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Abstract: The measurement of soil total nitrogen (TN) by hyperspectral remote sensing 

provides an important tool for soil restoration programs in areas with subsided land  

caused by the extraction of natural resources. This study used the local correlation 

maximization-complementary superiority method (LCMCS) to establish TN prediction 

models by considering the relationship between spectral reflectance (measured by an ASD 

FieldSpec 3 spectroradiometer) and TN based on spectral reflectance curves of soil samples 

collected from subsided land which is determined by synthetic aperture radar interferometry 

(InSAR) technology. Based on the 1655 selected effective bands of the optimal spectrum 

(OSP) of the first derivate differential of reciprocal logarithm ([log{1/R}]′), (correlation 

coefficients, p < 0.01), the optimal model of LCMCS method was obtained to determine the 

final model, which produced lower prediction errors (root mean square error of validation 

[RMSEV] = 0.89, mean relative error of validation [MREV] = 5.93%) when compared with 

models built by the local correlation maximization (LCM), complementary superiority (CS) 

and partial least squares regression (PLS) methods. The predictive effect of LCMCS model 

was optional in Cangzhou, Renqiu and Fengfeng District. Results indicate that the LCMCS 

method has great potential to monitor TN in subsided lands caused by the extraction of 

natural resources including groundwater, oil and coal.  
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1. Introduction 

In recent years, land subsidence caused by the extraction of natural resources such as groundwater [1,2], 

oil [3] and coal [4,5] has created severe and widespread hazards in China, resulting in new ecological 

and environmental issues such as soil degradation and loss of biodiversity. Nitrogen is necessary for all 

known forms of life on Earth, being present in the environment in a wide variety of chemical forms 

including organic nitrogen, ammonium, nitrite and nitrate. Organic nitrogen may be in the form of a 

living organism, humus or the intermediate products of organic matter decomposition. The nitrogen 

cycle processes transform nitrogen from one form to another [6,7], therefore monitoring of TN plays an 

important role in soil restoration programs, which has stirred the interest of many scholars and recently 

resulted in a series of achievements [8,9]. However, most successful approaches are based on traditional 

chemical testing methods, which tend to be time consuming, laborious, and expensive [10]. 

Consequently, researchers have sought real-time methods for monitoring of TN content of soils. 

Hyperspectral remote sensing provides an abundance of spectral information, which suggests a  

potential method for estimating soil properties [11–15]. Compared with traditional laboratory methods, 

hyperspectral techniques are more rapid and less costly, and can eliminate the need for sample 

preparation and chemical reagents [11,16]. The TN content can significantly affects the shape and 

nature of a soil spectral reflectance spectrum. The wide spectral range suitable for estimating TN 

content suggests that TN is an important soil constituent across the entire spectrum [17,18]. Therefore, 

many studies have reported on various TN monitoring models based on hyperspectral remote  

sensing [19,20]. For example, Dalal et al. [19] and Morra et al. [20] both used stepwise multiple linear 

regression for the rapid quantification of TN contents. Sun et al. [21] estimated TN using wavelet 

analysis and transformation. Zheng et al. [22] quantified TN content through near-infrared reflectance 

(NIR) spectroscopy and use of a back-propagation (BP) neural network. 

Using modern sensors, significant studies have been carried out on spectral characteristics of water, 

plants and soils, forming a scientific basis for the application of hyperspectral remote sensing technology 

in subsided land soils [7,23,24]. Some major achievements were analyzed briefly (see Table 1). 

Partial least squares regression (PLS regression) has the advantages of treating very large data 

matrices such as those typically employed with hyperspectral reflectance data; therefore, this technique 

has been successfully applied to spectral data for predicting soil nitrate [25] and organic matter  

content [26,27], and also has been employed for predicting TN [28,29]. Shi et al. [30] compared three 

methods for estimating TN content with visible/near-infrared reflectance (Vis/NIR) of selected coarse 

and heterogeneous soils, and the PLS regression model performed best. Chang et al. [31] integrated 

near-infrared reflectance spectroscopy (NIRS) and used PLS regression to predict several soil  

properties including TN. In general, many studies have confirmed that PLS regression was one of the 

most efficient methods used for constructing reliable models in a wide range, including hyperspectral 

remote sensing [32]. 
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Table 1. Major research works on water, plants and soils using modern sensors. 

