no content] between two radii centered at [image: there is no content]. Given that the number of sectors is [image: there is no content], each sector [image: there is no content] has the same central angle [image: there is no content]. Sector numbers are reassigned in each track.


	Definition 3 (track). Given a query point [image: there is no content], a track is the ring-shaped area [image: there is no content] centered at [image: there is no content]. The [image: there is no content]-th track centered at [image: there is no content] is defined as presented in Equation (1), where [image: there is no content]([image: there is no content] denotes a circle centered at [image: there is no content] with a radius [image: there is no content], where [image: there is no content].



[image: there is no content]



(1)





	Definition 4 (track-sector). A track-sector [image: there is no content] is the intersecting area of a track and a sector.


	We define the following notations to simplify the explanation of [image: there is no content]-[image: there is no content]NN. A home node (H-node) is the sensor node nearest to the query point [image: there is no content]. We call a sensor node selected for query results a query node (Q-node). If a track contains a query node, it is called a query track; otherwise, a margin track. If a sector contains a query node, it is called a query sector; otherwise, a margin sector.




Figure 2 shows examples of sectors, tracks and track-sectors. [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] are tracks having radii [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] centered at [image: there is no content], repectively. The number of sectors is eight, and each sector has a central angle [image: there is no content]. The track-sector [image: there is no content] represents the intersecting area of [image: there is no content] and [image: there is no content]. [image: there is no content] and [image: there is no content] are query tracks, and the others are margin tracks. We regard [image: there is no content] is a margin track, although the H-node is selected for the query results. [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] are query sectors, and the other sectors are margin sectors.

Figure 2. Basic concept for [image: there is no content]-[image: there is no content]NN query processing.
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3.2. Overall Process

The basic concept of our [image: there is no content]-[image: there is no content]NN query processing is to divide the search space into several track-sectors whose sides are all larger than [image: there is no content]. We then select one Q-node in each of the other track-sectors. Therefore, the Q-nodes are at least distance [image: there is no content] from each other because a track-sector with a [image: there is no content]-node is surrounded by margin tracks and sectors. For example, [image: there is no content] is surrounded by two margin tracks [image: there is no content] and [image: there is no content], and two margin sectors [image: there is no content] and [image: there is no content], as shown in Figure 2. The overall processing of a [image: there is no content]-[image: there is no content]NN query consists of four phases:


	Routing phase: A query message is routed from the source node to the H-node. GPSR [19] is adopted as the routing algorithm. In this phase, the sensor network information, such as the number of nodes, is collected without the assistance of any infrastructure.


	[image: there is no content]-[image: there is no content]NN boundary estimation phase: The H-node estimates a searching boundary. The [image: there is no content]-[image: there is no content]NN boundary is dynamically estimated according to the distance constraint [image: there is no content] and the number of neighbors[image: there is no content].


	Query dissemination phase: The H-node disseminates the query message to other sensor nodes within the [image: there is no content]-[image: there is no content]NN boundary. In order to guarantee the [image: there is no content] distance, the query message is propagated to the query tracks and query sectors.


	Aggregation phase: The H-node aggregates the query results. The aggregated query results are transmitted back to the query source by the GPSR.




The routing and aggregation phases are very similar to existing [image: there is no content]NN query processing techniques. Compared with [image: there is no content]NN query processing, our proposed [image: there is no content]-[image: there is no content]NN query processing is mainly different in the [image: there is no content]-[image: there is no content]NN boundary estimation and query dissemination phases. We explain the details of these phases in Section 3.2 and Section 3.3.



3.3. [image: there is no content]-[image: there is no content]NN Boundary Estimation

The H-node disseminates a query message to the other sensor nodes. The query message is progressively propagated to sensor nodes farther from the H-node. Because we do not have information about the sensor node distribution, we must estimate a maximum boundary for the [image: there is no content]-[image: there is no content]NN query ([image: there is no content]-[image: there is no content]NNB) by considering the worst case. A large [image: there is no content]-[image: there is no content]NNB guarantees correct query results but incurs large energy consumption and slow query responses. However, a small [image: there is no content]-[image: there is no content]NNB decreases query accuracy because some query results are located outside of the [image: there is no content]-[image: there is no content]NNB.

