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Abstract: Optical tracking provides relatively high accuracy over a large workspace but 

requires line-of-sight between the camera and the markers, which may be difficult to 

maintain in actual applications. In contrast, inertial sensing does not require line-of-sight but 

is subject to drift, which may cause large cumulative errors, especially during the 

measurement of position. To handle cases where some or all of the markers are occluded, 

this paper proposes an inertial and optical sensor fusion approach in which the bias of the 

inertial sensors is estimated when the optical tracker provides full six degree-of-freedom  

(6-DOF) pose information. As long as the position of at least one marker can be tracked by 

the optical system, the 3-DOF position can be combined with the orientation estimated from 

the inertial measurements to recover the full 6-DOF pose information. When all the markers 

are occluded, the position tracking relies on the inertial sensors that are bias-corrected by  

the optical tracking system. Experiments are performed with an augmented reality  

head-mounted display (ARHMD) that integrates an optical tracking system (OTS) and 

inertial measurement unit (IMU). Experimental results show that under partial occlusion 

conditions, the root mean square errors (RMSE) of orientation and position are 0.04°  

and 0.134 mm, and under total occlusion conditions for 1 s, the orientation and position 

RMSE are 0.022° and 0.22 mm, respectively. Thus, the proposed sensor fusion approach  
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can provide reliable 6-DOF pose under long-term partial occlusion and short-term total 

occlusion conditions. 

Keywords: optical tracking; inertial tracking; hybrid tracking; Extended Kalman Filter 

 

1. Introduction 

Accurate tracking of the human’s pose is important in augmented reality applications such as 

entertainment, military training and medical navigation. A number of motion tracking technologies have 

been developed based on acoustic, mechanical, electromagnetic, optical and inertial sensors [1–4]. 

Acoustic systems use either time-of-flight and triangulation or phase-coherence to capture the marker 

position, but the performance of such devices is seriously affected by the directionality between the 

transmitters and the receivers. In a mechanical motion tracking system, the ground-based system can 

only track one rigid body over a small range of motion that is limited by the mechanical structure. An 

electromagnetic (EM) tracking system tracks the pose of the receiver coil with respect to the EM field 

generator, which makes the tracking performance suffer from magnetic field distortions when there are 

ferromagnetic materials in the working volume [5,6]. Optical tracking has been proven to be a reliable 

and accurate way to capture the pose of a human, but the dependence on markers and cameras makes it 

only applicable in structured environments and it suffers from occlusion [7]. An inertial tracking system 

consists of gyros, accelerometers and magnetometers, but is unreliable to track position for long periods 

of time due to problems with sensor bias and drift [8]. 

The use of sensor fusion technology is a common approach to compensate the drawbacks of 

individual tracking methods. The high accuracy of an optical tracking system (OTS) can assist the 

inertial sensors to remove the bias while the inertial tracking system can improve the robustness of 

tracking systems by capturing the orientation or position when some of the markers are not visible. Thus, 

hybrid tracking systems have been developed to take advantage of the complementary benefits of inertial 

and optical tracking systems. In [9], a hybrid inertial sensor-based indoor pedestrian dead reckoning 

system aided by computer vision-derived position measurements is proposed. A similar system in [10] 

consists of a camera and infrared LEDs installed with an inertial measurement unit (IMU) on two shoes 

to correct inter-shoe position error. In [11], a multi-camera vision system is integrated with a strapdown 

inertial navigation system to track a hand-held moving device. In most of the existing literatures on 

tracking technology, variations of a Kalman Filter [12], such as an Extended Kalman Filter (EKF) and 

Unscented Kalman Filter (UKF), are widely used [5,13–17] to improve the tracking accuracy and 

robustness. However, line-of-sight is required when the OTS is used to track the motion or improve the 

tracking performance. When marker occlusion occurs, the absence of vision data, which is widely used 

as the measurement in Kalman Filter implementations, will result in the failure of position and 

orientation tracking. 

