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Abstract: Diabetes is a chronic disease characterized by high blood glucose level that results 

either from a deficiency of insulin produced by the body, or the body’s resistance to the 

effects of insulin. Accurate and precise reasoning and prediction models greatly help 

physicians to improve diagnosis, prognosis and treatment procedures of different diseases. 

Though numerous models have been proposed to solve issues of diagnosis and management 

of diabetes, they have the following drawbacks: (1) restricted one type of diabetes; (2) lack 

understandability and explanatory power of the techniques and decision; (3) limited either to 

prediction purpose or management over the structured contents; and (4) lack competence for 

dimensionality and vagueness of patient’s data. To overcome these issues, this paper 

proposes a novel hybrid rough set reasoning model (H2RM) that resolves problems of 

inaccurate prediction and management of type-1 diabetes mellitus (T1DM) and type-2 

diabetes mellitus (T2DM). For verification of the proposed model, experimental data from 

fifty patients, acquired from a local hospital in semi-structured format, is used. First, the data 

is transformed into structured format and then used for mining prediction rules. Rough set 

theory (RST) based techniques and algorithms are used to mine the prediction rules. During 

the online execution phase of the model, these rules are used to predict T1DM and T2DM 

for new patients. Furthermore, the proposed model assists physicians to manage diabetes 

using knowledge extracted from online diabetes guidelines. Correlation-based trend analysis 

techniques are used to manage diabetic observations. Experimental results demonstrate  
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that the proposed model outperforms the existing methods with 95.9% average and  

balanced accuracies. 

Keywords: reasoning; H2RM; rough set theory; rules mining; RBR; prediction; 

classification; regression; diabetes mellitus; trend analysis 

 

1. Introduction 

Diabetes mellitus (DM) is a chronic disease, which is characterized by hyperglycemia that results from 

absolute or relative deficiency of insulin. It has affected over 200 million individuals worldwide [1]. 

According to World Health Organization (WHO) report, back in 2004, the number of diabetic patients 

will increase to 366 million by 2030 [2]. However, a recent report of the International Diabetes 

Federation has estimated this number up to 552 million by 2030 [3]. Similarly, “the number of 

Americans with diagnosed diabetes is projected to increase 165%, from 11 million in 2000 to  

29 million in 2050” [1]. Many factors results into diabetes, but the most common are hereditary, 

inflammation, diet and environment [4]. Diabetes was declared a global epidemic by World Health 

Organization (WHO) because of its rapidly increasing incidence. These days, multidisciplinary studies 

are intended to first predict diabetes and then control it with treatment plan procedures. This has become 

one of the important research areas worldwide. 

In medical diagnosis, it is quite difficult for physicians to make a diagnosis decision by evaluating 

the current conditions of a patient without referring to previous decisions with similar symptoms. For 

this reason, a number of clinical decision support systems (CDSS) [5–9] have been developed that assist 

physicians in their decisions [10]. Such systems have widely been applied for diagnosis, prediction, 

classification and risk forecasting of different diseases from electronic medical record (EMR) data. The 

area of risk forecasting of type-2 diabetes has been explored from EMR data with the use of machine 

learning techniques, such as Gaussian Naïve Bayes, Logistic Regression, K-nearest neighbor, 

classification and regression tree (CART), Random Forests and support vector machine (SVM) [2]. 

Ensemble of SVM and back-propagation neural networks (BP NN) is used over Pima Indian dataset to 

predict presence of diabetes [3] with improved accuracy. Stahl [4] has proposed a Linear and Bayesian 

