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Abstract: Ultrasonic wave-sensing technology has been applied for the health monitoring 

of composite structures, using normal fiber Bragg grating (FBG) sensors with a high-speed 

wavelength interrogation system of arrayed waveguide grating (AWG) filters; however, 

researchers are required to average thousands of repeated measurements to distinguish 

significant signals. To resolve this bottleneck problem, this study established a signal-processing 

strategy that improves the signal-to-noise ratio for the one-time measured signal of ultrasonic 

waves, by application of parallel factor analysis (PARAFAC) technology that produces 

unique multiway decomposition without additional orthogonal or independent constraints. 

Through bandpass processing of the AWG filter and complex wavelet transforms, ultrasonic 

wave signals are preprocessed as time, phase, and frequency profiles, and then decomposed 

into a series of conceptual three-way atoms by PARAFAC. While an ultrasonic wave results 

in a Bragg wavelength shift, antiphase fluctuations can be observed at two adjacent AWG 

ports. Thereby, concentrating on antiphase features among the three-way atoms, a fitting 
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atom can be chosen and then restored to three-way profiles as a final result. An experimental 

study has revealed that the final result is consistent with the conventional 1024-data 

averaging signal, and relative error evaluation has indicated that the signal-to-noise ratio of 

ultrasonic waves can be significantly improved. 

Keywords: fiber Bragg grating; parallel factor analysis; signal-to-noise ratio; ultrasonic wave 

 

1. Introduction 

Fiber Bragg grating (FBG) sensors used in structural health monitoring have been studied extensively 

in terms of their long-term structural operation and safety [1,2]. An FBG is a kind of distributed Bragg 

reflector that reflects light of a particular wavelength. Because of their small size, passive nature, 

immunity to electromagnetic interference, and ability to directly measure physical parameters such as 

temperature and strain, FBG sensors have become an important sensing technology even in harsh 

environments [3]. Meanwhile, an arrayed waveguide grating (AWG) filter has been applied in a  

high-speed optical-wavelength interrogation system to speedily reflect wavelength shifts of the FBG and 

Lame waves detected employing this system [4]. The solid state and low energy of the AWG means that 

the system can be compact and cost effective. Additionally, the AWG filter has been applied as a 

demultiplexer to precisely interrogate wavelength shifts of multiple FBG sensors [5]. 

As a monitoring system, the normal FBG sensor with AWG filter has been used to inspect ultrasonic 

wave signals in the damage detection of composite materials [6]. However, the received waveform is 

always affected by noise from light sources. In the conventional method, thousands of measurements 

have to be made under the same condition, and the data averaged to remove noise [7,8]. Therefore, the 

system can only be applied in limited situations and is difficult to apply to passive acoustic emission 

investigations. Recently, a phase-shifted FBG, connected with a tunable laser source, was developed to 

sensitively detect an ultrasonic signal [9,10]. However, it remains necessary to develop effective 

measures of resolving the described bottleneck problem of multiple measurements for the normal FBG 

sensor system. 

Related to the application of a signal processing method to improve measuring accuracy of FBG 

sensors, a correlation signal processing was applied for multimode FBG sensors to improve measuring 

accuracy for strain and temperature applications [11]. A fairly linear characteristic had been obtained for 

tensile strain, but the temperature characteristic was somewhat nonlinear. In a parallel demodulation of 

extrinsic Fabry–Perot interferometer and FBG systems, a signal processing algorithm was proposed by 

the combination of a Fourier transform spectrum and low-coherence interference to reduce the 

measurement errors [12]. Additionally, as a digital filter, finite and infinite impulse response algorithms 

were used to improve the wavelength detection accuracy introduced by the applied strain on the FBG  

sensors [13]. However, the above three references did not discuss the signal-to-noise ratio in detail, even 

though the signal-to-noise ratio is one of the most important indexes for a signal processing method. With 

thorough research, up to now, we could not find any published literature about a signal processing 

method for ultrasonic wave sensing by application of the FBG system, other than the 1024-data 

averaging method. 
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As a principal component analysis in psychometrics, parallel factor analysis (PARAFAC) was 

developed for unique multiway decomposition without additional orthogonality or independence 

constraints [14]. In chemometrics, PARAFAC has been extensively studied for the analysis of variance, 

the unique decomposition of sparse fluorescence, and the prediction of amino-N in sugar samples from 

fluorescence [15]. The PARAFAC model, known as one of the most adequate, robust, and interpretable 

multiway methods, is suitable for the batch processing of multi-channel signals and multi-dimensional 

analyses. The model is receiving interest in the scientific and engineering fields for the analysis of  

large-scale, arrayed, mixed, or partially missing data requiring increasing computational complexity. 

