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Abstract: In order to obtain precise kinematic global positioning systems (GPS) in 

medium to large scale networks, the atmospheric effects from tropospheric and ionospheric 

delays need to be properly modeled and estimated. It is also preferable to use multiple 

reference stations to improve the reliability of the solutions. In this study, GPS kinematic 

positioning algorithms are developed for the medium to large-scale network based on the 

position-velocity-acceleration model. Hence, the algorithm can perform even in cases where 

the near-constant velocity assumption does not hold. In addition, the estimated kinematic 

accelerations can be used for the airborne gravimetry. The proposed algorithms are 

implemented using Kalman filter and are applied to the in situ airborne GPS data. The 

performance of the proposed algorithms is validated by analyzing and comparing the 

results with those from reference values. The results show that reliable and comparable 

solutions in both position and kinematic acceleration levels can be obtained using the 

proposed algorithms.  
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1. Introduction 

For the past two decades, global positioning systems (GPS) has been widely used for precise 

positioning in various engineering and scientific fields. While its application areas in the early stage 

were limited to the determination of a position at a static environment, more and more applications 

which require kinematic positioning have been developed. For the kinematic GPS positioning, either 

single or multi-reference stations can be used for the data processing. The multi-reference station 

approach generally offers better positioning accuracy and reliability [1,2]. Therefore, the  

multi-reference station approach is recommended when precise kinematic positioning is required. 

However, many distance-dependent errors, such as atmospheric and ionospheric delays, are not fully 

removed through the double-differencing technique when the baseline length increases. Thus, these 

errors should be properly modeled for the medium to long range kinematic positioning [3–5]. GPS 

kinematic positioning is usually performed by using the Kalman filter, and so called Position-Velocity 

(PV) model can be adopted when the object is assumed to move with a nearly constant velocity. In 

addition, Position-Velocity-Acceleration (PVA) model can be introduced for the cases where the  

near-constant velocity assumption does not hold [6]. This means that the PVA model can provide not 

only the flexibility in estimation procedure but also the position, velocity, and kinematic acceleration 

of the moving object simultaneously.  

It is notable that one of the popular applications utilizing the GPS derived acceleration is the 

airborne gravimetry. The airborne gravity survey is performed by measuring the kinematic 

accelerations of the aircraft using GPS. Then, the gravity information is extracted using the  

well-known equation as shown in Equation (1). The Equation (1) expressed in inertial frame shows 

that the kinematic accelerations consist of the gravitational acceleration and the specific force sensed 

by an accelerometer [7,8];  

x g a= +  (1)

where x  is kinematic acceleration; g  is gravitational acceleration; a  is specific force.  

In general, the GPS measurements are processed in relative positioning mode to obtain accurate and 

reliable positioning results in 3-D space. Then, the kinematic accelerations are computed by taking 

second-order time-derivatives of positions [9,10]. This means that two steps of data processing are 

required to get the kinematic accelerations from the positions, which decrease the efficiency in a 

computational point of view. To overcome the drawback of this method, one can also use the PVA 

model approach so that the position, velocity, and acceleration of the aircraft can be determined at the 

same time. An efficient PVA model for Kalman filter is proposed and demonstrated using the 

measurements from the electronic tacheometer, i.e., geodetic kinematic measurements [11]. However, 

it should be noted that the experiments are conducted in an indoor environment, and the measurement 

used in the experiments are not from the GPS.  
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In this paper, the PVA model to directly determine not only the positions but also the kinematic 

accelerations is proposed, and the validation of the algorithm is demonstrated with in situ GPS 

measurements. The proposed algorithm is designed for the medium to long baseline scenario so that it 

can perform properly even in a survey for a large area under unfavorable surveying condition. The 

atmospheric effects such as tropospheric and ionospheric delays are modeled in the Kalman filter for 

the medium to long baseline scenario. In addition, multi-baseline approach is adopted for the 

improvement of the accuracy and reliability of the solutions. The algorithms are developed  

and numerical test are performed to validate the proposed algorithms by analyzing the  

positioning results and comparing the kinematic accelerations with those from the second-order  

time-derivatives of positions. 

2. Methodology  

The Kalman filter is an optimal recursive estimator which uses a system’s dynamics model and 

sequential measurements to estimate the system’s unknown states in a minimum variance sense. The 

Equation (2) shows the discrete Kalman filter equations categorized into two components, i.e., the 

prediction of state vector through the state-transition matrix and the update of the state vector using the 

measurements [12,13].  