Ensemble Modeling technique to predict glucose level in diabetes mellitus (DM) patient data. They 

evaluated their model with 47 patients’ data and validated with 12 datasets. Similarly, a prototype 

diabetic decision support system, based on a multi-layer perceptron neural network model has been 

developed [5] that predicts psychosocial well-being behavior, such as depression, anxiety, energy and 

positive well-being of patients. In this system, patient’s biological or biographical variables, such as age, 

gender, weight and fasting plasma glucose are used as input predictors. In the literature [6], an 

architecture of multi-stage DM prediction system, based on fuzzy logic, neural network and case based 

reasoning (CBR) is proposed that uses two stages for prediction. In the first stage, base classifiers are 

used, whose results are forwarded to the second level, which uses a rule-based reasoner (RBR) for 

refinement of the initial results. Chen and Tan [7] have proposed a prediction model for T2DM. They 

used fisher linear discriminate analysis (FLDA), support vector machine (SVM) and decision tree (DT) 

algorithms for constructing prediction models. These models are based on several elements in blood and 
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chemometrics of the patients. The elements considered include: lithium, zinc, chromium, copper, iron, 

manganese, nickel and vanadium. They constructed ensemble classifiers and validated the best ones on 

independent test data. Predicted results were compared with those of the real clinical diagnostics on the 

same subjects. According to the results, they claim that almost all classifiers produce similar 

performance, which implies that these elements can serve best as a valuable tool for diagnosing diabetes 

type-2. Sood et al. [8] have performed comparative analysis on various classification algorithms over 

electronic health records (HER) data of T2DM patients. They used Logistic Regression, Naïve Bayes, 

k-NN, Random Forest, Gradient Boosting Machine, SVM and Ensemble methods. They constructed 

different Ensemble models for prediction, but their findings conclude that the mean of Random Forest 

and Gradient Boosting method can perform best, both on training and testing datasets. Prediction models 

for type-1 diabetes mellitus in juvenile subjects are developed [9] using neural networks, decision trees 

and ensembles of both of these classifiers. For ensemble techniques, they used bagging and random 

forest algorithms. In a recent study [10], boosting ensemble classifier model is used for prediction of 

T1DM and T2DM. This model uses random committee classifier as the base classifier and achieves 81% 

prediction accuracy. 

Apart from the listed literature, rough set theory, a powerful mathematical tool [11,12], has 

successfully been applied in medical diagnosis and prediction. For example, toxicity predictions [13], 

medical expert system rules creation [14], pneumonia patient’s death prediction [15], and chest pain 

prediction [16]. Other applications of RST includes: patients satisfaction analysis [17], extensions in 

fundamental rough set theory [12], rough set-based case studies and software implementation [18],  

rough set-based framework for medical diagnosis systems [19], and rough set-based identification of 

medical practice after total hip arthroplasty [20]. 

For the purpose of diabetes prediction, RST is applied over Pima Indian dataset [21] that has  

produced 75% accuracy [22]. Pima Indian dataset has successfully be used in a number of studies,  

for example, development of a java-based T2DM prediction tool [23], diabetes data analysis and 

prediction model [24], and decision tree based diabetes mellitus prediction model [25]. Similarly,  

for investigating relationship between psychosocial variables in Kuwaiti diabetic children, RST builds  

a classifier function that correctly classifies patients [26]. RS-based data analysis of the genetic data of 

children with T1DM is performed in [27] for rules extraction and prediction of children with genetic 

susceptibility to T1DM. This system recommends pre-diabetes therapy to patient if they are susceptible 

to type-1 diabetes. Similar study for children with T1DM can also be read in [28,29]. 

Apart from prediction of diabetes into its types, either using traditional learning methods or rough  

set techniques, future trend analysis and risk prediction is an important research area and have been 

approached with various techniques. For example, T2DM risk prediction using multivariate regression 

model [30] and T2DM prediction, in elderly Spanish population, having high cardiovascular risk, using 

multivariate cox regression model [31]. Other risk prediction models for type-2 diabetes can be read 

from the systematic review [32]. A multivariate logistic regression equation has been developed and 

validated with non-diabetic Egyptian subjects data. This equation has 62% sensitivity, 96% specificity, 

and 63% positive predictive score [33]. 

To our knowledge, the models and methods proposed in the literature have a number of limitations, 

which include: (1) neither of the study presents classification model for both T1DM and T2DM, but 

restricted either to one or the other type; (2) less explanation power in terms of understandable rules;  
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(3) restricted either to prediction tasks or future trend analysis tasks over the structured contents;  

(4) lacking competence for handling dimensionality, inconsistencies and vagueness issues of clinical 

data; and (5) dependency on the assumptions of statistical techniques. 