In electrophysiology, PARAFAC has been used to decompose the time-variant spectrum of 

multichannel electroencephalographic recordings into a series of space–time–frequency components, 

and thus to search for alpha, beta, and theta activities in a given spectral profile [16,17]. The same method 

has been applied to reveal significant correlations in electroencephalography and functional magnetic 

resonance imaging results [18]. As a timely application in engineering, PARAFAC decomposition was 

adopted for vibration modal analysis of a supported beam in acquiring the natural frequency and modal shape 

through numerical simulation [19]. For blind speech separation, a PARAFAC-based frequency-domain 

technique was developed to improve the signal-to-interference ratio, and a low-complexity adaptive 

algorithm is suited to the under-determined environment in which there are more speakers than 

microphones [20]. Moreover, recent studies in civil engineering revealed that PARAFAC analysis can 

be applied to the three-way analysis of structural health monitoring data, blind modal identification of 

damped systems, and ambient modal identification of a stress-ribbon bridge [21–23]. The experimental 

results also indicated that the PARAFAC model is a preferable denosing method to analyze a 

hyperspectral image, and a jointly filtering wavelet component tensor was further developed [24,25]. 

There have, however, been few studies on the application of the PARAFAC model to the signals of 

optical fiber sensors. A preliminary work was presented in [26], and the present study furthers the work by 

evaluation of the feasibility of PARAFAC decomposition for the detection of ultrasonic wave signals using 

optical fiber sensors. In particular, this study continues the development of an integrated signal-processing 

strategy to improve the signal-to-noise ratio of ultrasonic wave signals, and a comprehensive discussion 

of the performance of the PARAFAC method is presented for different application conditions. 

2. Materials and Methods 

2.1. Ultrasonic Wave-Sensing System 

The experimental system was an ultrasonic wave-sensing system mainly comprising a function 

generator, an amplifier, a macro fiber composite (MFC) actuator, two FBG sensors, and a high-speed 

optical wavelength interrogation system with an arrayed waveguide grating (AWG) filter, and a digital 

oscilloscope. A schematic diagram of the ultrasonic wave sensing system is presented in Figure 1. An 

input wave signal generated by the function generator is amplified and sent to the MFC actuator. The 

MFC actuator used to excite ultrasonic waves is a flexible actuator consisting of thin rectangular 

piezoceramic fibers sandwiched between layers of an epoxy adhesive and a polyimide film with an 

electrode pattern [27]. The MFC actuator is bonded to the carbon-fiber-reinforced plastic laminate with 

an epoxy adhesive. 
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Figure 1. Schematic diagram of the ultrasonic wave sensing system. 

The FBG sensors glued on the surface of the laminate receive propagating ultrasonic waves. The FBG 

sensors are fabricated in an optical fiber that has a refractive index that varies periodically along a certain 

length of the core. When broadband light is injected into the core, the FBG reflects a narrow spectral 

component at a Bragg wavelength that is proportional to the strain generated by the propagation of 

ultrasonic waves. 

The AWG filter is a kind of planar lightwave circuit that consists of an array of narrow bandpass 

filters. The signal at each port of the AWG filter is detected by a photodetector, and each pair of  

adjacent-port signals is processed as a ratio output. When the light reflected from the FBG enters the 

arrayed filters, the reflection spectrum passes through two adjacent filters. The optical power is then 

modulated to the ports of the filters, depending on the central reflection wavelength. Since the optical 

powers can be directly converted into an electrical signal by photodetectors, the AWG filter can detect 

the Bragg wavelength shift accompanying the high-speed strain changes. 

In this study, two pairs of adjacent ports of the AWG filter are adopted to reflect the wavelength shift 

from the two FBG sensors. As shown in Figure 2, when the Bragg wavelength of the FBG shifts upon 

the arrival of an ultrasonic wave, the areas of superposition of the reflection spectrum fluctuate between 

two adjacent ports of the AWG filter. In this situation, the area of superposition will increase for the port 

on one side and decrease for the port on the opposite side. Simply put, a significant ultrasonic wave can 

produce antiphase outputs for two adjacent ports of the AWG filter. 