Research Field Sensors Factor Monitored Application Reference 

Water 
Ocean Optics 

USB4000 
Chlorophyll a 

Estimation of chlorophyll-a in turbid 

inland waters 
[33] 

 

ASD 

Fucoxanthin, 

zeaxanthin, 

chlorophyll a and 

chlorophyll b 

Quantification of diatom biomass in 

Microphytobenthic (MPB)  

biofilms (non-destructively) 

[34] 

ASD, ATM-2 Grain size 
Characterization and management of the 

beach environment 
[35] 

Plants Airborne HyMap Foliar nitrogen 
prediction of sagebrush canopy nitrogen 

from an airborne platform 
[36] 

 

Perkin Elmer 

Lamdba 19 

Leaf pigment,  

Chlorophyll, 

Carotenoid, 

Nitrogen, Carbon 

Spectroscopy of plant biochemistry [37] 

ASD Leaf chlorophyll 
Retrieval of spatially-continuous leaf 

chlorophyll content 
[38] 

ASD Major plant species Classification of Hyperspectral images [39] 

ASD 
Fusarium circinatum 

Stress 

Early detection of Fusarium 

circinatum-induced stress in Pinus radiata 

seedlings. 

[40] 

ProSpecTIR-VS, 

ASD 
Plant stress 

The Plant Stress Detection Index (PSDI) 

used as plant stress indicator 
[41] 

ASD Mangrove leaves Mangrove classification [42] 

ASD Water stress 
Prediction of Grain and biomass yield of 

wheat based on water stress indices 
[43] 

ASD, Ocean Optics 

(QE65000, Jaz) 
pH Determination of pH in Sala mango [44] 

ASD Zn content 
Monitoring Zn nutrient levels under  

field conditions 
[45] 

ASD Leaf chlorophyll 
Validation of satellites’  

vegetation products 
[46] 

Soils ASD 

Soil nitrogen,  

carbon, carbonate,  

and organic matter 

Assessing nitrogen, carbon, carbonate and 

organic matter for upper soil horizons 

(non-destructively). 

[6] 

 

ALPHA FT-IR Soil carbon Soil carbon validation at large scale [13] 

HySpex 

VNIR-1600 

Soil carbon, 

nitrogen, aluminum, 

iron  

and manganese 

Improvement of soil classification, 

assessment of elemental budgets and 

balances and understanding of soil 

forming processes and mechanisms. 

[14] 

ASD 

Soil bulk density, 

moisture content, 

clay, silt, and sand 

Estimating the physical properties of 

paddy soil 
[47] 
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Adaptive neuro-fuzzy inference systems (ANFIS), which combine the aspects of a fuzzy system with 

those of a neural network, have been widely used in many fields because of its usefulness with complex 

nonlinear problems [48–54]. ANFIS has also been applied to the hyperspectral assessment of soil 

properties [55]. Although it is difficult to make full use of hyperspectral data because of the restriction 

on the number of input variables, ANFIS may be a promising technique in the field of hyperspectral 

remote sensing. 

Although accumulated research achievements in estimating TN using hyperspectral remote sensing 

technology have been seen, few studies have been undertaken in areas of subsided land, which have 

geo-spatial, social, and environmental factors that are widespread, comprehensive, dynamic, and 

complicated [56,57]. In addition, almost no analysis of TN in subsided land caused by the extraction of 

various resources currently exists. To bridge this gap, several issues need to be considered to provide 

satisfactory prediction accuracy: Whether the existing TN estimation models are suitable for soils 

influenced by land subsidence? Noise reduction must be considered in developing hyperspectral 

estimation models [58,59], but how to reduce noise while retaining as much useful information as 

possible in remotely sensed hyperspectral data? How to realize the complementary superiority of PLS 

regression and ANFIS to further improve the accuracy of TN estimates? 

In view of the above issues, the objective of this study was to develop a suitable method  

for estimating the soil TN in subsided lands. In order to achieve this goal, Local Correlation 

Maximization-Complementary Superiority (LCMCS) method was investigated. LCMCS takes 

advantages of both PLS regression and ANFIS, and can maximize the use of TN response information 

and eliminate the interference of noisy data. The performance of LCMCS model was compared and 

evaluated by the local correlation maximization (LCM), complementary superiority (CS) and PLS 

regression methods. 

2. Materials and Methods 

The overall approach applied to the model development is shown in Figure 1. This outlines the 

collection of soil samples and the spectral analysis and LCMCS modelling approach. 