To overcome these limitations, this study proposes a hybrid rough set reasoning model that uses 

experiential and domain knowledge to accurately predict diabetes types and analyze future trends for 

potential risks. The experiential knowledge is obtained from patients’ clinical charts using manual 

parsing, while domain knowledge is translated from online diabetes guidelines with the help of domain 

experts. The experiential knowledge is first mined for prediction rules using rough set techniques, which 

are then used for predicting diabetes types. Domain knowledge is used to assist physicians in predicting 

future trend of risky observations and enabling them for prognosis services. Contributions of the study 

can be summarized as follows. 

• Extraction of experiential knowledge, from unstructured patient’s clinical charts to a  

structured dataset. 

• Translation of unstructured diabetes guidelines to domain knowledge for assisting physicians in 

future trend analysis and predicting potential risks. 

• Mining understandable and self-explanatory prediction rules from high dimensional, inconsistent, 

and vague clinical data using powerful rough set theory. 

• Generating integrated services for predicting types of diabetes (i.e., T1DM, T2DM) and future 

trend analysis of risky observations that support physicians in prognosis services. 

The rest of the paper is structured as follows: Section 2 proposes H2RM model and its working mode. 

Section 3 describes methodology of knowledge acquisition from clinical charts and online guidelines 

using rough set techniques and domain expert’s knowledge, respectively. This section also describes the 

online knowledge execution process for prediction and future trends analysis of diabetes types. Section 4 

focuses on experiments, results and evaluation tasks, while Section 5 concludes the work done with 

future directions. 

2. Proposed Hybrid Rough Sets Reasoning Model 

This work proposes and designs a hybrid model for prediction and management of T1DM and T2DM. 

A set of RS prediction rules are mined from 50 diabetes patients’ data that is acquired from a local 

hospital. The data is recorded during 2008–2011 in clinical chart format that follows subjective, 

objective, assessment, and plan (SOAP)-based protocol. For management, including finding 

abnormalities identification and predicting future trends, online diabetes guidelines are translated to 

simple reference range rules. The future trends analysis assists physicians in their diagnosis and 

prognosis processes. To support these functionalities, the proposed model is provided with the following 

components: patients charts and online guidelines (PCG) as knowledge sources, charts and guidelines 

translation (CGT), rough set-based knowledge acquisition (RKA), knowledge bases (KBs), hybrid  

rule-based reasoning (HRBR) and correlation-based trend analysis (CTA). Figure 1 shows the abstract 

view of the integrated model. 

The order followed by the proposed model is: PCG + CGT + RKA + KBs + HRBR + CTA. Abstractly, 

this model can be represented as a sextuple: PCG, CGT, RKA, KBs, HRBR, and CTA, where: 
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• PCG (patients charts and online guidelines): Set of patients clinical charts, which are recorded 

by physicians during the patients visits to hospital, and online diabetes guidelines for managing 

patients abnormalities in observations and trend analysis. These constitute knowledge sources 

for the diabetes prediction and management. 

• CGT (charts and guidelines translation): Set of methods and procedures used to translate clinical 

charts and online guidelines to structured data format and reference range rules, respectively. For 

charts, SOAP-based protocol is used to transform data into structured dataset, while for 

guidelines translation expert knowledge is used. 

• RKA (rough set-based knowledge acquisition): Integrated set of AI and mathematical techniques, 

comprising discretization of continuous values attributes to discrete values, reducts generation 

(RG) for selecting essential attributes and LEM2 algorithm [34] for rules extraction. 

• KBs (knowledge bases): Repositories of rough set rules, to predict T1DM and T2DM,  

and guideline rules, to identify abnormal observations and predict future trends. The rules are 

represented as production rules. 

• HRBR (hybrid rule-based reasoning): Rule-based reasoning methodology that implements 

rough set rules for prediction of T1DM and T2DM and reference range reasoning that implements 

guidelines rules for finding abnormal observations. 