 

Figure 2. Variation of the reflection spectrum between two ports of the AWG filter. 
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It can be imagined that the measured signal always contains noise from light sources and measuring 

instruments. On the basis of the hypothesis that noise from light sources interfuses into all ports without 

a phase difference and that noise from measuring instruments independently interfuses into each port, 

neither type of noise can result in an antiphase phenomenon. Therefore, a significant signal can be 

distinguished employing the antiphase feature. 

2.2. Proposal 

Figure 3 is a flowchart of the proposed method for the processing of one-time-measured ultrasonic 

signals. The MFC actuator emits ultrasonic waveforms that are detected by two FBG sensors and 

transferred to the four ports of the AWG filter. The time history and phase data are then preprocessed by 

a complex wavelet transform to add frequency data. Afterward, the three-way data are decomposed to 

multiple trilinear components of temporal, phase, and frequency profiles. Through antiphase feature 

selection, the target component is restored to the three-way data to give the final result.  

 

Figure 3. Flowchart of the proposed method. 

2.3. Signal Processing 

Wavelet transformations are conducted firstly for temporal data to produce frequency data. Adding 

relative phase data between adjacent ports of the AWG, temporal data can be converted to a three-way 

time-varying spectrum array. When s(t) is considered as the data from each port of the AWG, the wavelet 

transform is defined as 
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where a, b, and ψ(t) are the frequency scale, time position, and mother wavelet, respectively [28]. In this 

report, a complex Morlet mother function consisting of a sinusoid and cosine is used and defined as 
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where fb is the bandwidth parameter and fc is the center frequency. For fb = 1.5 and fc =1, when the sample 

time is dt, the relation between the frequency f and scale a is found to be 

1
f

a dt
=  (3)

From the transformed data, the three-way data array S(Nf × Nt × Np) can be constructed, where Nf, Nt, 

and Np are the numbers of frequency, time, and channel points, respectively. When the wavelet transform 

of channel p at frequency f and time t is denoted by Cf,t,p, the element of S, which is represented by Sftp, 

is given by  

, ,Re[ ]ftp f t pS C=  (4) 

PARAFAC decomposition is sequentially conducted for the three-way array Sftp, which is obtained from 

the ports of the AWG filter through wavelet transformation, and can be indicated by the temporal, phase, 

and frequency data array. A four-component PARAFAC model is graphically illustrated in Figure 4. 

 

Figure 4. Graphical representation of a four-component PARAFAC model. 

The three-way PARAFAC decomposition can be characterized by the following generative model 
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where afk, btk, and cpk represent the elements of the vectors of ak, bk, and ck, respectively. Thereby, the 

three-way data array Sftp is decomposed into a sum of atoms, where the kth atom is the trilinear product 

of the vectors of ak, bk, and ck, representing frequency, phase, and time signatures, respectively. εftp is the 

residual that is related to an associated sum-of-squares loss, and the sum-of-squares of the residual array 

(i.e., ||εftp||2) is minimized to find the N components (ak, bk, and ck) by using an iterative alternating least 

squares approach. Within this model, any solution to Equation (5) is a maximum likelihood solution 

under the assumptions of Gaussian noise [29]. 
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One important problem is to find the appropriate number of atoms k when the PARAFAC is applied 

to data decomposition. A typical approach is to use the core consistency diagnostic, which is known as 

a simple but powerful tool for finding the appropriate number [30]. The core consistency is defined as 
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where Tftp is the element of the rank-one Tucker model, defined as the equivalent form of a restricted 

Tucker3 model [31]. When the number of components is appropriate, the core consistency remains 

around 100%. However, if the core consistency drops noticeably below 100%, it is necessary to reduce 

the number of atoms in obtaining the appropriate model. Accordingly, the number of components should 

be chosen according to the core consistency value being close to 100%. 

Dependent on the characteristics of frequency, temporal, and phase profiles, the correlation between 

the input and decomposed atoms can be analyzed to find the target atom with which to deduce the 

analysis result. Furthermore, the decomposed atom can be restored to three-way data as a PARAFAC-based 

analysis result. For example, if the jth atom is treated as the target atom, its element of the three-way 

data, S′ftp, can be expressed by the trilinear product of frequency, temporal, and phase profiles as 

ftp fj tj pj fj tj pjS' ar br cr i ai bi ci= + ⋅  (7) 

where arf, brt, and crp are the real parts of the frequency, time, and phase profiles, and aif, bit, and cip the 

imaginary parts of the frequency, time, and phase profiles, respectively. The real and imaginary parts 

can be obtained from the wavelet transformation. 