Let [image: there is no content] be the radius of the [image: there is no content]-[image: there is no content]NNB. According to the definition of an [image: there is no content]-[image: there is no content]NN query, we need to find the [image: there is no content] sensor nodes nearest to the H-node that are at least distance [image: there is no content] apart. Therefore, [image: there is no content] is calculated as in Equation (2). All query results are then guaranteed to be located within the radius [image: there is no content]:



[image: there is no content]



(2)




A sensor node can send messages to other nodes within the sensor’s radio range. If it sends messages to other nodes located outside its range, the query message traverses several hops between the source and destination. Therefore, we need to estimate [image: there is no content]-[image: there is no content]NNB differently according to the ratio of [image: there is no content] to the sensor radio range [image: there is no content]. We refine Equation (2) as Equation (3) with consideration of the ratio:



Ti={ k×r, if l<rk×2×r, if l=rk×(⌈lr⌉+1)×r, if l>r



(3)




If [image: there is no content], [image: there is no content]-[image: there is no content]NNB is estimated as [image: there is no content]. A single [image: there is no content] is enough to maintain the distance [image: there is no content] between two Q-nodes because [image: there is no content] is shorter than [image: there is no content]. If [image: there is no content], [image: there is no content]-[image: there is no content]NNB is estimated as [image: there is no content]. Although [image: there is no content] is equal to [image: there is no content], we need [image: there is no content] to ensure the distance [image: there is no content] is maintained between two Q-nodes. This is because of the possibility that no sensor node exists on the circumference of [image: there is no content]. If [image: there is no content], [image: there is no content]-[image: there is no content]NNB is estimated as [image: there is no content]. To maintain [image: there is no content], we need one more [image: there is no content] than for the case of [image: there is no content] because [image: there is no content] is larger than [image: there is no content].

Figure 3 shows examples of [image: there is no content]-[image: there is no content]NNBs with various ratios of [image: there is no content] to [image: there is no content] when [image: there is no content] is 2. Figure 3a–c represent estimates of [image: there is no content]-[image: there is no content]NNBs for the cases of [image: there is no content], [image: there is no content] and [image: there is no content], repectively. According to Equation (3), [image: there is no content] is estimated as [image: there is no content], 2[image: there is no content] and [image: there is no content] when [image: there is no content] is [image: there is no content], [image: there is no content] and [image: there is no content], respectively. The distance [image: there is no content] between the Q-nodes is longer than [image: there is no content] in all cases.

Figure 3. [image: there is no content]-[image: there is no content]NNBs with various ratios of [image: there is no content] to [image: there is no content]. (a) [image: there is no content]-[image: there is no content]NNB when [image: there is no content] is larger than [image: there is no content]; (b) [image: there is no content]-[image: there is no content]NNB when [image: there is no content] is equal to [image: there is no content]; (c) [image: there is no content]-[image: there is no content]NNB when [image: there is no content] is smaller than [image: there is no content].
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3.4. [image: there is no content]-[image: there is no content]NN Query Dissemination

After [image: there is no content]-[image: there is no content]NNB is determined, the query message is progressively disseminated from the H-node to the circumference of [image: there is no content]-[image: there is no content]NNB. Tracks are extended from the H-node to [image: there is no content]-[image: there is no content]NNB, and each track is divided into sectors. The query is propagated to the query tracks and query sectors. This process is repeated until the query message reaches [image: there is no content]-[image: there is no content]NNB.

We observe that odd track numbers are margin tracks and even track numbers are query tracks. This is because we select the Q-nodes in the other tracks. In each margin track, the central angle [image: there is no content] and the number of sectors [image: there is no content] are calculated for dividing the track into sectors. Notice that the central angle and the number of sectors are recalculated in each margin track. This is because this procedure keeps tight distances between query sectors. If we divide all tracks into sectors with the same central angle as in the first track, farther track-sectors have longer chards than [image: there is no content], leading to low quality query results because the size of margin sectors is determined too loosely.