In our previous work [18,19], we proposed a head-mounted optical tracking system for a surgical 

navigation application, as shown in Figure 1. Optical tracking provides drift-free measurement of 

position and orientation, but is subject to a line-of-sight constraint and suffers from slower update rates 

and higher latency [20]. In contrast, inertial sensing, which includes gyroscopes, accelerometers, and 
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magnetometers, provides low latency and high frequency measurement, but these sensors either provide 

derivatives of position/orientation and are subject to drift, or provide absolute orientation but are subject 

to bias (e.g., magnetometer) [4,15]. In [21], the authors propose fusion of OTS and IMU measurements 

to estimate position and orientation in cases of brief occlusions of tracking markers, but only the 

accelerometer bias is estimated in the EKF. However, in long-term use of the IMU, the accuracy of 

orientation tracking will be influenced by the biases in the gyroscope and magnetometer. So, in [22] we 

proposed a sensor fusion approach where the 9-axial measurement from the IMU is bias-corrected by an 

OTS and used to track the orientation. 

 

Figure 1. Cadaver experiment with head mounted tracking system and display. 

In this paper, to reduce the drift error caused by the bias of the inertial sensors and improve the 

accuracy of 6 degree-of-freedom (DOF) pose tracking, an error model is defined with: the bias errors 

which are corrected following the bias-correction approach in [22]; and process and measurement noises 

of the sensor fusion EKF. The camera orientation is used to estimate the bias of the inertial sensors when 

the full marker frame is visible. Then, an EKF is implemented to estimate the orientation and position 

with the bias-corrected inertial sensor data as the system state driver and the OTS as part of the 

measurement when at least one marker is visible. The other part of the measurement is always the 

orientation from the IMU. Additionally, even when the OTS is capable to track the position, the 

acceleration measured by the IMU is used to help the hybrid tracking system (HTS) to provide a position 

tracking result at a higher updating rate. 

This paper is organized as follows: Section 2 describes the hybrid tracking system, the error model 

used to correct the inertial sensor data, and the sensor fusion algorithm applied to track the orientation 

and position of the target; Section 3 presents the experimental results and discussion; and Section 4 states 

the conclusions of this paper. 

2. Methodologies 

2.1. System Description 

The hybrid tracking system (HTS) consists of one stereo camera (Micron Tracker Hx40) as the OTS 

and one IMU rigidly attached to the camera. The OTS tracks special patterns at approximately 20 fps 
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and a latency of 60 ms, and the captured images are transferred to the host computer via a FireWire port. 

The IMU contains a 3-axis gyroscope (two-axis IDG300 and a single axis ISZ300 from InvenSense), a 

3-axis accelerometer (LIS331DLH from STMicroelectronics) and a 3-axis magnetometer (HMC1043 

from Honeywell). It provides the 9 data values of tri-axial accelerometer, gyroscope and magnetometer 

feedback to the host computer via a USB port at the rate of 100 Hz. The software that captures all sensor 

data and displays surgical augmented reality (AR) images on the HMD is developed with C++ and 

implemented on the host PC (MacBook Air). It synchronizes the data at the mean time of sampling from 

the two tracking units, that is, between the two sampling points of the OTS, the HTS captures the 

orientation with the IMU measurement, which can supply the tracking data at a higher rate of 100 Hz. 

As the OTS is assumed to be accurate when the markers are all visible, the synchronized HTS tracking 

result is based on the slower OTS and updated by the orientation estimated with the IMU measurement 

as shown in Figure 2. 

 
(a)      (b) 

Figure 2. (a) Orientation tracking results of the hybrid tracking system (HTS), which has a 

higher update rate than the optical tracking system (OTS); (b) Orientation tracking results in 

period of 2.7 s–3.1 s. Red: The OTS result at an update rate of 20 Hz. Blue: The synchronized 

tracking result based on the OTS result and updated by inertial measurement unit (IMU) 

measurement between two samples of OTS. 

In order to combine the outputs from OTS and IMU, the two tracking units are registered with a 

calibration procedure [23] through which the transformation matrix between the two units is achieved. 