2.4. Relative Error 

As a traditional method, 1024-time measurements made using the FBG are averaged for the noise 

reduction; the result is referred to as the 1024-time averaged signal. In this study, PARAFAC 

decomposition is applied to improve the signal-to-noise ratio for the one-time measured signal of the 

FBG. Therefore, relative errors for one-time measured and restored signals are applied to quantitatively 

assess the effectiveness of the proposed method. The relative measuring error, Errm, representing the 

difference between the results of the one-time measured signal and the 1024-time averaged signal, is 

defined as 
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where S°ftp and Sa
ftp are the elements of the results of the one-time measured signal and the 1024-time 

averaged signal, respectively. Nf, Nt, and Np are the numbers of the frequency, time, and phase  

points, respectively. 
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The relative analysis error, Errp, representing the difference between the results of the one-time 

restored signal obtained by PARAFAC processing and the 1024-time averaged signal, is defined as 
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where S′ftp is the element of the results of the one-time restored signal. 

3. Results and Discussions 

3.1. Input and Output Signals 

The waveform input to the MFC actuator was a three-cycle sinusoidal wave with a Hamming window. 

Figure 5 presents the time history and power spectral density of the input signals at a frequency of 200 kHz 

(Kilohertz, 103 Hz). The sampling frequency is 5 MHz (Megahertz, 106 Hz). 

 

Figure 5. Input wave signal: (a) time history and (b) power spectral density. 

The time histories of the one-time measuring signal are shown in Figure 6a and those of the 1024-data 

averaging signal are shown in Figure 6b, for the ports A1, A2, B1, and B2. This study applied an arrayed 

waveguide grating (AWG) to reflect the wavelength shift from the two FBG sensors (see Figure 1). The 

AWG consists of 40 ports that are arranged in the sequence of the central wavelength, and pairs of 

adjacent ports from the 40 ports of the AWG can be applied for one FBG sensor. Therefore, for the 

convenience of distinction in this study, the adjacent ports for the FBG sensor A were defined as the 

ports of A1 and A2, and B1 and B2 for the other FBG sensor B. 

A bandpass filter ranging from 100 to 500 kHz was used for both signals. Under the assumption that 

the ultrasonic wave signal can be clearly distinguished by employing the 1024-data averaging method, 

the 1024-data averaging signal was applied as a standard reference in this study. For the one-time 

measuring signal, the target signals are buried since the amplitude of fluctuation is smaller than the noise. 

The one-time measuring signal is broadband; therefore, frequency-based filtering is not effective for 

signal detection. 

Because the two FBG sensors were placed at the same position, the four AWG ports should be in 

anti-phase to each other. Table 1 gives the correlation between signals of ports of the AWG filter, which 

are processed employing the averaging method and normalization. The correlation coefficient is positive 

for the signals of ports A1 and B1, but negative for the signals of ports A1 and port A2 or port B2. This 
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means that port A1 is in anti-phase with ports A2 and B2. The same result is confirmed for the signals 

of the other ports. 

 

Figure 6. Time histories of ports A1, A2, B1, and B2 for (a) the one-time measuring signal 

and (b) the 1024-data averaging signal. 

Table 1. Analysis of correlation between the signals of ports A1, A2, B1, and B2. 

Port A1 A2 B1 B2 

A1 1.000 −0.978 0.949 −0.955 
A2 −0.978 1.000 −0.950 0.949 
B1 0.949 −0.950 1.000 −0.936 

B2 −0.955 0.949 −0.936 1.000 

3.2. PARAFAC Decomposition 

To decide the appropriate number of components, the core consistency was calculated using Equation (6), 

after complex wavelet transforms were processed for the one-time measuring signal. For the different 

numbers of atoms, the results of the core consistency are presented in Figure 7. When there were five 

atoms, the core consistency values dropped to 89.2% and 87.0% for the real and imaginary parts, 

respectively. Therefore, there should be four components, for which the core consistency values are 

closed to 100%. 

After complex wavelet transformation, the one-time measured signal is decomposed by PARAFAC. 

Frequency, temporal, and phase profiles are presented in Figures 8–10. 