• CTA (correlation-based trend analysis): a set of statistical methods, such as regression analysis 

and trend analysis to identify abnormal observations and predict future trends for prognosis service. 

 

Figure 1. Hybrid rough set reasoning model for prediction and management of diabetes mellitus. 

The operating mode of the proposed model has two stages, offline phase and online phase. The offline 

phase is focused on data preparation (structuring) from external knowledge sources that are presented in 

unstructured clinical charts and online diabetes guidelines (i.e., PCG) and acquiring knowledge from 
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these sources. The knowledge acquisition composed of manual and automatic procedures. In the manual 

process, first, patients’ clinical charts are transformed to structured form called diabetes mellitus 

information system (DMIS (RST uses a formalism that represents and analyses data in its specific format 

that is described in a structured form called information system, therefore we named our dataset as 

DMIS)) and guidelines to abnormalities and trend analysis rules (ATAR). In automatic acquisition, a set 

of rough set-based knowledge acquisition techniques are used to mine DM prediction rules (DMPR) 

from the DMIS. The rules are stored in knowledge bases that are used in the online process. The online 

phase is the live or execution phase of the model that delivers prediction and management services to 

physicians for supporting them in their decisions. This phase is activated by the arrival of a patient either 

a new patient for diagnosis or a registered one for follow-up. In the case that the patient is registered for 

the first time, HRBR methodology is triggered. In HRBR, rough set reasoning (RSR) diagnoses and 

predicts type of diabetes and in reference range reasoning (3R), abnormal observations are predicted. In 

the case that a patient is already registered, only the CTA part of the online phase is activated. CTA 

provides facility to physicians to see all the previous encounters of a patient in consolidated form and 

identify abnormal patterns out of them. It also provides analysis of future trends for all the observation 

and supports them to find any potential future risk. Hence, the physician can take preventive measures. 

3. Methodology 

Complete concept of the proposed H2RM for the prediction and management of diabetes is discussed 

step-by-step in this section. 

3.1. Patient Charts and Online Guidelines 

Data from 50 diabetes patients, 20 with type-1 and 30 type-2 DM is acquired from a local hospital 

that records patients observations in clinical charts, following SOAP (Subjective, Objective, Assessment 

and Plan)-based protocol [35]. In the hospital, data are collected over the period of four years from 2008 

to 2011 with an average of eight encounters per patient. The minimum number of encounters recorded 

for a patient is two and the maximum is eighteen. In the charts, patient information containing 

physiological data, clinical laboratory tests findings, diagnosis information and recommendations are 

recorded in Subjectivity, Objectivity, Assessment and Planning sections. In all the charts, Subjectivity 

and Objectivity sections are merged in one section, titled S & O. The Assessment section is put at the 

top of each encounter and sometime before the Planning section. Different encounters with the same 

patients are recorded in the same chart to maintain their history in one document. An example of an 

encounter with a T2DM patient’s chart is shown in Figure 2. 

There are a number of inconsistencies in the charts, such as naming variations, incomplete values, 

miss-placement of observations, etc. 

Similarly, to assist physician in automatic abnormalities identification in observations and predicting 

future trends, online diabetes guidelines are identified for rules creation. The most important predictors 

in diabetes prediction are body mass index (BMI), blood pressure, fasting blood glucose, glycated 

hemoglobin (HbA1c), lipids, and liver function tests (LFT), therefore online guidelines associated with 

these predictors are searched with domain experts support. These are listed in Table 1. 
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Figure 2. An encounter of type-2 diabetes mellitus patient (T2DM), following subjective, 

objective, assessment, and plan (SOAP)-based protocol. 

Table 1. List of guidelines used for managing diabetes mellitus. 