The reference frame consists of three markers attached to a plastic board and is assumed to remain 

stationary during the procedure (more precisely, all other measurements are made relative to this frame 

so, without loss of generality, it can be assumed to be stationary). The test setup also includes a surgical 

instrument that contains three tracked marker points, though in a smaller physical arrangement. The 

workflow of the hybrid tracking system is shown in Figure 3, which finally outputs the 6-DOF pose 

including 3-DOF orientation and 3-DOF position. The execution time of the sensor fusion approach is 

approximately 0.5 ms. Note that our HMD setup combines the IMU with the OTS, but the proposed 

method would also apply to setups where the IMU is attached to the marker frame(s). The disadvantage 

of the latter one is the increased complexity of the frame (i.e., IMU electronics that require a power 
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source and wired or wireless communication), but the advantage is that the proposed sensor fusion 

method can be used for multiple frames. 

 

Figure 3. Workflow of the hybrid tracking system. 

2.2. Inertial Sensors Bias-Correction 

The IMU provides the following types of tri-axial measurements: (1) the gyroscope measures the 

angular rate of rotation; (2) the accelerometer measures the linear acceleration and the acceleration due 

to gravity; and (3) the magnetometer measures the earth’s magnetic field (i.e., magnetic North). 

 

Figure 4. Bias modeling approach. 

The position and orientation of objects can be accurately tracked by the OTS, while the marker is in 

its field of view (FOV). Thus, the output of the optical tracking unit can be used to estimate the bias of 

the IMU sensors. Specifically, the cosine algorithm is used to calculate the true value of gravity Acn and 

magnetic field Mcn, which is orthogonal to the value of gravity from the Euler angles obtained from the 

camera data. The vector of magnetic field is defined as: X-axis points to the magnetic north; Z-axis is 

33.53°orthogonal to the gravity direction; and Y-axis points to the west as right-handed coordinate. The 

subscripts i and c indicate measurements from the IMU and camera, respectively. The bias measurement 

can be estimated by subtracting these true values from the sensor feedback, and then using a Finite 

Impulse Response (FIR) filter to attenuate the noise, as shown in Figure 4. This approach makes the 

following simplifying assumptions: (1) there is negligible acceleration related to motion; and (2) the 

latency between the IMU and optical tracker measurements is negligible. Both of these assumptions are 

satisfied under quasi-static conditions, where the surgeon’s head is not moving very much.  
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The FDATool (Filter Design and Analysis Tool, MATLAB) is used to design a low pass FIR filter, 

for which the sampling frequency is set as 400 Hz, the cutoff frequency is 50 Hz and the order of the 

FIR filter is 20. The bias model is given by: 

g in cn

a n in cn
n

m in cn

B G G

B a A A

B M M

−   
   ≈ −   
   −   

  (1)

where Bg, Ba and Bm are the bias of gyroscope, accelerometer and magnetometer, respectively. G, A and 

M are the values of angular rate, acceleration and magnetic field, an are the coefficients of the FIR filter 

and satisfy: 

=1n
n

a  (2)

If the marker points are occluded and there are no orientation results from the OTS, the bias estimation 

process is stopped and parameters of the bias model are not updated. The most recent bias model is used 

until the markers become visible again. 

2.3. Sensor Fusion 

2.3.1. Time Updating 

We use an EKF to estimate position and orientation from IMU and OTS feedback. The state of the 

system consists of a unit quaternion q that represents the orientation, which is updated by the  

bias-corrected angular rate, p and v that represent the position and velocity, which are updated by the 

bias and gravity corrected linear acceleration. A dynamic state model that describes the evolution of the 

system state Xk, starting from the system state at the previous step with the function is defined: 

ˆ ( , , )kX f q p v− =  (3)

[ ]1 2 3 4

T
q q q q q=  (4)

[ ]T
p X Y Z=  (5)

T

x y zv v v v=     (6)

The state is updated by: 
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( ( ) )
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−− −= + Δ ⋅ + Δ ⋅ ⋅ − −  (8)

1 1( ( ) )k k k a gkvv t rot A B A− −= + Δ ⋅ ⋅ − −  (9)

where G and A are the angular rate and acceleration, which are bias-corrected by the bias model B. The 

Kalman a priori estimate of the error covariance matrix is calculated by: 
T

k kP AP A Q− = +  (10)

where Q is the process noise covariance and is defined in Section 2.4.1, process noise modeling. 