( )
( )

1 1 1 ~ ,

~ ,

x Φ x w w 0 Q

z H x v v 0 R

k k k k k k

k k k k k k

N

N

− − −= +

= +
 (2)

where subscript k  indicates the epoch; xk  is state vector; Φk  is state-transition matrix; w k  is process 

noise vector; Qk  is covariance matrix for the processes noise; zk  is measurement vector; Hk  is design 

matrix; vk  is measurement noise vector; R k  is covariance matrix for the measurement noise. 

2.1. State Vector and System Equation 

The objective of the proposed algorithm is to determine the kinematic accelerations of the aircraft in 

unfavorable conditions. Therefore, the algorithm is designed for the medium to long baseline scenario 

implementing multi-baseline data processing. This means that the proper modeling for the atmospheric 

effects such as tropospheric and ionospheric delays is required and, as a consequence, the zenith wet 

delay (ZWD) residuals and the double-differenced (DD) ionospheric delays are included in the state 

vector as shown in Equation (3). The system state vector is composed of positions of reference stations 
( _xi pos ), position-velocity-acceleration of aircraft ( _x j pva ), zenith wet delay residual ( ZWDΔ ), 

ambiguities for L1 and wide-lane ( xamb ), and DD ionospheric delay ( xion ) as follows: 

_ _

2
,1 , 1

x x x x x

x

i pos j pva ZWD amb ion

T

k k k
k i i i j j j j j j j j j i j ij ij w ijx y z x x x y y y z z z ZWD ZWD N N I f

 
 = Δ Δ 
  

           
 (3)

where subscript i  and j  denote reference station and the moving aircraft, respectively; superscript k  

and   are the satellite indices; x , y , z  are the position components; x , y , z  and x , y , z  are 

velocities and accelerations of the aircraft; ZWDΔ  is the total zenith tropospheric delay residual; ,1
k
ijN   
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and ( ), ,1 ,2
k k k
ij w ij ijN N N= −    are the DD ambiguities for L1 and wide-lane, respectively; 2

1
k
ijI f  is the DD 

ionospheric delay. 

The corresponding state-transition matrix can be expressed by: 

_

_

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

Φ
Φ

Φ Φ
Φ

Φ

i pos
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ion

Δ

 
 
 
 =
 
 
  

 (4)

The coordinates of reference stations are included in the state vector and estimated with an 

assumption of random constant stochastic process, so the transition matrix for those are given as in 

Equation (5). 

_

1 0 0

0 1 0

0 0 1

Φi pos

 
 =  
  

 (5)

The state-transition matrix for position-velocity-acceleration components of the aircraft can be 

derived with the assumption that the kinematic acceleration is Gaussian white noise process [6,11,14]:  
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 (6)

For the modeling of tropospheric effect, either random walk or first-order Gauss-Markov process is 

used because either process is known to be sufficient to describe the stochastic property of 

tropospheric effect [4]. Here, the zenith wet delay residual, i.e., increment with respect to a priori 

value, is assumed to be random walk stochastic process and the transition matrix is: 

1 0

0 1
Φ ZWDΔ

 
=  
 

 (7)

The remaining atmospheric effect, i.e., DD ionospheric delays, is modeled with first-order  

Gauss-Markov process. The first-order Gauss-Markov process can describe a large number of physical 

processes with reasonable accuracy [15]. However, it should be noted that the DD ionospheric delays 
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are correlated with not only time but also baseline length. Hence, the DD ionospheric delays are 

modeled with the first-order Gauss-Markov process which incorporates the effect of both the time and 

baseline length changes as shown by [3]. 

( )Φ t T D

ion e− Δ + δ=  (8)

where T is first-order correlation time for the DD ionosphere; δ  is baseline length change; 

1500 kmD =  is the first-order correlation distance.  

The DD ambiguities for L1 and wide-lane measurements can be modeled as a random constant 

process as the case of reference stations’ coordinates. It should be noted that the ambiguity resolution is not 

attempted because it is an issue outside the scope of this study in long range static or kinematic positioning. 

For the Kalman filtering, the process noise covariance matrix should be properly modeled as it 

confines the variability of the state estimates. The discrete form of covariance matrices for the 

reference stations’ coordinates and the position-velocity-acceleration of aircraft can be written as 

shown in Equations (9) and (10), respectively [6,11]. 
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(10)

The initial spectral density, accq  for the acceleration states can be determined using the initial 

kinematic solutions by computing the standard deviation of the time-differenced accelerations [14]. In 
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this study, accq  is set to 1 m2/s4/Hz for the data processing through the analysis of the spectral density 

from the estimated acceleration data. 