 

Figure 1. Schema showing an overview of the inputs and analysis steps of the work 

reported in this paper to produce the LCMCS prediction models. 
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2.1. Experiment 

2.1.1. Sample Preparation 

The topsoil samples (0–30 cm) analyzed in this study had been randomly collected from different  

soil types (Table 2) at 280 randomly selected sites in the fields that had been subsided (red regions in 

Figure 2) of Cangzhou (Figure 2c; 38°32′ N, 116°45′ E), Renqiu (Figure 2d; 38°42′ N, 116°7′ E) and 

Fengfeng District (Figure 2e; 36°20′ N, 114°14′ E), all in Hebei Province, China. Subsidence had been 

caused by the excessive extraction of groundwater, oil and coal in these three areas, respectively. 

Interferometric synthetic aperture radar (InSAR) is an operational remote sensing technique to measure 

ground deformation with subcentimetric precision from space [60,61]. In this study, the subsidence 

deformation data of Cangzhou and Renqiu were obtained by permanently scattered interferometric 

synthetic aperture radar technology [62], while data for Fengfeng District were captured by differential 

synthetic aperture radar interferometry technology [63]. All 280 soil samples were air dried, gently 

crushed, passed through a 2 mm sieve, and then pulverized by grinding. The samples were split into  

two parts used for chemical analysis and spectral measurement. The percentage of TN in each soil 

sample was determined by the Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China 

(measured by Kjeldahl method). 

Table 2. Soil types in subsided land of Changzhou, Renqiu and Fengfeng. 

City Soil Types 

Changzhou Fluvo-aquic soil, Salinized fluvo-aquic soil 
Renqiu Fluvo-aquic soil, Salinized fluvo-aquic soil 

Fengfeng Cinnamon soil 

银川

China

Renqiu

Cangzhou

Fengfeng

Hebei

(c)

(d)

(e)

(a) (b)

 

Figure 2. (a) Vicinity map of Hebei Province, China; (b) Vicinity map of the Changzhou, 

Fengfeng, and Renqiu study sites within Hebei; Soil sample collection sites from subsided 

land (red regions) of Changzhou (c); Renqiu (d) and Fengfeng (e). 
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2.1.2. Measurement and Data Processing 

An ASD FieldSpec 3 spectroradiometer (Analytical Spectral Devices, Boulder, CO, USA) was used 

to measure the spectra of soil samples over wavelength ranges of 350–1000 nm and 1000–2500 nm,  

with increments of 1.4 nm and 2 nm, respectively. The spectral resolution at 700 nm was 3 nm, and at 

1400 nm and 2100 nm was 10 nm. Each soil sample was placed in a 10 cm diameter, 2 cm deep container 

and illuminated from above using a halogen lamp. After adjusting the zenith angle (approximately 30°) 

and the distance (approximately 30 cm) between the light source and soil surface, 10 scans for each 

sample were acquired. And white panel measurements were used as calibration. All these operations 

were performed in a dark room to avoid the effects of stray light [64]. By dividing the mean radiance of 

10 consecutive scans by the radiance over the Spectralon panel, the spectral reflectance of the soil 

samples was calculated, which was regarded as the original spectrum [65]. 

2.1.3. Spectral Transformations 

Derivative processing helps reduce the influence of low-frequency noise [66,67]. In the reciprocal 

logarithm mode, spectra differences of the visible-light region can be highlighted and the influence of 

changes in illumination can be minimized [68]. In this study, each original spectral reflectance (REF) 

was transformed into the first derivative differential (FDR), reciprocal logarithm (log[1/R]) and the first 

derivative differential of reciprocal logarithm ([log{1/R}]′). 

2.1.4. Retrieval Model 

As many studies have confirmed that PLS regression is one of the most efficient methods used in 

constructing reliable models in the field of hyperspectral remote sensing; therefore, this paper used 

PLS regression analysis to analyze the first issue of whether the existing TN estimation models are 

suitable for soils influenced by land subsidence. The LCM and CS methods were specifically aimed at 

second and third issues considered in this study. Finally, in order to solve all three issues,  

the LCMCS method was used to retrieve the TN content. The results were compared and evaluated. 