The discrete-time matrix A is an approximation to the fundamental matrix calculated by taking the 
Taylor expansion of ( )A t  around the system dynamics matrix: 

ˆ( )

( )

x

f x
A

x
=

∂ 
 ∂ 

 (11)

2.3.2. Measurement Updating 

The Kalman Gain Kk is given by: 
1ˆ ( )T T

k k kK P H HP H R− − −= +  (12)

where the measurement noise covariance R is defined in Section 2.4.2, measurement noise modeling. Pk 

is the “a priori” error covariance, H is the Jacobian matrix that relates the measurement to the system 
state vector. The measurement update is： 

ˆ ˆ ˆ ˆ( )k k k k kX X K Z HX− −= + −  (13)

The orientation estimated from the IMU measurement and position estimated from the OTS constitute 

the measurement model. In this paper, the orientation is always estimated from the bias-corrected 

measurement by the IMU as mentioned in [24]. When all the marker points are in the FOV, the camera 

can capture the position of the whole marker frame from the spatial position of the marker points and 

provide a lower-frequency measurement. The position estimated from the IMU feedback suffers from 

drifting error in the long term, but is sufficiently accurate over a short time, e.g., 0.1 s, which is the time 

difference between two OTS measurements. So, in between OTS samples, the EKF relies on the 

prediction driven by the IMU feedback, which provides a higher update rate of position tracking. 

As shown in Figure 5, as soon as any of the marker points is blocked, the OTS cannot give the 

orientation of the marker frame and the position of the origin (R0, P0) (red spot), but it is still possible to 

obtain the position Pn of any marker that is in the FOV (solid green circle). For the MicronTracker, these 

stray markers are called XPoints. Other tracking systems, such as Polaris (Northern Digital, Inc., 

Waterloo, Canada) can also provide the positions of stray markers (i.e., those not associated with a 

defined rigid body). 
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(a)       (b) 

Figure 5. View of the stereo camera. (a) Only two marker points are captured during partial 

occlusion condition; (b) All of the marker points are captured without occlusion. 

Although the position of a stray marker [ ]T

n n n np X Y Z= can be obtained, it is necessary to 

compute the position of the frame origin [ ]T
p X Y Z=  as the position measurement of the EKF, 

which requires three pieces of information: (1) identification of marker point (n) to be measured;  

(2) the distance vector [ ]T

n n nX Y ZΔ Δ Δ  from this point to the frame origin; and (3) the orientation of 

the reference frame: 
2 2 2 2

1 2 3 4 1 2 3 4 1 3 2 4
2 2 2 2

1 2 3 4 0 1 2 3 2 3 1 4
2 2 2 2

1 3 2 4 2 3 1 4 1 2 3 4

2 2 2 2

- 2 2 2 2

2 2 2 2

n n

n n

n nk k k

X X q q q q q q q q q q q q X

Y Y q q q q q q q q q q q q Y

Z Z q q q q q q q q q q q q Z

+ +

+ + +

+ + +

− − − Δ
= − − − ⋅ Δ

− − − Δ

      
      
      

      
 (14)

where q is the quaternion representing the orientation of the reference frame obtained from the EKF. 

[ ]T

n n nX Y ZΔ Δ Δ  is obtained from the marker definition file. The identification of the marker point n 

is realized using a nearest neighbor approach where the position of the marker is compared to the prior 

estimated positions of all markers, and the closest marker selected. The result of Equation (14) is 

provided to the EKF as a position measurement during partial occlusion conditions. 

When all the markers are occluded, the optical tracking system cannot provide a measurement. In that 

case, the system uses the orientation measured by the IMU and relies on the system model to predict the 

position and velocity based on the IMU acceleration feedback, which is corrected by the estimated bias. 

As noted previously, the position quickly loses accuracy during full occlusion conditions and can only 

be trusted for up to about one second. The structure of the sensor fusion approach is shown in Figure 6. 