Consider an H-node with coordinates [image: there is no content] and any margin track [image: there is no content] centered at [image: there is no content] with radius [image: there is no content]. [image: there is no content] is sequentially divided into several sectors from the baseline [image: there is no content]=[image: there is no content] in the counterclockwise direction. The central angle [image: there is no content] and the number of sectors [image: there is no content] are determined depending on the distance constraint [image: there is no content]. We have a well-known equation involving a central sector, a radius, and a chord as in Equation (4):



[image: there is no content]



(4)




Because we want all sides of each track sector to have length [image: there is no content], [image: there is no content] is calculated as [image: there is no content]. We can also calculate [image: there is no content] as [image: there is no content]. When a track is divided into sectors in the counterclockwise direction, the last sector has a central angle smaller than [image: there is no content]. In this case, the last sector is merged with the previous sector. In this way, we can guarantee that all chords of sectors have lengths of at least [image: there is no content].

In each query track, Q-nodes are selected in every other track-sector. In a track-sector, a length of an upper chord is longer than [image: there is no content] because that of a lower chord is [image: there is no content]. Therefore, the Q-node is selected around the inner corner intersecting the lower arc and the margin sector in order to keep the [image: there is no content] distance constraint tight. In a track-sector of a margin track, an upper chord is [image: there is no content], and a lower chord is shorter than [image: there is no content]. This is why we select the Q-nodes in query tracks rather than in margin tracks.

For a tight distance between query tracks and query sectors, it is also possible to set the radius of query tracks and the chords of query sectors to [image: there is no content] rather than [image: there is no content], when [image: there is no content] is shorter than [image: there is no content]. If we set the radii of query and margin tracks to the same distance [image: there is no content], the average distance between Q-nodes is [image: there is no content]. By using [image: there is no content] for the radii of query tracks and chords of query sectors, the distance is reduced by [image: there is no content] to [image: there is no content].

Figure 4 shows an example for calculating the number of sectors. [image: there is no content] is calculated as [image: there is no content], and [image: there is no content], in the first track. In the third track, [image: there is no content] is calculated again as [image: there is no content] , where [image: there is no content]. The second and fourth tracks are query tracks. Q-nodes are then selected in [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], and so on.

Figure 4. Dividing the search space into tracks and sectors.
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In the following, we explain how the query message is disseminated. In a [image: there is no content]NN problem, the query message should be disseminated to all sensor nodes in each track-sector because there can be more than one Q-node in a track-sector. However, in our [image: there is no content]-[image: there is no content]NN problem, we do not need to traverse all sensor nodes. One track-sector can contain at most one Q-node, and we can calculate roughly where the Q-nodes are. Therefore, once the query message reaches a Q-node in a track-sector, the query message escapes this track-sector and heads quickly to the next track-sector containing a Q-node.

The query message traverses between only those track-sectors containing Q-nodes. As explained above, the Q-node is selected around the inner corner intersecting the lower arc and the margin sector in a query track. We regard the corners as virtual vertices because we cannot know whether any sensor nodes exist in the corners. The query message is propagated to the virtual vertex along borders of tracks and sectors by itinerary traversal [7]. The Q-node is selected near the virtual vertex. The itinerary traversal selects the next sensor nodes in the range of [image: there is no content] rather than [image: there is no content] in order to balance query accuracy and energy efficiency [20]. If there is no sensor node near the virtual vertex, we seek the Q-node by routing around the virtual vertex based on the right-hand rule of GPSR.

Figure 5a shows an example of query dissemination in a sector, where [image: there is no content] is a virtual vertex and [image: there is no content] is a Q-node. The virtual vertices [image: there is no content], [image: there is no content] and [image: there is no content] are the corners intersecting the lower arc and the margin sector in query tracks. Q-nodes [image: there is no content], [image: there is no content] and [image: there is no content] are the nearest vertices to the virtual vertices, respectively. The query message is propagated from [image: there is no content] to [image: there is no content] and from [image: there is no content] to [image: there is no content] along the borders of the sector and tracks by itinerary traversal. Figure 5b shows an example of the right-hand rule of GPSR. If there is no sensor node near the virtual vertex [image: there is no content], we try to route around [image: there is no content] to seek the path from H-node to the next Q-node, [image: there is no content].