2.2. Methods 

2.2.1. Local Correlation Maximization De-Noising Method (LCM) 

The soil spectral reflectance curves always have obvious burrs, which show that a large number of 

noisy data exist within the spectrum. This noise is also present in the transformed spectrum. How can 

noise be reduced while retaining as much useful information as possible? Based on the concept of local 

optimization, this study employed the LCM de-noising method to solve this difficult problem. The main 

steps of LCM are as follows: 

(1) Decomposing the original and transformed spectrum into five layers using a wavelet de-noising 

method that is based on the Sym8 matrix function. 

(2) Calculating the correlation coefficients for the measured TN content compared with both initial 

(including original and transformed spectrum, the same hereafter) and decomposed spectral 

reflectance (1–5 levels in this study), in the range of 350–2500 nm. 
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(3) Finding the optimal decomposition level of each band, which has the maximum correlation 

coefficient among initial and decomposed spectra (1–5 levels) at each wavelength; then,  

the corresponding correlation coefficient and decomposed band are taken as the local optimal 

correlation coefficient (LOCC) and optimal band (OB). After all the LOCCs and OBs are 

acquired, the overall LOCC and OB are used to determine the optimal correlative curve  

(OCC) and the optimal spectra (OSP), respectively. Finally, the OSP and OCC of original and 

transformed spectra are obtained, Figure 3 shows the overall approach. 

Original and transformed spectrum

Initial and decomposed spectral 
reflectance (1–5 levels in this study)

Wavelet analysis

Correlation coefficients

Correlation analysis

Assay data (TN)

LOCC

OCC

Optimal decomposition level of each band

OB

OSP
 

Figure 3. Schema showing an overview about obtaining of the optimal correlative curve 

(OCC) and the optimal spectra (OSP). 

2.2.2. Partial Least Square Regression (PLS Regression) Method 

The PLS regression method proposed by Gerlach et al. [69] is a mainstream, linear multiple 

regression method that compresses spectral data by reducing the measured collinear spectral variables to 

a few non-correlated latent variables or factors [70–72]. PLS regression algorithms have been used 

largely in soil analyses [13,26–29]. The basic aim of PLS regression is to build a linear model about  

X (mean-centered matrix of predictor variables; the spectral bands in this study) and Y (mean-centered 

matrix containing the response variables; the TN contents in this study). The PLS regression was 

carried out using the SPSS software in this study, and the number of latent variables were determined 

according to the prediction error in calibration [73,74]. The main principle is as follows [75]: 
First, X and Y are decomposed into feature vectors in the forms of Equations (1) and (2): =Y UQ F+  

=Y UQ F+  (1)

X TP E= +  (2)

where U and T are the score matrices, Q and P are the loading matrices, and F and E are the error 

matrices [76]. 

According to the correlation between feature vectors, a regression model is established by 

decomposing X and Y: 
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U TB Ed= +  (3)

where Ed is the random error matrix, and B is the regression coefficient matrix. 

Thus, if spectral vector x is known, the predicted TN content y can be obtained: 

( )y x UY BQ′=  (4)

2.2.3. Adaptive Neuro-Fuzzy Inference System (ANFIS) 

ANFIS is an adaptive neuro-fuzzy inference machine combination of fuzzy theory with neural  

nets [77]. As one of the popular learning methods in neuro-fuzzy systems, a fuzzy inference system uses 

hybrid learning algorithms to identify the fuzzy system parameters and to train the model [78]. Figure 4 

shows the ANFIS architecture with two inputs and one output, which has five layers and two rules. 

11 fw

22 fw

1w1w

2w 2w

 

Figure 4. Architecture of adaptive neuro-fuzzy inference system (ANFIS). 

Two fuzzy if-then rules [79] are given as follows: 

Rule 1: If ( x  is 1A ) and ( y  is 1B ), then ( 1 1 1 1f p x q y r= + + ) (5)

Rule 2: If ( x  is 2A ) and ( y  is 2B ), then ( 2 2 2 2f p x q y r= + + ) (6)

Layer 1: Every adaptive node in this layer is a square node with the following node functions: 

( )1, , 1, 2
ii AO x iμ= =  (7)

( )
21, , 3, 4

ii BO y iμ
−

= =  (8)

where O1,1 and O1,2 are used to grade the memberships of fuzzy sets A and B. Usually, a bell function is 

used as follows: 

( )
2

1
, 1, 2

1

i iA b

i

i

x i
x c

a

μ = =
  −
 +  
   

 

(9)

where ai, bi, and ci are the premise parameters. 