Sensors 2015, 15 16456 

 

 

 

Figure 6. Fusion of inertial sensing to compensate for occlusions in OTS. If there is no 

occlusion, the MicronTracker can provide the position of the marker frame.  

2.4. Noise Modeling 

2.4.1. Process Noise Modeling  

Q is defined as the process noise covariance matrix. In the proposed approach, the continuous process 

noises of the state are assumed to be independent white noise, thus a normal distribution model in which 

the mean is zero and the variance σ is established to compute Q: 

[ ]
[ ]

[ ]

4 3 4 34 4

3 4 3 33 3

3 4 3 3 3 3

0 0

0 0

0 0

ii

ii

ii

q

Q p

v

× ××

× ××

× × ×

 
 

=  
 
 

 (15)

where qii is the process noise of orientation quaternion, pii is the process noise of the position vector and  

vii is the process noise of the velocity vector. The process noise parameters are given by: 

2

2

2

(0, )

(0, )

(0, )

ii

ii

ii

qi

pi

vi

q N

p N

v N

≈

≈

≈

 σ


σ
 σ

 (16)

To determine the variance that matches the actual process noise, the data from IMU is compared with 

the data added by simulated noise generated in Matlab in a continuous comparison procedure until a 

suitable value is obtained. To implement this, the measurement of the IMU is collected for 10 s under 

static conditions. Figure 7 shows the velocity from the actual accelerometer data (left) and simulated 

data (right) for the comparison procedure of the velocity process noise. The comparison procedures of 
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the orientation and position process noise are done with a similar method. With the adoption of this 
comparison procedure, the variance qσ , which is related to orientation estimation, is set to 0.000025; 

the variance pσ , which is related to position estimation, is set to 0.0002; and the variance vσ , which is 

related to velocity estimation, is set to 0.00006.  

 
(a)      (b) 

Figure 7. (a) Actual velocity; (b) Simulated velocity. 

2.4.2. Measurement Noise Modeling  

The measurement noise covariance R represents the level of trust of the measurement. To enable the 

EKF to track both normal-speed motion and abrupt motion, we divide the measurement noise of the 

orientation quaternion into normal measurement noise covariance ra and adaptive noise covariance rb: 

[ ]
[ ]

4 34 4

3 4 3 3

0

0
a b

ii

r r
R

op
××

× ×

+
=
 
 
  

 (17)

When the OTS is occluded and not capable of tracking the orientation, the measurement noise  

ra related to the accelerometer and the magnetometer is defined by the same approach proposed in 
Section 2.4.1. The variance biσ , which is related to measurement of inertial sensors, is set to 0.00001. 

In our approach, the accelerometer is used to sense the gravity vector. In the ideal case, the quadratic 

sum of the accelerometer measurements AX, AY and AZ should be g2, where g is earth gravity. But, the 

accelerometer reading is also affected by motion (acceleration). We therefore define our error model as 

the difference between the quadratic sum and g2 as [15,23]: 
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 (18)

Considering that the position tracked by the OTS is assumed to be accurate, the measurement noise 
variance opiσ = 0.00000015 when the OTS is not occluded. When the markers are occluded, the OTS 

does not provide a position measurement so the position measurement update is skipped. 

3. Results and Discussion 

To validate the sensor fusion method proposed in this paper and evaluate the performance of the 

orientation and position tracking under partial and total occlusion conditions, experiments are performed 

with the HTS described in Section 2.1. A skull model attached with the “reference” marker and a surgical 

tool attached with the “tool” marker are tracked by the HTS, as shown in Figure 8. A similar experimental 

setup was used in our previous work [18,19], where only the OTS is used to track the markers. 

Two sets of motions are used:  

Static: To validate the bias calibration algorithm, we keep the HTS and the markers static for  

40 min and record the inertial and optical data at an update rate of 100 Hz.  

Motion under AR Application: We sequentially rotate the HTS by about 40° around each of the three 

axes and move the HTS along the three axes for about ±500 mm in the simulated surgical navigation 

experimental environment. 

 
(a)      (b) 

Figure 8. (a) Experimental setup; (b) Reference marker attached on the surgical target and 

tool marker attached on the surgical tool. 