Figure 5. Query dissemination among track-sectors. (a) Query dissemination; (b) Right-hand rule of GPSR.
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For fast query processing, we adopt parallel computing for query dissemination in each sector. The query dissemination in each sector is an independent subtask. Therefore, this parallelization reduces query latency without accuracy degradation. The number of subtasks has a great effect on the performance. When the number of subtasks is large, network throughput degrades because contentions and collisions occur frequently at the data link and physical layers. Conversely, a small number of subtasks increases latency. Considering this analysis, we determine the number of subtasks as the number [image: there is no content]of sectors in the first track. Since the query message traverses only the track-sectors containing Q-nodes that are surrounded by margin tracks and sectors, contentions and collisions are minimized in the parallel query dissemination.

At the end of dissemination, query responses are aggregated at the H-node. The H-node can take more than [image: there is no content] number of Q-nodes because [image: there is no content]-[image: there is no content]NNB is the estimated boundary considering the worst case. To select the nearest [image: there is no content] number of Q-nodes, the Q-nodes are sorted in ascending order according to their distances from the H-node. Finally, the H-node selects the top-[image: there is no content] number of Q-nodes and transmits back to the query source by GPSR.



3.5. Algorithm for Query Dissemination

Algorithm 1 is the pseudo code for processing the [image: there is no content]-[image: there is no content]NN query. The algorithm searches an H-node [image: there is no content] nearest to the given query point [image: there is no content] (line 1). The H-node [image: there is no content] is included in a query result set (line 3). Flag [image: there is no content] is used to check whether any Q-node is selected in a query sector (line 4). The query message is propagated forward from the H-node [image: there is no content] to other sensor nodes within the [image: there is no content]-[image: there is no content]NNB (line 5). search_next_vnode( ) is called to determine the next forward sensor node (line 6). We explain search_next_vnode( ) in Algorithm 2, as follows. If the next_vnode is the starting point of a new track-sector, the flag [image: there is no content] is set to “false” in order to select a Q-node in this track-sector (lines 7–8). The algorithm selects the next forward sensor node nearest to the next_vnode by using GPSR (line 9). Lines 6–9 are repeated until reaching [image: there is no content]-[image: there is no content]NNB. The Q-nodes in the resulting set [image: there is no content] are sorted in ascending order according to their distances from the H-node (line 10). The top-[image: there is no content] sensor nodes in [image: there is no content] are returned as the query result (lines 11–12).







	Algorithm 1 [image: there is no content]-[image: there is no content]-NN Query Processing



	 QueryDissemination ([image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content])



	
	⦁Input: 

	number of sectors [image: there is no content], query point [image: there is no content], distance constraint [image: there is no content], number of nearest neighbors [image: there is no content], and [image: there is no content]-[image: there is no content]-NNB [image: there is no content]



	⦁Output: 

	a result set including Q-nodes [image: there is no content];








	
	1:

	Search a home node [image: there is no content] nearest to the query point [image: there is no content];



	2:

	cur_node [image: there is no content];



	3:

	Initialize a result set [image: there is no content];



	4:

	flag [image: there is no content][image: there is no content]false; // the status that the Q-node is not selected yet in a query sector



	5:

	while (cur_radius < b)



	6:

	   next_vnode [image: there is no content] search_next_vnode([image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], cur_node); // find the next virtual node



	7:

	   if ( next_vnode is the vnode intersecting track and sector) // the starting search point of TS



	8:

	    [image: there is no content][image: there is no content]false;



	9:

	   cur_node [image: there is no content]GPSR (cur_node, next_vnode); // find the sensor node nearest to the next_vnode



	10:

	Sort Q-nodes in [image: there is no content] in ascending order according to the distance from the H-node;



	11:

	[image: there is no content]select top-[image: there is no content] Q-nodes;



	12:

	return [image: there is no content];










Algorithm 2 is the pseudo code for determining the next search direction. To determine the direction, each sensor node should know its own sector number and track number, and the four borderlines of the track-sector. Algorithm 2 includes the calculation of all of this information about the current sensor node. Each sensor node can calculate the discriminants determining the borderlines of its own track-sector by using its own coordinates and those of the H-node.