As mentioned already, the zenith wet delay residual is modeled with a random walk process so that 

the corresponding process noise covariance matrix can be expressed as following: 

Q ZWD ZWDq tΔ Δ= Δ  (11)

It should be noted that the spectral density, ZWDqΔ  may be assigned with different values for 

reference stations and aircraft because the behavior of the zenith wet delay residuals are expected to be 
different from each other. The spectral density for zenith wet delay, ZWDqΔ  are determined by using the 

empirical auto-covariance functions method proposed by [4]. Then, 3 × 10−10 m2/Hz and  

5 × 10−8 m2/Hz are chosen for the spectral densities for reference stations and aircraft, respectively. 

The process noise covariance matrix for DD ambiguities for L1 and wide-lane is modeled with zero 

matrix. The covariance matrix for DD ionospheric delay is provided by [3] as shown in Equation (12).  

( )( )22 1Q
t T D

ion e
− Δ + δ

∞= σ −  (12)

where T  = 74 min is correlation time, D  = 1500 km is correlation distance; 2
∞σ = 2.0 m2 is variance.  

2.2. GPS Measurement Equations 

The DD GPS measurements are widely used for the relative positioning due to the fact that various 

systematic errors can be eliminated by differencing operation [16]. In other words, many error sources 

in the GPS measurements, for example, receiver and satellite clock errors, and atmospheric effects can 

be removed or significantly reduced in the DD measurements. However, the spatially correlated 

atmospheric errors should be modeled as the spatial separation between the two receivers increases. 

The Equation (13) shows the DD measurement equations for both L1 and L2 frequencies [17,18].  
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T N
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I
P T e

f

I
P T e

f

Φ = ρ + − + λ + ε

Φ = ρ + − + λ + ε

= ρ + + +

= ρ + + +

 (13)

where, subscript i and j indicate receivers while superscript k  and  denote satellites; ( )k

ij
⋅ 

 is  

double-differencing operator defined as ( ) ( ) ( ) ( ) ( )k k k

ij i j i j
⋅ = ⋅ − ⋅ − ⋅ + ⋅  

; 1Φ , 2Φ  are phase pseudo-range 

measurements on L1 and L2, respectively; 1P , 2P  are code pseudo-range measurements on L1 and L2, 

respectively; ρ  is the geometric distance between the receiver and satellite; T  is tropospheric delay, 

1f  and 2f  are carrier frequencies of L1 and L2, respectively; 2
1I f  and 2

2I f  are ionospheric delays 
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for L1 and L2, respectively; 1λ  and 2λ  are wavelengths of L1 and L2, respectively; 1N  and 2N  are 

ambiguities associated with L1 and L2, respectively. 1ε , 2ε , 1e , 2e  are measurement noises. 

The DD GPS measurement equations shown in Equation (13) are nonlinear forms; thus, the 

linearization step is required. After linearization of Equation (13), the design matrix, H  has the matrix 

form as shown in Equation (14).  

1

2 2
2 2 1 2

2 2
1 2
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 
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 (14)

As shown in Equation (14), the components of the design matrix can be categorized into partial 

derivatives with respect to the coordinates for i (reference station) and j (aircraft), ZWD residual, DD 

ambiguities, and DD ionospheric delays. 

Hence, the components corresponding to the coordinates of reference station and rover in the design 

matrix can be expressed as following: 
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 (15)

The tropospheric delay consists of dry and wet components. Approximately 90% of the total zenith 

delay (TZD) is from the dry component, and about 10% is from the wet component [16]. It is well 

known that the dry component can be modeled with high accuracy while the wet component is less 

predictable. Therefore, the ZWD residual with respect to a priori value is estimated in this approach. 

Equation (16) shows the tropospheric delays between the receiver and satellite. 

( )
( )
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, ,

, ,

, ,

, ,

k k k
i i i D i i i W

i i i D i i i W

k k k
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T ZDD m ZWD ZWD m

T ZDD m ZWD ZWD m

T ZDD m ZWD ZWD m

= + + Δ

= + + Δ

= + + Δ

= + + Δ

  

  

 (16)

where ZDD  is modeled zenith dry delay; ZWD  is modeled zenith wet delay; ZWDΔ  is ZWD 

residual; m  is mapping function; subscript D  and W  indicate “dry” and “wet”, respectively. 

The modeled ZDD , ZWD  and their mapping functions are computed by using the Saastamoinen  

model [19]. The tropospheric delays in Equation (16) can be used to make the DD forms and the 

components of the design matrix correspond to the ZWDΔ  is as following: 
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Δ

Δ

= −

= − +




 (17)

To obtain the covariance matrix for the DD measurements, Rk , the error propagation law is applied 

to the covariance matrix for the un-difference (UD) measurements. The magnitudes of the noises for code 

and phase pseudo-range observations are set to decimetre-level and milimetre-level, respectively [14]. 