The frequency profiles for the real and imaginary parts are presented in Figure 8a,b. arf and aif are 

the frequency distributions of atoms, and the index numbers are the order of the decomposed atoms. The 

normalized values show the peak frequencies are 449, 289, 179, and 128 kHz for arf1, arf2, arf3, and arf4 
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of the real part, respectively, and the peak frequencies are 446, 289, 179, and 125 kHz for aif1, aif2, aif3, 

and aif4 of the imaginary part, respectively. The temporal profiles for the real and imaginary parts are 

presented in Figure 9a,b, respectively. art and ait are the time variations of atoms, and the index numbers 

are the order of the decomposed atoms. 

The phase profiles for the real and imaginary parts are presented in Figure 10a,b, respectively. arp 

and aip are the relative phases of the AWG ports, and the index numbers are the order of the decomposed 

atoms. When the reflected wavelength of the FBG fluctuates between the two adjacent AWG ports, the 

phases of the outputs of the AWG ports are opposite. Thereby, the signs of the relative phase of the 

AWG ports should be [+ − + −] or [− + − +]. In Figure 10, the elements of crp3 and cip3 have the same 

array of signs as [+ − + −], and thereby, the two elements can be selected as the target atoms with which 

to deduce significant signals. 

 

Figure 7. Core consistency for different numbers of atoms. 

 

Figure 8. Frequency profiles: (a) arf1, arf2, arf3, and arf4 of the real part and (b) aif1, aif2, aif3, 

and aif4 of the imaginary part. 
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Figure 9. Temporal profiles: (a) brt1, brt2, brt3, and brt4 of the real part and (b) bit1, bit2, bit3, 

and bit4 of the imaginary part. 

 

Figure 10. Phase profiles: (a) crp1, crp2, crp3, and crp4 of the real part and (b) cip1, cip2, cip3, 

and cip4 of the imaginary part. 

PARAFAC can decompose three-way data into the sum of atoms, and each atom can be restored to 

three-way data separately. Through correlation analysis and feature selection, the target atoms can be 

restored as significant signals and the other atoms then removed.  
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200 kHz, the wavelet transforms at AWG ports A1, A2, B1, and B2 for the one-time measured signal 
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restored signal are clearly around 200 Hz, and the frequency distributions are highly consistent with the 

results for the 1024-time averaged signal, especially at ports A1 and A2. 

 

Figure 11. Wavelet transforms at AWG ports A1, A2, B1, and B2: (a) one-time measured 

signal (left); (b) one-time restored signal (middle); (c) 1024-time averaged signal (right). 

3.3. Relative Error Evaluation 

3.3.1. Input Signal Amplitude 

In considering whether the proposed method can notably improve the signal-to-noise ratio of the  

one-time measured signal, it is necessary to discuss its applicability under different conditions. 

Therefore, in this study, an experiment was also carried out for different maximum input signal 

amplitudes, analysis periods, and input signal frequencies. Moreover, relative measurement and analysis 

errors are assessed according to Equations (8) and (9). The effectiveness of the proposed method is 

quantitatively evaluated, by comparison of the results of the one-time measured signals, one-time 

restored signals, and 1024-time averaged signals. 

For an analysis period of 45 μs and input frequency of 200 kHz, Figure 12 shows the results of the 

relative measuring error Errm and relative analysis error Errp at different input amplitudes. The relative 

analysis errors for the one-time restored signals are clearly lower than the relative measuring errors, 

which indicates that the signal-to-noise ratio was improved using the proposed method. Additionally, as 

the maximum input amplitude decreased to 58, 48, 38, 28, and 18 με, both relative errors increased. 

Additionally, the relative errors sharply increased for the weaker signal of 18 με, and no significant 

signal was found for the case of 8 με. 
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Figure 12. Relative measuring error Errm and relative analysis error Errp for the different 

maximum input amplitudes. 

For further understanding of the effectiveness, the frequency distributions of the wavelet transforms 

were analyzed in all cases. For a maximum input amplitude of 48 µε, the wavelet transforms at  

AWG ports A1, A2, B1, and B2 of the one-time measured signal (left), one-time restored signal (middle), 

and 1024-time averaged signal (right) are presented in Figure 13, respectively. Likewise, the results of the 

wavelet transforms for maximum input amplitudes of 38, 28, and 18 µε are presented in Figures 14–16, 

respectively. 

 

Figure 13. Wavelet transforms for the maximum input amplitude of 48 µε at AWG ports 

A1, A2, B1, and B2: (a) one-time measured signal (left); (b) one-time restored signal 

(middle); (c) 1024-time averaged signal (right). 
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Figure 14. Wavelet transforms for the maximum input amplitude of 38 µε at AWG ports 

A1, A2, B1, and B2: (a) one-time measured signal (left); (b) one-time restored signal 

(middle); (c) 1024-time averaged signal (right). 