S.No Predictor Guidelines References 

1 BMI WHO: BMI classification WHO [36] 
2 BP: SBP, DBP JNC 7 report, AHA JNC [37–39] 

3 FBS 
American Diabetes 

Association. Diabetes Care 
ADA [40,41] 

4 HBA1c 
American Diabetes 
Association, NICE 

ADA [40], NICE [42,43] 

5 Lipids: TC, TG, HDL, LDL NCEP, ADA NCEP [44], ADA [45] 

6 LFT: ALT, AST 
Liver disease (LD),  

Mayo Clinic 
LD [46], Mayo Clinic [47] 

3.2. Charts and Guidelines Translation 

We have carefully analyzed the unstructured charts and manually parsed all the observations to 

transform into structured format. The list of observations, extracted from charts is shown in the right-hand 

side of Figure 3. Since we have restricted this study only to prediction and management of diabetes in 

terms of abnormalities identification and trend analysis, the plan part of chart is not considered. 
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Figure 3. Distribution of diabetes patient’s observations in subjective, objective, assessment, 

and plan (SOAP)-based clinical chart. 

A structured schema is created for the observations recorded in the clinical charts. The schema records 

the following observations: (PID) patient identifier, encounter (ID) identifier, height, weight, waist, 

BMI, FHx (family history), SHx (social history), Gender, Age, TDM (type of diabetes mellitus), 

Complication, Pain, BP (blood pressure), Symptoms, 2-H PP (two-hour postprandial glucose), FBS 

(fasting blood glucose), Hba1c (glycosylated hemoglobin), Diabetes History, Hypoglycemia, Lipids, 

BUN/Cr (blood urea nitrogen/creatinine), AST/ALT (aspartate transaminase/alanine transaminase), Urea 

Nitrogen, Creatinine, Sodium, Potassium, LDH (lactate dehydrogenase), Alb/Cr (Albumin/Creatinine), 

and c-peptides for each patient. Each encounter is translated to a record in the schema (i.e., DMIS). For 

each patient, all encounters are parsed and added into the dataset. In total there are 391 recorded 

encounters, with a distribution of 113 for T1DM and 278 for T2DM. 

Since a number of attributes have incomplete values, they are dropped from DMIS. The criterion used 

is that the attributes with missing values ≥20% most likely produce miss-leading results, therefore they 

are filtered out and dropped. Similarly, we have split BP attribute to SBP (systolic blood pressure) and 

DBP (diastolic blood pressure) and Lipids into its four constituents: TC (Total cholesterol), TG 

(Triglycerides), HDL (High-density lipoprotein), and LDL (Low-density lipoprotein). Liver function 

tests, AST/ALT are split into AST and ALT. The final output of SOAP-based charts translation is a 

computer processable dataset, i.e., DMIS. 

Similarly, the guidelines listed in Table 1 are translated to simple reference rules that define normal 

and abnormal reference ranges of values for BMI, blood pressure, glucose, glycosylated hemoglobin, 

lipids, AST, and ALT attributes. These are shown in Table 2a–k. 

After creation of these rules, they are stored in knowledge base under the abnormal and trend analysis 

rules repository (ATAR). These rules are used in the live execution process of H2RM. 
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Table 2. Rules defined for management of diabetics observations, based on reference ranges, 

extracted from guidelines (Table 1). 

(a) BMI (b) TC 

Interval (Condition) Interpretation (Decision) Interval (Condition) Interpretation (Decision) 

(−∞, 18.5) underweight (−∞, 200) desirable 
[18.5, 24.9] normal [200, 239] borderline high 

[25, 30) overweight [240, ∞) high 
[30, ∞) obese   

(c) SBP (d) TG 

Interval (Condition) Interpretation (Decision) Interval (Condition) Interpretation (Decision) 

(−∞, 120) normal (−∞, 150) normal 
[120, 139] prehypertension [150, 199] borderline-high 
[140, 159] hypertension stage 1 [200, 499] high 
[160, 180] hypertension stage 2 [500, ∞) very high 
[181, ∞) hypertensive crisis   

(e) DBP (f) LDL 

Interval (Condition) Interpretation (Decision) Interval (Condition) Interpretation (Decision) 

(−∞, 80) normal (−∞, 100) optimal 
[80, 89] prehypertension [100, 129] near or above optimal 
[90, 99] hypertension stage 1 (129, 159] borderline high 