3. Results and Discussion 

An airborne gravity survey was conducted in South Korea to develop a new geoid model in 2009. A 

Cessna Grand Caravan was used for the survey and it was flown with the help of autopilot at a constant 

altitude, i.e., 10,000 feet, in order to get as smooth a flight as possible. The GPS data were collected 

from both the GPS receiver on board and six Continuously Operating Reference Station (CORS) with  

1 s data interval. Figure 1 shows one of the trajectories of aircraft (blue line) and the locations of 

reference CORS used to demonstrate the proposed algorithm. The trajectories of the aircraft started 

and ended at the Gimpo (GIMP) airport and the total length of the aircraft trajectory is about 1200 km. 

 

Figure 1. Ground track of aircraft and locations of CORS. 

The coordinates of the reference stations in ITRF2005 frame are determined using the BERNESE 

GPS data processing software [20], and the results are shown in Table 1. The coordinates of reference 

stations are tightly constrained by assigning very small variance values (i.e., 1 × 10−10 m2) to the initial 

covariance matrix. 

For the medium to long baseline data processing scenario, the SHAO reference station is included 

in the data processing. Hence, the diameter of the CORS GPS network reaches up to approximately  

900 km. The GPS data was collected on 11 January 2009 and the data span was 4 h and 18 min.  

 120oE  122oE  124oE  126oE  128oE  130oE   30oN 

  32oN 

  34oN 

  36oN 

  38oN 

  40oN 

GIMP

SEOS

JUNJ

KWNJ

CHJU

SHAO



Sensors 2015, 15 16903 

 

 

Table 1. ITRF2000 Cartesian coordinates for continuously operating reference station 

(CORS) (unit: m). 

Station Name X Y Z 

GIMP −3031,894.828 4054,598.988 3866,287.717 
SEOS −3042,060.369 4111,978.757 3797,578.729 
JUNJ −3124,886.919 4126,580.526 3714,170.141 

KWNJ −3134,404.485 4173,081.827 3654,100.961 
CHJU −3168,622.305 4277,489.565 3501,650.004 
SHAO −2831,733.444 4675,665.953 3275,369.395 

As described in Section 2, the kinematic accelerations together with positions and velocities are 

estimated through the Kalman filter approach. The multi-baseline data processing is performed with 

radial type of network configuration. To evaluate the filter efficiency, the convergence of the 

covariance matrix Pk is examined. Figure 2a presents the variations of the trace of Pk with respect to 

time. As shown in Figure 2a, the trace of Pk converges rapidly with respect to time, which indicates the 

reliability of the filter. It is also notable that two peaks in Figure 2a correspond to the epochs at which 

new satellites are observed. Then, new states for DD ionospheric delays and ambiguities are included 

in state vector, and predefined variance values, i.e., (0.5 m)2 for DD ionospheric delay and 1 × 1010 for 

DD ambiguity, are assigned to the new states. 

 
(a) 

 
(b) 

Figure 2. Convergence of the covariance matrix, Pk: (a) whole trajectory; (b) beginning 

part of the trejectory. 
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Figure 3a–c present the estimated positions, velocities and accelerations of the aircraft with respect 

to time, respectively. The estimated states are the results from forward-backward smoothing. 

 
(a) 

 
(b) 

 
(c) 

Figure 3. (a) Positions; (b) velocities; (c) accelerations. 
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As shown in Figure 3b, the constant velocities in most of the data span for airborne gravity survey 

are retained. The peaks observed in Figure 3c correspond to the aircraft maneuvering for takeoff, 

turnaround, and landing. Table 2 shows the statistics of the estimated accelerations which ranges from 

about −4.5 m/s2 to 4.5 m/s2. 

Table 2. Statistical characteristics of estimated accelerations (unit: m/s2). 

 x  y  z  

Min. −3.92 −4.18 −4.62 
Max. 3.75 4.34 4.49 
Std. 0.53 0.51 0.52 

The atmospheric effects are estimated in forms of ZWD residuals and DD ionospheric delays, 

respectively. As explained in Section 2, the ZWD residuals are estimated at each station including the 

aircraft and then final TZDs are computed by adding the modeled values to the estimated ZWD 

residuals. Figure 4a shows the final TZDs obtained from the data processing. As shown in Figure 4a, 

no significant variations of TZDs for the reference stations are observed while abrupt changes in the 

magnitude of values can be seen in the TZD estimated from the aircraft. This is caused by the fact that 

the modeled values are highly depended on the altitude of the aircraft. The DD ionospheric delays are 

also computed for each of the baseline and satellite pairs, and one example of the results for  

SHAO-AIRP baseline is shown in Figure 4b. Each continuous line corresponds to the DD ionospheric 

delay for each pair of GPS satellites. The variation of the DD ionospheric delays ranges from about  

−1 m to 1 m.  