 

Figure 15. Wavelet transforms for the maximum input amplitude of 28 µε at AWG ports 

A1, A2, B1, and B2: (a) one-time measured signal (left); (b) one-time restored signal 

(middle); (c) 1024-time averaged signal (right). 
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Figure 16. Wavelet transforms for the maximum input amplitude of 18 µε at AWG ports 

A1, A2, B1, and B2: (a) one-time measured signal (left); (b) one-time restored signal 

(middle); (c) 1024-time averaged signal (right). 

In Figure 13, the results of the one-time restored and 1024-time averaged signals are similar. In  

Figure 14, however, from the time point of 30 μs, the frequency distributions of the one-time restored 

signals at ports A1, A2, and B1 begin to disappear in intervals, and similar distributions are observed 

overall for the one-time restored and 1024-time averaged signals. In Figures 15 and 16, for the one-time 

restored signals, the frequency distributions are similar at 300 and 250 kHz, which indicates that other 

signals beyond 200 kHz are mixed in the one-time measured signals and cannot be filtered correctly. For 

the cases of 28 and 18 με, the relative measuring errors are higher than 300% and it is difficult to obtain 

a significant signal for the one-time restored signals. In addition, both frequency distributions 

disappeared in several places. 

3.3.2. Analysis Period 

For the different analysis periods, the results of the relative measuring error Errm and relative analysis 

error Errp are presented in Figure 17, when the maximum input amplitude is 58 µε and the input 

frequency is 200 kHz. Furthermore, for an analysis period of 75 µs, the frequency distribution of the 

wavelet transforms at AWG ports A1, A2, B1, and B2 are presented in Figure 18, for the one-time 

measured signal (left), one-time restored signal (middle), and 1024-time averaged signal (right). 

Likewise, for the analysis periods of 105, 135, and 165 µs, the results of the wavelet transforms are 

presented in Figures 19–21, respectively. 
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Figure 17. Relative measuring error Errm and relative analysis error Errp for the different 

analysis periods. 

 

Figure 18. Wavelet transforms for the analysis period of 75 µs at AWG ports A1, A2, B1, 

and B2: (a) one-time measured signal (left); (b) one-time restored signal (middle);  

(c) 1024-time averaged signal (right). 
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Figure 19. Wavelet transforms for the analysis period of 105 µs at AWG ports A1, A2, B1, 

and B2: (a) one-time measured signal (left); (b) one-time restored signal (middle);  

(c) 1024-time averaged signal (right). 

 

Figure 20. Wavelet transforms for the analysis period of 135 µs at AWG ports A1, A2, B1, 

and B2: (a) one-time measured signal (left); (b) one-time restored signal (middle);  

(c) 1024-time averaged signal (right). 

Port 19

20 40 60 80 100

100

200

300

400

500

Port 20

20 40 60 80 100

100

200

300

400

500

Port 28

20 40 60 80 100

100

200

300

400

500

Port 29

Time (μs)

F
re

qu
en

cy
 (

kH
z)

20 40 60 80 100

100

200

300

400

500

Port 19

20 40 60 80 100

100

200

300

400

500

Port 20

20 40 60 80 100

100

200

300

400

500

Port 28

20 40 60 80 100

100

200

300

400

500

Port 29

Time (μs)
20 40 60 80 100

100

200

300

400

500

Port 19

 

 

20 40 60 80 100

100

200

300

400

500 0

2

4

x 10-3

Port 20

 

 

20 40 60 80 100

100

200

300

400

500 0

1

2

x 10-3

Port 28

 

 

20 40 60 80 100

100

200

300

400

500 0

2

4

x 10-3

Port 29

Time (μs)

 

 

20 40 60 80 100

100

200

300

400

500 0

2

4

6

8

x 10-4

A1

(c)(b)(a)

A2

B2

Fr
eq

ue
nc

y 
(k

H
z)

Fr
eq

ue
nc

y 
(k

H
z)

Fr
eq

ue
nc

y 
(k

H
z)

Fr
eq

ue
nc

y 
(k

H
z)

B1

Port 19

20 40 60 80 100 120

100

200

300

400

500

Port 20

20 40 60 80 100 120

100

200

300

400

500

Port 28

20 40 60 80 100 120

100

200

300

400

500

Port 29

Time (μs)