The current sensor node calculates its distance from the H-node. The track index that the sensor node belongs to is calculated by dividing the distance by the track radius [image: there is no content] (line 2). The algorithm calculates the radius [image: there is no content] of the current track by multiplying the track index by the track radius [image: there is no content], which is the upper arc of the current track (line 3). The lower arc of the current track is[image: there is no content]- [image: there is no content] because the radii of the tracks increase by [image: there is no content]. Therefore, we can derive the discriminants that calculate the upper and lower arcs of the track having radius [image: there is no content] centered at [image: there is no content] (lines 4–5).

The algorithm checks whether the current track is a margin track or a query track (line 6). If the current track is a margin track, the query message is passed to the next track (lines 11–12). Otherwise, the algorithm checks whether a Q-node is selected (line 7). If a Q-node is selected, the query message is passed to the next track-sector (lines 7–8). Otherwise, the query message is passed to the next_vnode along the lower arc in the current track-sector (lines 9–10). The chord is calculated as [image: there is no content] for the central angle [image: there is no content]. This is the optimal chord to select the next sensor node without interference among the sensor nodes.

After obtaining [image: there is no content] for dividing the search space into sectors, the algorithm calculates the sector number [image: there is no content] of the current sensor node by using the coordinates of the current sensor node and the home node (lines 13–14). The algorithm derives the discriminants that calculate the right- and left-side lines of the current track-sector by using [image: there is no content] and [image: there is no content] (lines 15–16).

We can obtain the corner points from the four discriminants of the borderlines of the current track sector (line 17). If the current track-sector is a query one and no Q-node is selected, the algorithm selects the sensor node nearest to the corner intersecting the lower arc and the margin sector (lines 18–21).

After selecting the Q-node, the algorithm determines the next direction and the next_vnode (lines 22–23). Because the algorithm adopts itinerary traversal [13] to select the next track in a sector, the query message is passed to the next sensor node in the east direction in odd-number tracks. Conversely, the query message is passed in the west direction in even-number tracks. The algorithm finally returns the next_vnode as the coordinates of the corner of the next track-sector (line 24).

Algorithm 3 determines the next forward direction of the query message from the current sensor node. According to the itinerary traversal algorithm, the forward direction is determined to be east if the current track index is an odd number, and west if even (lines 1–8). If the current track-sector is the last sector or the margin track, the forward direction is determined to be north because the algorithm does not need to select the Q-node (line 9).







	Algorithm 2 Determining the Next Search Direction



	 search_next_vnode ([image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content])



	
	⦁Input: 

	the home node [image: there is no content], the distance constraint[image: there is no content], the number constraint [image: there is no content], a status flag [image: there is no content], the query result set [image: there is no content], the current sensor node [image: there is no content]



	⦁Output: 

	the coordinates of the next virtual node








	
	1:

	Initialize a track-sector discriminants set of current node [image: there is no content];

 /* find four discriminants determining border lines of a track-sector */



	2:

	[image: there is no content] ⌈ [image: there is no content]⌉ ; // calculate the track index of cur_node by using [image: there is no content] and[image: there is no content]



	3:

	[image: there is no content] // calculate the current track radius



	4:

	[image: there is no content]; // a upper arc of the track-sector



	5:

	[image: there is no content]}; // a lower arc of the track-sector



	6:

	if ( [image: there is no content] is an even number ) // if the current track is a query track



	7:

	   if ([image: there is no content] is true) // if a Q-node is selected



	8:

	    [image: there is no content] calculate the angle of a tractor-sector by [image: there is no content] ;

    // move to the next track-sector



	9:

	   else // if a Q-node is not selected



	10:

	    [image: there is no content]calculate the angle for the next vnode by [image: there is no content];

    // move to the next vnode



	11:

	else // if current track is a margin track



	12:

	  [image: there is no content]; // move to the next query track



	13:

	[image: there is no content] calculate the angle between the baseline and the current node by [image: there is no content];



	14:

	[image: there is no content]calculate the sector index of current node by ⌈[image: there is no content]⌉ ;



	15:

	[image: there is no content]; // a left-side line of the track-sector



	16:

	[image: there is no content]; // a right-side line of the track-sector



	17:

	Calculate intersecting points [image: there is no content] between each pair of the track-sector discriminants, such as the upper arc [image: there is no content], the lower arc [image: there is no content], the left-side line [image: there is no content], and the right-side line [image: there is no content];

/* check that whether the Q-node is selected or not in this tracksector */



	18:

	if (IsSelectTrackSector ([image: there is no content]) [image: there is no content][image: there is no content] is [image: there is no content])



	19:

	  Find the sensor node [image: there is no content] nearest to the corner intersecting the lower arc and the margin sector;



	20:

	  [image: there is no content];



	21:

	   [image: there is no content];



	22:

	dir [image: there is no content] getNextDirection([image: there is no content]); // decide the next direction by using the track and sector indexes



	23:

	next_vnode [image: there is no content] select the next moving point in [image: there is no content] according to dir;



	24:

	return next_vnode;
















	Algorithm 3 Determining the Next Forward Direction



	 getNextDirection ([image: there is no content])



	
	⦁Input: 

	a track index [image: there is no content], a sector index[image: there is no content]



	⦁Output: 

	the direction of the next virtual node








	
	1:

	[image: there is no content] calculate the total number of partial sectors in the current sector



	2:

	if ([image: there is no content]%4 == 3) // query track



	3:

	   if ([image: there is no content] N) return southeast;



	4:

	   else return northeast;



	5:

	else if ([image: there is no content]%4 == 1) // query track



	6:

	   if ([image: there is no content]) return southwest;



	7:

	   else return northwest;



	8:

	else if ([image: there is no content]%4 == 2) return northwest; // margin track



	9:

	else return northeast; // margin track










Algorithm 4 checks whether the current track-sector [image: there is no content] is a query sector or a margin sector. If the track-sector has an odd-number sector, it is a query sector (lines 1–9). However, if the total number of sectors is an odd number and the current track-sector is the last sector, it is determined to be a margin sector because two consecutive sectors that are the first and the last sectors cannot be query sectors (lines 3–5).




	Algorithm 4 Determining the Sector Type



	IsSelectTrackSector ([image: there is no content])



	⦁Input: a track index [image: there is no content], a sector index [image: there is no content]

⦁Output: a Boolean value representing whether this TS is in a query sector or in a margin sector



	1: [image: there is no content]calculate the total number of tracks

2: [image: there is no content]calculate the total number of sectors in the current track

3: if ([image: there is no content] is an odd number)

4:   if ([image: there is no content] is an odd number & [image: there is no content][image: there is no content][image: there is no content])

5:    [image: there is no content] //current track-sector is in a query sector

6: else

7:   if ([image: there is no content] is an odd number)

8:    [image: there is no content] //current track-sector is in a query sector

9: return false; //current track-sector is in a margin sector








4. Performance Evaluation

In this section, we evaluate the performance of the proposed method in terms of energy efficiency, query latency, and query accuracy. We use the ns-2 simulator [21] for our experiments. We observe the impact of the constraint parameters, such as [image: there is no content] and [image: there is no content], on the performance.


4.1. Experimental Settings

For the performance evaluation, we compare the proposed method with a post processing based method using the [image: there is no content]NN query. The post processing method collects all sensor nodes within the [image: there is no content]-[image: there is no content]NNB using the DIKNN method [13] and selects [image: there is no content] number of [image: there is no content]-distant sensor nodes from the collected sensor nodes. We call the post processing method DIKNN in our experiments.