It can be seen from the static experimental results (Figure 9) that obvious drift of gyroscope and 

magnetometer data bias exist. Two algorithms with and without the bias correction are compared and 

the results show that the bias error is voided by using the error model. Table 1 shows that the root mean 

square errors (RMSE) of the orientation and position tracked by the proposed approach is 43% and 18% 

less than the result not using the OTS to correct the bias error, respectively. 
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(a) 

 
(b) 

 
(c) 

Figure 9. Bias of the inertial sensors. (a) Accelerometer; (b) Gyroscope; (c) Magnetometer. 

Table 1. Orientation and position tracking results with and without the error model. 

 Proposed HTS HTS without Error Model 

Tests 
Orientation 

RMSE 
Position 
RMSE 

Orientation 
RMSE 

Position 
RMSE 

1 0.026° 0.101 mm 0.044° 0.129 mm 
2 0.023° 0.096 mm 0.039° 0.112 mm 
3 0.029° 0.113 mm 0.052° 0.136 mm 

To determine the typical drift rates for the biases and noise of the inertial sensor, an experiment is 

performed where we compute the orientation and position from the inertial data collected in the static 

experiment. The orientation is expressed as pitch, roll, and yaw angles and position on the three-axes, 

and the RMSE is computed by first subtracting the mean value from each set of angles and position. The 

resulting RMS orientation errors, expressed as pitch, roll, and yaw, are 0.0821°, 0.0495°, and 0.0917°, 

respectively, which characterizes the orientation error due to both sensor bias drift and noise. Obvious 

drifting in static position tracking results can be found in Figure 10. 

 

Figure 10. Position (mm) in three-axes versus time, obtained by integration of accelerometer 

data. As expected, results show large errors in position as time increases. 
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To test the dynamic tracking performance under partial occlusion conditions, some of the recorded 

marker positions are temporarily invalidated. This stops the bias estimation process and relies on  

the orientation estimated from the IMU measurement to recover the frame origin, as described in  

Section 2.2. The orientation tracking result from the hybrid tracking system (HTS) and optical tracking 

system (OTS) is compared with ground truth (GT) and the comparison results are shown in Figure 11. 

 
(a) 

 
(b) 

 
(c) 

Figure 11. Orientation (degrees) in three-axes versus time, including cases of partial OTS 

occlusion (dashed red lines). (a) Pitch; (b) Roll; (c) Yaw. 

Note that in our system, the orientation is always estimated from the measurements of the IMU, so 

the only effect of marker occlusion is to stop estimation of the bias terms. As shown in the Figure 11, 

there is no noticeable impact on the estimated orientation when the markers are blocked because the 

orientation is computed from the inertial sensor data. Thus, the only effect of marker occlusion is that 

sensor biases are not compensated by the optical tracking data. 

We then perform experiments to demonstrate the estimation of the position under partial occlusion 

conditions. The hybrid tracking system is moved in the X, Y, and Z directions, as shown in Figure 12. 

The position error due to partial occlusion is relatively small, even though it is affected by inaccuracies 

in both the position and orientation measurements.  
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(a) 

 
(b) 

 
(c) 

Figure 12. Position (mm) in three-axes versus time, including cases of partial OTS occlusion 

(dashed red lines). (a) Position on X-axis; (b) Position on Y-axis; (c) Position on Z-axis. 

 
(a) 

 
(b) 

 
(c) 

Figure 13. Position (mm) in three-axes versus time, including cases of full OTS occlusion 

(dashed red lines). (a) Position on X-axis; (b) Position on Y-axis; (c) Position on Z-axis. 

If none of the markers are visible, the position tracking is only based on the inertial sensors data. 

Without the drift-free marker position information and real-time calibration from the OTS, the inertial 

sensors’ noise is double integrated which causes the estimated position to drift from the ground truth at 
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an increasing rate, as shown in Figures 13 and 14. When all markers are occluded (during 5.5–13.2 s, 

31.07–43.4 s and 53.95–62.88 s), the OTS (red) cannot track the position while the HTS (blue) can track 

the position correctly only in the beginning of the occlusion but quickly drifts away from the ground truth. 