(a) (b) 

Figure 4. (a) Total zenith delays (TZDs); (b) DD ionospheric delays for SHAO-AIRP baseline. 

The next step is to evaluate the quality of the estimated kinematic accelerations once all the 

solutions are obtained through the proposed algorithm. However, there is a limitation on direct 

comparison because the reference values for kinematic accelerations are not available. Therefore, the 

coordinates of aircraft are computed using the same GPS datasets with the commercial software called 

Waypoint®, and the computed coordinates are used as reference values for the evaluation. Figure 5 
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presents the differences between the estimated coordinates using the proposed method and the 

reference values from the Waypoint software. The differences between the two solutions range from 

about −0.15 m to 0.1 m as shown in Table 3. From the results, one can conclude that the filter based on 

the proposed algorithm is working properly.  

 

Figure 5. Differences between the estimated coordinates and reference values.  

Table 3. Statistical characteristics of the differences between the estimated coordinates and 

the reference values (unit: m). 

 xΔ  yΔ  zΔ  

Min. −0.09 −0.17 −0.17 
Max. 0.11 0.11 0.02 
Std. 0.04 0.06 0.04 

Then, the second-order time-derivatives of determined positions are applied to obtain the kinematic 

accelerations. It should be mentioned that taking the time-derivatives is performed after the data fitting 

with B-spline function. In the final step, the differences between the two kinematic accelerations are 

computed as shown in Figure 6. This procedure is applied to only 1 h data span, i.e., 1–2 h (UTC) 

because no significant dynamics of the aircraft is observed. This also indicates that the actual gravity 

survey is performed during that time span. 

Table 4 shows the statistical characteristics of the differences between the estimated kinematic 

accelerations and the reference values. The differences between the two solutions range from  

−0.15 m/s2 to 0.16 m/s2 and the standard deviation of the differences is about 0.03 m/s2. The mean 

value of the differences is 10−5 m/s2 level for each component. 

From the results, one can state that the comparable kinematic accelerations for airborne gravity 

survey can be obtained by using the proposed algorithmIt should be mentioned that the kinematic 

acceleration for airborne gravimetry needs the accuracy at least at the level of 10−4 m/s2 to detect the 

gravity signal at the level of 10 mGal. In airborne gravimetry, however, a smoother is applied to the 

acceleration to extract meaningful gravity signal. Although the extraction of the gravity signal is out of 

the scope in this study, a B-spline smoother with window size of 120 s are applied to both 

accelerations and verified that the differences reside at the level of 10−4 m/s2. Therefore, one can 
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conclude that the proposed algorithm is reliable for the application of kinematic accelerations. The 

validation for the proposed algorithm in this study, however, is performed with the dataset of one 

trajectory collected under the relatively low dynamic conditions. Therefore, it might be necessary to 

process more dataset under the high dynamic environments in the future.  

 

Figure 6. Differences between the estimated kinematic accelerations and reference values. 

Table 4. Statistical characteristics of the differences between the estimated kinematic 

accelerations and the reference values (unit: m/s2). 

 xΔ  yΔ  zΔ  
Min. −0.15 −0.13 −0.14 
Max. 0.13 0.16 0.13 
Std. 0.03 0.03 0.02 

4. Conclusions 

In this study, we proposed the kinematic GPS positioning algorithm using multiple reference 

stations for medium to large scale networks. The Kalman filter with PVA dynamic model is used for 

the kinematic positioning so that the kinematic acceleration information can be obtained 

simultaneously. For the long range kinematic applications, the tropospheric and ionospheric delays are 

modeled with random walk and first-order Gauss-Markov process models, respectively. The algorithm 

is implemented and tested with in situ airborne GPS data collected at 10,000 ft altitude with 1 s data 

interval. For the validation of the proposed algorithm, the positioning results are compared with the 

reference values first. The computed differences between the estimated and reference values range 

from −0.17 m to 0.11 m, which indicates the validity of the proposed algorithm. The estimated 

kinematic accelerations from the proposed algorithms are also compared with those from the  

second-order time-derivatives of the reference positions. The computed differences between the two 

solutions range from −0.15 m/s2 to 0.16 m/s2 and the standard deviation of the differences is about  

0.03 m/s2. From these results, we can conclude that comparable kinematic accelerations, which can be 

used for airborne gravimetry, are obtainable using the proposed algorithm. 
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