The proposed method and DIKNN are implemented based on the ns-2 simulator. For the routing protocol in sensor networks, we use the geo-routing protocol GPSR [19] in the ns-2. The sensor nodes are randomly distributed in the wireless sensor networks. The movement pattern of the sensor nodes is represented by the random waypoint model (RWP). Each sensor moves to the arbitrary destination at a random speed ranging from 0 to 20. We fix the network size at 300 [image: there is no content] 300 [image: there is no content]. We vary the number of sensor nodes from 300 to 1000, and the node degree (i.e., neighbor count of each sensor node) ranges from 5 to 20. The distance between the source node and the home node for each query is set to 250 m. The query response size of each sensor nodes is 10 bytes. The performances are obtained by averaging the result over 10 simulation runs. Table 1 summarizes the datasets used for the experiments.

Table 1. Summary of datasets.


	Name
	Network Size
	Number of Nodes





	D-300
	300 [image: there is no content] 300 [image: there is no content]
	300



	D-500
	300 [image: there is no content] 300 [image: there is no content]
	500



	D-1000
	300 [image: there is no content] 300 [image: there is no content]
	1000










Query latency is measured as the elapsed time between when the query is issued by the query point and when query responses are returned. Energy consumption is measured as the total amount of consumed energy during the query processing in the wireless sensor networks. Query accuracy is measured as the set similarity of distance between the ground truth and the proposed method. We use the Hausdorff distance algorithm [22] for the set similarity. Given two result sets of [image: there is no content]-[image: there is no content]NN, [image: there is no content] and [image: there is no content], the Hausdorff distance calculates set similarity as in Equation (5), where [image: there is no content] is the distance from sensor node [image: there is no content] to the home node:



[image: there is no content]



(5)






4.2. Experimental Results

Figure 6 shows the results for the [image: there is no content]-[image: there is no content]NN query accuracy compared with the ground truth. The left figure shows the accuracy with various [image: there is no content] values, such as 10 m, 20 m, 30 m, 40 m and 50 m in the D-300 dataset when [image: there is no content] is set to 30. The [image: there is no content]-[image: there is no content]NN achieves the highest query accuracy when [image: there is no content] is set to 30 m. This is because our method is a greedy algorithm. A small [image: there is no content] generates a large number of query result sets because many sensor nodes satisfy the condition of being [image: there is no content] distances apart. Therefore, the selected result set has a high probability of being different from the ground truth. In the case of a large [image: there is no content], only a small number of result sets are possible. However, the accuracy decreases because the large [image: there is no content] increases the width of each track-sector.

Figure 6. Comparisons of the [image: there is no content]-[image: there is no content]NN accuracy. (a) [image: there is no content]-[image: there is no content]NN accuracy with various values of [image: there is no content]; (b) [image: there is no content]-[image: there is no content]NN accuracy with various datasets.
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The right figure shows the results for the query accuracy with various datasets, such as D-300, D-500, and D-1000 when [image: there is no content] and [image: there is no content] are set to 30 m and 30, respectively. As the number of total sensor nodes increases, the query accuracy decreases. This result is related to the densities of the datasets. A dataset with high density includes a large number of result sets satisfying [image: there is no content]-[image: there is no content]NN. Therefore, the selected result set has a high probability of being different from the ground truth.



Figure 7 shows the results for the query accuracy and latency with various network sizes when the number of nodes, [image: there is no content] and [image: there is no content] are 300, 30 m and 30, respectively. As a network size increases, the query accuracy decreases, but the query latency increases. This performance degradation is because the larger network has sparser regions, where a sparse region has a few number of sensor nodes. Therefore, the l-kNN algorithm selects sensor nodes whose distance is larger than the ground truth. Similarly, the query latency shows a similar trend to the query accuracy because the average number of transmissions increases in the large network.

Figure 7. Comparisons of query performance with various network sizes. (a) Query accuracy with various network sizes; (b) Query latency with various network sizes.
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Figure 8 shows the results of query accuracy and latency with various values of mobility for each sensor in D-300. This experiment for the impact of moving speeds is evaluated by varying maximum moving speeds from 20 m/s to 35 m/s when [image: there is no content] and [image: there is no content] are set to 30 m and 30, respectively. The left figure shows the query accuracy. As the moving speed increases, the query accuracy decreases. When the moving speed is faster, the selected sensor has a larger distance compared with the ground truth. This is because the selected Q-nodes moves to arbitrary points fast during next Q-nodes are selected. The right figure shows the query latency. The query latency increases rapidly when the moving speed is faster than 30 m/s. This is because the average number of transmissions increases when the moving speed is fast.