 
(a) 

 
(b) 

 
(c) 

Figure 14. Position error (mm) in three-axes versus time; error increases in cases of full OTS 

occlusion (times corresponding to dashed red lines in Figure 13). (a) Error of position on  

X-axis; (b) Error of position on Y-axis; (c) Error of position on Z-axis. 

The orientation and position tracking results from motion experiments under different conditions are 

shown in Tables 2 and 3, where the updating rate is 100 Hz. The position errors when all markers are 

occluded increases over time at a high rate, but a similar increase is not observed in Table 2, where only 

some of the markers are occluded. The maximum position error in one minute is 337.1 mm when all 

markers are occluded, whereas the maximum error with partially occluded markers is 0.173 mm. This 

demonstrates that with the sensor fusion approach proposed in this paper and incomplete optical 

information, the HTS can recover the lost orientation information and obtain accurate 6-DOF pose 

measurements. If all the optical tracking information is missing, the HTS can only limit the position 

error to a small value (e.g., 0.42 mm) over a short time (e.g., 1 s). In [21], inertial and optical data are 

fused to track 6-DOF pose, but the bias of inertial sensors is not corrected by the OTS. Their experimental 

result shows that the position RMSE for a time interval of 3 s is 7.4 mm when one of the markers is 

visible and 147.3 mm when all of the markers are occluded. Compared with the results in [21], the 

position and orientation RMSE in Tables 2 and 3 are lower, which demonstrates that with the help of the 

bias-correction approach proposed in Section 2, the HTS can more accurately track the 6-DOF motion.  
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Table 2. Hybrid Tracker performance under partial occlusion condition. 

Tests 
Orientation 

RMSE 
Orientation 
Max Error 

Position 
RMSE 

Position 
Max Error 

1 s 0.019° 0.055° 0.108 mm 0.140 mm 
5 s 0.023° 0.048° 0.071 mm 0.145 mm 

10 s 0.028° 0.065° 0.118 mm 0.152 mm 
20 s 0.031° 0.069° 0.117 mm 0.154 mm 
60 s 0.040° 0.090° 0.134 mm 0.173 mm 

Table 3. Hybrid Tracker performance under full occlusion condition. 

Tests 
Orientation 

RMSE 
Orientation 
Max Error 

Position 
RMSE 

Position 
Max Error 

1 s 0.022° 0.052° 0.22 mm 0.42 mm 
5 s 0.026° 0.058° 3.85 mm 7.23 mm 

10 s 0.021° 0.059° 7.41 mm 12.05 mm 
20 s 0.028° 0.061° 16.68 mm 31.56 mm 
60 s 0.030° 0.077° 146.63 mm 337.1 mm 

4. Conclusions 

This paper presents a sensor fusion approach that combines an OTS with an IMU. The optical tracking 

result is used to correct the bias of the inertial sensors when all of the markers are visible. The integration 

scheme is performed in an EKF where the state vector consists of orientation, position, and velocity. The 

accelerometer and magnetometer feedback are combined to provide a measurement update of the 

orientation. The position measurement is obtained from the optical tracker when at least one marker is 

visible. If some markers are occluded, the optical tracker provides the positions of the visible markers 

and therefore the marker design geometry, in conjunction with the IMU-estimated orientation, is used to 

compute the frame position. The bias-corrected inertial sensors are used to track position for a short time 

(up to a few seconds) when all the markers are occluded. Experimental results show that the sensor 

fusion approach can accurately estimate the 6-DOF pose for long durations when some of the markers 

are occluded and for a few seconds when all of the markers are occluded. 

In practice, it is expected that this sensor fusion approach will provide satisfactory accuracy over 

relatively long periods of partial marker occlusion. The determining factors include the stability of the 

estimated bias terms. If the sensor biases drift, it will be necessary to restore full line-of-sight so that the 

biases can be re-estimated. This is particularly important for the magnetometer bias, which can have 

large variations due to magnetic field disturbances. 

Future work will include applying this method to track both the reference frame and surgical tool, 

which can be achieved by integrating another wireless and more lightweight IMU on the surgical tool. 
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