F
re

qu
en

cy
 (

kH
z)

20 40 60 80 100 120

100

200

300

400

500

Port 19

20 40 60 80 100 120

100

200

300

400

500

Port 20

20 40 60 80 100 120

100

200

300

400

500

Port 28

20 40 60 80 100 120

100

200

300

400

500

Port 29

Time (μs)
20 40 60 80 100 120

100

200

300

400

500

Port 19

 

 

20 40 60 80 100 120

100

200

300

400

500 0

2

4

x 10
-3

Port 20

 

 

20 40 60 80 100 120

100

200

300

400

500 0

1

2

x 10-3

Port 28

 

 

20 40 60 80 100 120

100

200

300

400

500 0

2

4

x 10
-3

Port 29

Time (μs)

 

 

20 40 60 80 100 120

100

200

300

400

500 0

0.5

1

1.5

x 10-4

A1

(c)(b)(a)

A2

B2

Fr
eq

ue
nc

y 
(k

H
z)

Fr
eq

ue
nc

y 
(k

H
z)

Fr
eq

ue
nc

y 
(k

H
z)

Fr
eq

ue
nc

y 
(k

H
z)

B1



Sensors 2015, 15 16405 

 

 

 

Figure 21. Wavelet transforms for the analysis period of 195 µs at AWG ports A1, A2, B1, 

and B2: (a) one-time measured signal (left); (b) one-time restored signal (middle);  

(c) 1024-time averaged signal (right). 

In Figure 17, the relative errors are presented in 30-μs intervals from 45 μs. For the analysis period 

of 165 μs, the relative analysis error could not be assessed. In comparison with the relative measuring 

errors, the relative analysis errors were remarkably reduced using the proposed method. For example, 

the relative measuring error is 205% but the relative analysis error is only 73% in the case of 45 μs. This 

indicates that the noisy elements of the one-time measured signal were substantially filtered by the 

PARAFAC-based processing. Meanwhile, the relative measuring errors increased with an increase in 

the analysis period. It is thus clear that noise existed throughout the time period, and the measurement 

of the FBG sensors was strongly disturbed by such noise. 

The relative analysis errors also increased because of the effect of such noise; however, the increasing 

tendency is apparently gradual, which indicates that the PARAFAC method is robust in dealing with 

such noise. On the other hand, the risk of missing important atoms becomes high, while the relative 

measuring error becomes high enough for the one-time measured signal; e.g., for the analysis period of 

165 μs, paired antiphase atoms could not been found for feature selection to restore the one-time 

measured signal, which may result from the high relative measuring error around 400%. 

In Figures 18–21, it is clear that significant signals were detected for the one-time restored and 1024-time 

averaged signals, and their wavelet transforms are basically distributed around a frequency of 200 kHz. 

However, for the 1024-time averaged signals, the frequency distributions were not revealed after about 

40 µs, which means that the conventional averaging method failed to detect weakly significant signals 

with longer analysis periods. Figure 20c clearly shows that, for port B2 and an analysis period of 135 µs, 

no significant signal can be distinguished from the 1024-time averaged signal. Conversely, for the one-time 

restored signals, significant signals are clearly observed even though the frequency distributions 
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disappeared in many places. The PARAFAC-based method, compared with the conventional averaging 

method, is thus considered to be strongly robust against variations in the analysis period. 

3.3.3. Input Signal Frequency 

In the former sections, the effectiveness of the proposed method was discussed in the case of an input 

signal having a frequency of 200 kHz. To evaluate the effectiveness for different input frequencies, the 

one-time measured signal was processed at input frequencies of 60, 90 and 300 kHz. Here, the maximum 

input amplitude is 48 με and the analysis range is 10 to 500 kHz. The analysis periods are 150, 100, and 

30 μs for input frequencies of 60, 90, and 300 kHz, respectively. The analysis periods were decided as 

three times the input times of the signals from the MFC actuator. 

The results of the relative measuring error Errm and relative analysis error Errp, for the different the 

input frequencies are presented in Figure 22. With an increase in input frequency, the relative measuring 

errors fluctuate for the 90-kHz input frequency but the relative analysis errors gradually increase. The 

figure clearly shows that the signal-to-noise ratios improved for the one-time restored signals. 