Layer 2: Every adaptive node in this layer multiplies the incoming signal and sends the product out; 

the output is determined by: 
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( ) ( )2, , 1, 2
i ii i A BO w x y iμ μ= = =  (10)

Layer 3: Ratio of the rules for firing strength to the sum of all rule’s firing strengths is given as: 

3,
1 2

, 1, 2i
i i

w
O w i

w w
= = =

+
 (11)

Layer 4: In this layer, every adaptive node is a square node with the function: 

( )4, , 1, 2i i i i i i iO w f w p x q y r i= = + + =  (12)

where pi, qi, ri are the design parameters. 

Layer 5: Fixed node computes the overall output as the summation of all incoming signals; the output 

is as follows: 

5, , 1,2i i
i i i

i i i

w f
O w f i

w
= = = 

 (13)

2.2.4. Local Correlation Maximization-Complementary Superiority (LCMCS) 

To address all three issues considered in this study, the LCMCS method is proposed; the main steps 

are as follows: 

(1) Spectral transforms. Spectral transforms help reduce the influence of noise; therefore, each REF 

is transformed into FDR, log(1/R) and (log[1/R])′. 

(2) LCM analysis. To maximize the use of TN response information and eliminate the interference 

of noisy data, OSP and OCC of the original and transformed spectrum are obtained by LCM 

de-noising method, which has significant correlativity with TN content. 

(3) Complementary superiority. OSP and measured TN values are used in PLS regression analysis, 

and several principal components (five principal components in this study) are acquired. These 

principal components and the measured TN contents are then used in ANFIS analysis, and the 

LCMCS models are established. 

(4) Model-verifying. Sample data are used for model calibration and verification. In this study,  

from the 280 samples in each treatment, 150 samples were used for model calibration and the 

remaining 130 samples were used for model verification. Then, the best model was selected as 

the final model using the LCMCS method. 

By carefully applying spectral transforms to wavelet, correlation, PLS regression, and ANFIS 

analysis methods, the LCMCS method can effectively remove noise while preserving the detail 

information, taking full advantage of useful spectral information and eliminating the interference of 

noisy data, and the complementary superiority between PLS regression and ANFIS are realized. 

2.2.5. Model Evaluation Standard 

In this study, 150 soil samples were used to construct all models (55, 50 and 45 soil samples from 

subsided land of Cangzhou, Renqiu and Fengfeng, respectively), In addition, in order to fully validate 

the prediction abilities of all models, 130 soil samples were used in verification (45, 45 and 40 soil 
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samples from subsided land of Cangzhou, Renqiu and Fengfeng, respectively) (Table 3). The stability 

and accuracy of all the models were determined by R2, root mean square error of calibration (RMSEC) 

and mean relative error of calibration (MREC). The estimation results were evaluated by root mean 

square error of validation (RMSEV) and mean relative error of validation (MREV). A good model will 

have a high R2, low root mean square errors (RMSEC and RMSEV), and small mean relative errors 

(MREC and MREV). 

Table 3. Descriptive statistics of the calibration/validation set. 

Dataset NS EP 

Calibration 150 
55 C 

R2, RMSEC, MREC 50 R 
45 F 

Validation 130 
45 C 

R2, RMSEV, MREV 45 R 
40 F 

NS, Number of samples; C, Cangzhou City; R, Renqiu City; F, Fengfeng District; EP, Evaluation parameters. 

3. Results and Discussion 

3.1. Interpretation of Soil Spectral Reflectance 

Figure 5 shows the differences of spectral reflectance between spectra and samples with different TN 

contents (12.63, 7.89, 9.91, 13.36, 15.07 and 18.70 mg·kg−1). The samples of the Fengfeng site had much 

more TN than samples of Cangzhou and Renqiu. Figure 5 also indicates that soil reflectance generally 

decreases with increasing TN content. A TN of 18.70 mg·kg−1 shows lower reflectance values than the 

others, probably because of its greater TN content. In the entire visible-near-infrared spectrum, three 

remarkable water absorption peaks were observed at 1400, 1905 and 2200 nm. Although the differences 

of spectral characteristics caused by TN are apparent, it is still extremely difficult to reveal the 

relationships between spectra and TN content directly, especially when a greater number samples are 

considered. Organic nitrogen is a major constituent of SOM, therefore soil reflectance decreases 

possible correlation with SOM, which can affect estimation accuracy of TN prediction models 

obviously [21,80,81]. And the SOM interference would be left behind to further research. In this study, 

many processing algorithms were employed for the data mining and analysis. 