[100, 110] hypertension stage 2 (159, 189] high 
(110, ∞) hypertensive crisis (189, ∞) very high 

(g) FBS (h) HDL 

Interval (Condition) Interpretation (Decision) Interval (Condition) Interpretation (Decision) 

(−∞, 70) hypoglycemia (−∞, 40) low 
[70, 99] normal [40, 60) normal 

(99, 126] pre-diabetic [60, ∞) high 
(126, ∞) diabetic   

(i) HbA1c (j) AST (SGOT) 

Interval (Condition) Interpretation (Decision) Interval (Condition) Interpretation (Decision) 

[4, 5.9] hypoglycemia (−∞, 5) low 
(5.9, 6.4] prediabetes [5, 40] normal 
(6.4, 7.4] diabetes (40, ∞) high 
(7.4, ∞) diabetes with Higher risk   

(k) ALT (SGPT)   

Interval (Condition) Interpretation (Decision)   

(−∞, 7) low   
[7, 56] normal   
[57, ∞) high   

Legend: “[”or “]” means inclusive, “(” or “)” means exclusive, “∞” means ± infinity. 

3.3. Rough Set-Based Knowledge Acquisition 

The translated diabetes dataset, DMIS, contains 391 instances for T1DM and T2DM as the training 

data for mining prediction rules to predict diabetes for new patients. Generally, clinical datasets are high 

dimensional [48] and usually contains incomplete values [49], which physicians either consider default 



Sensors 2015, 15 15930 

 

 

values or less essential to be recorded. This makes the data inconsistent and vague in nature. To cope 

with these situations, we adopt a well-known RST [11,12], initially proposed by Pawlak. We mine 

prediction rules from the diabetes data using techniques supported by RST. Our choice of RST is due to 

its powerful nature of analyzing and handling vague and uncertain information in classification  

problems [50]. RST uses a formalism that represents and analyses data in its specific format that is 

described in a structured form called information system, therefore we named our dataset DMIS.  

The lower and upper approximations concepts of RST help to solve the problems of data vagueness, 

uncertainty, and incompleteness in class definition [51]. The definitions of lower and upper approximations 

are based on equivalence relations [52]. Approximation helps in partitioning the dataset into positive, 

negative and boundary regions, which ultimately help in solving the problems of vagueness and 

inconsistencies. The proposed RKA model includes the following phases, such as preprocessing, data 

reduction and rules creation. These phases work in a sequential flow, as shown in Figure 1. 

3.3.1. Preprocessing Phase 

In the dataset, sometimes attributes contain redundant information which need to be filter out using 

expert knowledge to get the list of essential attributes. In our case, we first use expert knowledge to  

pre-select essential attributes for rough set information system. For example, the calculated attribute 

BMI is selected and its ingredients, height and weight, are dropped to avoid duplications. Similarly,  

the attributes “past history” and pain are dropped because their values are usually same throughout  

the dataset. Apart from the expert-based pre-selection method, we use three criteria to treat missing 

values in our dataset. These include, attributes dropping, average/frequent value and immediate 

previous/next value. Table 3 summarizes these strategies along with their criteria and scope. In the 

diabetes dataset, FHx and SHx are dropped, based on our first criteria. For these attributes, the proportion 

of missing values is greater than 20% of the whole dataset; therefore, they are dropped. The list of 

essential attributes, obtained after applying experts knowledge and attribute dropping criteria, includes: 

Gender, Age, BMI, SBP, DBP, FBS, Hba1c, TC, TG, HDL, LDL, AST, ALT and TDM. 

These attributes contain incomplete values for the observations SBP, DBP, FBS, Hba1c, TC, TG, 

HDL, LDL, AST, ALT with 6%, 6%, 4%, 1%, 9%, 9%, 9%, 15%, 19% and 19% ratio, respectively.  

In these cases, the patient level criteria become valid and their corresponding strategies are applied.  