In the case of the input frequency of 60 kHz, the frequency distribution of the wavelet transforms at 

AWG ports A1, A2, B1, and B2 are presented in Figure 23a–c, for the one-time measured signal (left), 

one-time restored signal (middle), and 1024-time averaged signal (right). Likewise, for input frequencies 

of 90 and 300 kHz, the results of the wavelet transforms are presented in Figures 24 and 25. 

In Figure 23, strong consistency is observed between the wavelet transforms of the one-time restored 

and 1024-time averaged signals, regardless of the AWG port. Moreover, this consistency is also found 

in Figure 24, between the wavelet transforms of the one-time restored and 1024-time averaged signals. 

However, there is a small break close to 60 μs in Figure 24b, for the wavelet transforms of the one-time 

measured signals. 

In Figure 25b for the one-time restored signals, the frequency distributions of the wavelet transforms 

were separated into two parts of 0–10 and 20–30 μs. However, in Figure 25c for the 1024-time averaged 

signals, the frequency distributions of the wavelet transforms were separated into two parts around 200 

and 300 kHz in the vertical direction. In both of the situations, the main frequency distribution is 

concentrated around 300 kHz. 

 

Figure 22. Relative measuring error Errm and relative analysis error Errp for different  

input frequencies. 
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Figure 23. Wavelet transforms for an input frequency of 60 kHz at AWG ports A1, A2, B1, 

and B2: (a) one-time measured signal (left); (b) one-time restored signal (middle);  

(c) 1024-time averaged signal (right). 

 

Figure 24. Wavelet transforms for an input frequency of 90 kHz at AWG ports A1, A2, B1, 

and B2: (a) one-time measured signal (left); (b) one-time restored signal (middle);  

(c) 1024-time averaged signal (right). 
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Figure 25. Wavelet transforms for an input frequency of 300 kHz at AWG ports A1, A2, 

B1, and B2: (a) one-time measured signal (left); (b) one-time restored signal (middle);  

(c) 1024-time averaged signal (right). 

4. Conclusions 

The present study investigated the signal recognition of ultrasonic waveforms by application of FBG 

sensors and AWG filters, for which a novel method was proposed to distinguish a significant signal from 

one-time measured ultrasonic waves. The method based on PARAFAC decomposition is effective in 

dealing with noise. Relative to the traditional averaging method, which requires thousands of repeated 

measurement for noise reduction, the one-time measurement method is simple and cost effective. 

Thereby, the proposed method employing PARAFAC decomposition for the one-time measured signal 

is a promising and meaningful tool for practical application. 

Researchers are always seeking new hardware and design to achieve real-time detection of ultrasonic 

waves, normally expensive and complex. Recently, researchers did propose several sensing systems with 

high sensitivity that can real-time detect ultrasonic signals but sacrifice the multiplexing ability in  

FBG-AWG system [9,10]. However, the proposed method in this manuscript not only has real-time 

detection ability, but also maintains the possibility of multiplexing. This was considered one of the 

biggest advantages compared to the other techniques mentioned above. Based on PARAFAC 

decomposition, the proposed signal processing method even has the possibility of being used in other 

optical fiber sensing systems, when two or more correlation signals could be obtained. This method is 

especially suitable to the FBG-AWG system, regardless of the amount of FBG sensors. For example, it 

is also available for one FBG sensor with the AWG system. 

The paper started with a description of an experimental system of an ultrasonic wave sensing system 

that mainly comprises an MFC actuator, two FBG sensors, and an AWG filter. A novel signal processing 
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procedure was then detailed. In a series of measurement experiments conducted under different 

conditions, a comprehensive analysis was performed to validate the proposed signal processing strategy. 

Several conclusions are drawn from the results of the study: 

(1) The study established a signal processing strategy that improves the signal-to-noise ratio of the 

one-time measured ultrasonic signal; meanwhile, a sound mathematical model was given to 

describe the signal processing procedure, which mainly includes complex wavelet transformation, 

PARAFAC decomposition, and relative error evaluation. 

(2) The experimental investigation validated that the signal-to-noise ratio for a one-time measured 

signal can be improved through a comparison of relative measurement and relative analysis errors 

for different input amplitudes, analysis periods, and input frequencies of the ultrasonic wave 

signals. The relative measuring errors increased greatly, whereas the relative analysis errors 

increased gradually following increases in the analysis period and input frequency and decreases 

in the input amplitude. 

(3) All frequency distributions of wavelet transforms were demonstrated for the one-time measured 

signals, one-time restored signals, and 1024-time averaged signals. It was validated that the 

proposed method is applicable and reliable for most experimental conditions. 
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