 

Figure 5. Original reflectance curve of soil samples with different TN contents. 
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3.2. OSP Acquisition 

Figure 6a shows the correlation coefficients between the measured TN content and the initial  

FDR (data of REF, log[1/R] and [log{1/R}]′ are not shown, the same as below), and the correlation 

coefficients of the measured TN content with decomposed FDR (1–5 levels; Figure 6b–f). Moreover, 

Table 4 gives maximum values of all the correlation coefficients of initial FDR and decomposed  

FDR. According to Figure 6a–f and Table 4, there is a stronger correlation when the level of wavelet 

decomposition is 5, whose maximum absolute correlation coefficient and average absolute correlation 

coefficient reach 0.725 (at 2316 nm) and 0.500. This implies that the wavelet analysis amplifies some 

useful TN information that is previously obscured by noise. 

 

 

Figure 6. Wavelength dependence on coefficients of correlation between total soil  

nitrogen (TN) and first derivative differential of the soil spectra: initial (a); decomposed 

(1–5 levels) (b–f); optimal correlative curve (OCC) (g); and (h) first derivative differential 

reflectance curve of soil sample (Initial, decomposed [5 level] and the optimal spectra [OSP]). 

To preserve more detail during spectra de-noising, the optimal decomposition level of each band  

is found, which has the maximum correlation coefficient among the initial and decomposed spectra  

(1–5 levels) at each wavelength. The corresponding correlation coefficient and decomposed band are 

taken as LOCC and OB. The red points in Figure 6a–f show that the LOCC and the overall LOCC 

determine the OCC (Figure 6g). Figure 6h shows the initial FDR curve, decomposed FDR curve  

(5 level) and OSP, compared with initial FDR curve and decomposed curve (5 level). OSP can 
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effectively remove noise while preserving the detail information simultaneously. Figure 7 shows all 

OCC of REF, FDR, log(1/R) and (log[1/R])′. 

Table 4. Correlation analysis between total soil nitrogen (TN) and the first derivative 

differential FDR (initial and decomposed). 

TSP MPCB (nm) CC MNCB (nm) CC AACC 

FDR 1397 0.669 766 −0.672 0.253 
FDR (DL = 1) 1397 0.689 1419 −0.692 0.266 
FDR (DL = 2) 1395 0.697 1421 −0.721 0.331 
FDR (DL = 3) 1394 0.695 1422 −0.704 0.422 
FDR (DL = 4) 2205 0.714 1214 −0.715 0.482 
FDR (DL = 5) 2316 0.725 1223 −0.706 0.500 

TSP, Types of spectral parameters; DL, Decomposition level; MPCB, Maximum positive correlation band; 

CC, Correlation coefficient; MNCB, Maximum negative correlation band; AACC, Average absolute 

correlation coefficient. 

Based on Figure 7, the OCC of (log[1/R])′ performs better, and the correlation coefficient is 0.797.  

In addition, the OCC of FDR has more bands with high correlation than OCC of (log[1/R])′. Meanwhile, 

its maximum correlation coefficient is much higher than that of the OCC of REF and log(1/R). Table 5 

gives their maximum correlation coefficients and number of bands at different levels of correlation. 

Therefore, OSP of FDR (Figure 8a and (log[1/R])′ (Figure 8b were used to build the LCMCS model. 

As shown in Figure 8, the smoothness of spectral curves is obviously improved by LCM method,  

and spectral detail information is well preserved after de-noising, which indicates that the issue of how 

to reduce noise while retaining the details in hyperspectral data is solved satisfactorily. 

 

Figure 7. Optimal correlative curve of the original reflectance and its different 

transformation forms. 
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Table 5. Comparisons of the optimal correlative curve (OCC) of the first derivative 

differential (FDR) and the first derivative differential of reciprocal logarithm (log[1/R])′. 

TSP CL NB MPCB (nm) CC MNCB (nm) CC 

FDR 

** 2023 2316 0.725 1421 −0.721 
>0.40 1759 2316 0.725 1421 −0.721 
>0.45 1654 2316 0.725 1421 −0.721 
>0.50 1510 2316 0.725 1421 −0.721 
>0.55 1291 2316 0.725 1421 −0.721 
>0.60 949 2316 0.725 1421 −0.721 

(log[1/R])′ 

** 1655 1422 0.797 2205 −0.739 
>0.40 566 1422 0.797 2205 −0.739 
>0.45 392 1422 0.797 2205 −0.739 
>0.50 210 1422 0.797 2205 −0.739 
>0.55 134 1422 0.797 2205 −0.739 
>0.60 92 1422 0.797 2205 −0.739 

TSP, Types of spectral parameters; CL, Correlative levels; **, at the 0.01 significance level; NB, Number of 

bands; MPCB, Maximum positive correlation band; CC, Correlation coefficient; MNCB, Maximum negative 

correlation band. 