Figure 8. Comparisons of query performance with various values of mobility. (a) Query accuracy with with various values of mobility; (b) Query latency with various values of mobility.
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Figure 9 shows the results of query latency between DIKNN and [image: there is no content]-[image: there is no content]NN for D-300. When the constraint parameters [image: there is no content] and [image: there is no content] are sufficiently large, the [image: there is no content]-[image: there is no content]NN obtains better performance than the DIKNN. When [image: there is no content] is smaller than or equal to [image: there is no content] ([image: there is no content] = 10 m), [image: there is no content]-[image: there is no content]NN is slower than DIKNN. This is because DIKNN broadcasts only one time to all sensor nodes within the sensor radio range, but [image: there is no content]-[image: there is no content]NN broadcasts [image: there is no content] times. When [image: there is no content] is larger than [image: there is no content] ([image: there is no content] = 20 m and [image: there is no content]= 30 m), [image: there is no content]-[image: there is no content]NN is faster than DIKNN because DIKNN each time broadcasts, but [image: there is no content]-[image: there is no content]NN disseminates the query message to a small number of sensor nodes with GPSR in the [image: there is no content]-[image: there is no content]NNB. For large enough [image: there is no content], [image: there is no content]-[image: there is no content]NN is faster than DIKNN when [image: there is no content] is larger than [image: there is no content]. This explanation is similar to that for the results of [image: there is no content]. A large [image: there is no content] leads DIKNN to perform many broadcasts.

Figure 9. Comparisons of the query latency with various values of [image: there is no content] and [image: there is no content]. (a) Query latency when [image: there is no content] is 10 m; (b) Query latency when [image: there is no content] is 20 m; (c) Query latency when [image: there is no content] is 30 m.
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Figure 10 shows the results for the energy consumption of [image: there is no content]-[image: there is no content]NN with various values of [image: there is no content] and [image: there is no content] for D-300. When [image: there is no content] is equal to [image: there is no content], DIKNN consumes less energy than [image: there is no content]-[image: there is no content]NN. However, when [image: there is no content] is larger than [image: there is no content], DIKNN consumes more energy than DIKNN. For large enough [image: there is no content], DIKNN consumes more energy than [image: there is no content]-[image: there is no content]NN when [image: there is no content] is larger than [image: there is no content]. These results occur for similar reasons as for the query latency results. When [image: there is no content] is larger than [image: there is no content], DIKNN disseminates the query messages to more sensor nodes than [image: there is no content]-[image: there is no content]NN does, and vice versa.

Figure 10. Comparisons of energy consumption with various values of [image: there is no content] and [image: there is no content] (a) Energy consumption when [image: there is no content] is 10 m; (b) Energy consumption when [image: there is no content] is 20 m; (c) Energy consumption when [image: there is no content] is 30 m.
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5. Conclusions

In this paper, we proposed a solution, the [image: there is no content]-[image: there is no content]NN, for the novel spatial query problem in mobile sensor networks. The query result implies well scattered objects nearest to the area of interest. The [image: there is no content]-[image: there is no content]NN approach can be used in most [image: there is no content]NN applications if we want to get well distributed or wide coverage of the [image: there is no content]NN result. [image: there is no content]-[image: there is no content]NN divides the search space into several track-sectors in which all sides are equal to or larger than the distance constraint [image: there is no content]. By selecting Q-nodes in alternating track-sectors, we have guaranteed [image: there is no content] distances between any two Q-nodes. To maintain the [image: there is no content] distance tightly, we adjusted the central angles and radii of the track-sectors. We also adopted parallel computing for query dissemination to reduce query latency. Through comprehensive experiments, we showed that the proposed algorithm exhibits superior performance compared with a post-processing based method using the [image: there is no content]NN query in terms of energy efficiency, query latency, and accuracy.
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