 

 

Figure 8. Optimal spectrum (OSP) of the first derivative differential (FDR) (a) and the first 

derivative differential of reciprocal logarithm (log[1/R])′ (b). 

3.3. Applicability of LCMCS Model 

OSP and measured TN values were used in PLS regression analysis, and five principal components 

were acquired. These five principal components and the measured TN contents were then used in ANFIS 
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analysis, and the LCMCS models were established. Table 6 shows a comparative analysis of the 

performance of various models established by the LCMCS method at different correlative levels of FDR 

(OSP) and (log[1/R])′ (OSP).  

Table 6. Comparisons of the performance of models established by the local correlation 

maximization-complementary superiority method at different correlative levels of the first 

derivative differential (FDR (optimal spectrum [OSP]) and the first derivative differential of 

reciprocal logarithm (log[1/R])′ (OSP). 

TSP CL LVs 
Calibration (n = 150) Validation (n = 130) 

R2 RMSEC MREC R2 RMSEV MREV 

FDR 

** 5 0.951 0.629 3.311 0.808 1.169 7.901 
>0.40 5 0.946 0.667 3.818 0.829 1.095 7.901 
>0.45 5 0.923 0.793 4.909 0.834 1.076 6.969 
>0.50 5 0.920 0.808 5.231 0.823 1.105 6.890 
>0.55 5 0.927 0.767 4.781 0.831 1.080 7.051 
>0.60 5 0.917 0.821 5.168 0.797 1.184 8.068 

(log[1/R])′ 

** 5 0.991 0.269 1.446 0.885 0.898 5.921 
>0.40 5 0.939 0.704 4.220 0.681 1.529 9.613 
>0.45 5 0.910 0.854 5.009 0.817 1.123 7.602 
>0.50 5 0.953 0.616 3.615 0.785 1.240 8.178 
>0.55 5 0.954 0.608 3.037 0.779 1.234 7.626 
>0.60 5 0.957 0.588 2.968 0.776 1.255 7.815 

TSP, Types of spectral parameters; CL, Correlative levels; **, at the 0.01 significance level; LVs, Number of 

latent variables. 

Based on the 1655 selected effective bands of (log[1/R])′ (OSP), whose correlation coefficients were 

significant (p < 0.01), the optimal model of the LCMCS method was obtained and determined to  

be the final model of the LCMCS method, which produced more ideal results for both the calibration  

(R2 = 0.991, RMSEC = 0.269 and MREC = 1.446) and validation (R2 = 0.885, RMSEV = 0.898 and 

MREV = 5.921) analyses compared with other models. For the purpose of comparison, three issues were 

separately considered, and the corresponding solutions are as follows: 

(1) PLS regression method. In PLS regression models, decomposed FDR (5 level) and (log[1/R])′  

(4 level), whose correlation coefficients reached to 0.725 and 0.797, respectively, were used  

in PLS analysis. Based on the 1293 selected effective bands of (log[1/R])′ (5 level), whose 

correlation coefficients were significant (p < 0.01), the optimal model of PLS method was 

obtained, which was selected as the final model of the PLS regression method. 

(2) Local correlation maximization method (LCM). Facing the second issue of how to reduce noise 

while retaining as much useful information as possible, OSP of FDR and (log[1/R])′ were used in 

PLS regression analysis. Based on the 1655 selected effective bands of (log[1/R])′ (OSP), whose 

correlation coefficients were significant (p < 0.01), the optimal model of the LCM method was 

obtained and selected as the final model of the LCM method. 

(3) Complementary superiority method (CS). The CS model, which had the advantages of PLS 

regression and ANFIS, was aimed at addressing the third issue. The same PLS regression models, 

decomposed FDR (5 level) and (log[1/R])′ (4 level) were used. Based on the 382 selected effective 
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bands of (log[1/R])′ (4 level), whose correlation coefficients were greater than 0.40, the optimal 

model of CS method was created and the final model of LCM method was determined. 

Table 7 shows results of the best model found using each method. 

Table 7. Test result of the local correlation maximization-complementary superiority method 

(LCMCS), complementary superiority (CS), local correlation maximization (LCM) and 

partial least squares regression (PLS) models provides for total soil nitrogen (TN) content. 

Model TSP LVs 
Calibration (n = 150) Validation (n = 130/45 C/45 R/40 F) 

R2 RMSEC %MREC R2 RMSEV %MREV 

LCMCS (log[1/R])′ 5 0.991 0.269 1.446 0.885 0.898 

0.861 C 

5.921 

6.463 C 

0.713 R 5.412 R 

1.103 F 5.883 F 

LCM (log[1/R])′ 8 0.916 0.804 5.498 0.799 1.191 

1.130 C 

7.972 

8.899 C 

0.863 R 6.839 R 

1.529 F 8.205 F 

CS (log[1/R])′ 5 0.953 0.620 3.473 0.817 1.147 

1.131 C 

7.572 

8.394 C 

0.945 R 6.958 R 

1.353 F 7.337 F 

PLS (log[1/R])′ 8 0.830 1.141 7.756 0.747 1.373 

1.354 C 

9.525 

10.38 C 

1.148 R 9.415 R 

1.608 F 8.683 F 

TSP, Types of spectral parameters; LVs, Number of latent variables; C, Cangzhou City; R, Renqiu City; F,  

Fengfeng District. 

The PLS regression model provides good results in predicting TN contents (R2 = 0.747, RMSEV = 1.373, 

MREV = 9.525%; Table 7); this indicates that the PLS regression method based on spectral transforms 

and wavelet analysis is suitable for subsided land due to excessive extraction of different resources as 

discussed above. When the second issue was considered, the LCM model did perform better than the 

PLS regression model with the R2 of 0.799, RMSEV of 1.191 and the MREV of 7.972%; its accuracy to 

predict was obviously enhanced at all three sites, Changzhou, Renqiu and Fengfeng. Moreover, a small 

improvement occurred in the CS model when compared with the LCM model, although the precision in 

Renqiu was reduced from 6.839% to 6.958%. The results of the LCM and CS models indicate that when 

second and third issues were considered, the predictive effects can be improved significantly. However, 

it can be seen from the comparison that the LCMCS model (Figure 9a) produced lower prediction errors 

during both the calibration (R2 = 0.991, RMSEV = 0.269 and MREV = 1.446%) and validation  

(R2 = 0.885, RMSEV = 0.898, MREV = 5.921%) when compared with models built by other three 

methods (Figures 9b–d). Moreover, at all three sites, Cangzhou (RMSEV = 0.861, MREV = 6.463%), 

Renqiu (RMSEV = 0.713, MREV = 5.412%) and Fengfeng (RMSEV = 1.103, MREV = 5.883%), the 

estimation accuracy of the LCMCS model was also the closest to the ideal. In addition, overall models 

indicted that the estimation accuracy in Cangzhou was the poorest, followed by Fengfeng (except PLS 

model). The cause of this results and the influence degree of model estimation results from the land 

subsidence would be left behind to further research. 
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Figure 9. Comparisons of measured and predicted values by the local correlation 

maximization-complementary superiority method (LCMCS) (a); complementary superiority 

(CS) (b); local correlation maximization (LCM) (c) and partial least squares regression 

(PLS) (d) methods. 

4. Conclusions/Outlook 

By carefully applying spectral transforms as well as wavelet, correlation, PLS regression, and ANFIS 

analyses, the potential of the LCMCS method for the rapid quantification of TN was investigated.  

Based on the 1655 selected effective bands of (log[1/R])′ (OSP), whose correlation coefficients were 

significant (p < 0.01), the optimal model of the LCMCS method was developed as the final model of 

LCMCS method. For the purpose of comparison, three issues studied during model development. 

The results show that all three methods compared could quantify TN efficiently. The LCM model and 

the CS model consider the second and third issue, respectively; their estimation results are more accurate 

than that of the PLS regression model. Between the LCM model and the CS model, the result of the CS 

model shows a small improvement. The LCMCS model, however, has the highest estimation accuracy 

because it considers all three issues together, which has been verified through all three study areas 

(Cangzhou, Renqiu or Fengfeng). In summary, the LCMCS method has great potential for use in 

monitoring TN in subsided lands due to excessive extraction of natural resources such as groundwater, 

oil and coal. 
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