The description of these criteria and the associated strategies are described in Table 3. The average and 

frequent values strategies are the most frequently used techniques that are applied to numeric and 

nominal value attributes [53]. We performed experiments for these strategies in Rapid Miner 

environment [54]. Similarly, if only two values are missing in an attribute of the encounters of a patient 

then immediate previous/next value strategy is used. In this case, either En−1 or En+1 encounter value is 

used, depending on the position of missing value that either appears in consecutive or  

non-consecutive encounters. If values are missing in two consecutive encounters, one is filled with En−1 

and the other with En+1. The rational of this strategy is that physicians usually do not record values if 

they see no change in the observation of a patient. Therefore, either preceding or proceeding value can 

be the best candidate for the missing value. A working example of one patient encounters with missing 

values and filled values is given in Table A1, Appendix A.1. 
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Table 3. Missing value treatment, criteria and strategies, applied to the diabetes  

mellitus dataset. 

Scope Criteria Strategy 

Dataset level  

(whole population) 

If any attribute of the 

dataset has missing values 

in 20% or more than 20% 

records of the whole dataset 

Drop the attributes from the dataset, this may leads to incorrect results 

Patient level  

(whole encounters 

of one patient) 

If any attribute has missing 

values in 2 or less than  

2 encounters of a patient 

Use immediate previous/next encounter’s values of the same patient 

• Immediate previous/next encounter value, if missing values  

are non-consecutive 

• Immediate previous encounter value for the first missing value and 

immediate next value for the second missing value, if missing values  

are consecutive 

If any attribute has missing 

values in less than 20% of 

the encounters of a patient 

Use average/frequent value strategy within encounters of the same patient 

• Compute average of all the values of that attribute for the same patient,  

if attribute is numeric 

• Compute frequent value within all the encounters of the same patient, if the 

attribute is nominal 

If any attribute has missing 

values in more than 20% of 

the encounters of a patient 

Use average/frequent value strategy within patients of the same class 

• Compute average of all the values of all the patients in the same class,  

if attribute is numeric 

• Compute frequent value within all the patients of the same class, if the 

attribute is nominal 

The final preprocessed dataset, with filtered attributes and filled missing values, has the following 

clinical characteristics, summarized in Table 4. 

Table 4. Clinical characteristics of the diabetes patients. 

Characteristic Average Min. Value Max. Value Std. Deviation 
BMI 23.0 16.2 32.0 3.2 

Gender M (256), F (135) 
Age 48.8 20.0 85.0 15.4 
SBP 120.8 89.0 190.0 14.9 
DBP 74.5 45.0 115.0 10.2 
FBS 137.6 49.0 394.0 43.9 

Hba1c 8.0 4.2 14.6 2.0 
TC 169.5 0.0 371.0 37.7 
TG 101.0 18.0 634.0 80.9 

HDL 64.5 31.0 196.0 23.7 
LDL 82.2 15.0 180.0 29.4 

AST (SGOT) 22.0 11.0 65.0 7.8 
ALT (SGPT) 26.6 8.0 120.0 18.0 

TDM T2DM (278), T1DM (113) 

3.3.2. Data Reduction Phase 

Clinical data have continuous values that randomly vary. If these values are used in its original form 

for mining rules, then rough set will extract huge number of rules, which are intractable [55]. Therefore, 
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all continuous values attributes (e.g., except gender and TDM) first need to be reduced to finite number 

of intervals [56] and then use in rule mining process. Traditional rough set theory uses different types of 

discretization methods [56], which define discrete intervals without taking domain knowledge into 

account. These methods use statistical, entropy, genetic algorithms, fuzzy set theory and Boolean 

reasoning approaches to split continuous values into discrete intervals [56]. However, none of these 

methods use semantics of the values of attributes. In the healthcare domain and service generation, 

semantics of medical data values have significant importance. For example, in the case of our diabetes 

dataset, continuous values of the SBP attribute (measured in mm Hg) give information that the patient 

is either in normal (<120), prehypertension (120–139), hypertension stage 1 (140–159), hypertension 

stage 2 (160–180), or hypertensive crisis (≥181) status. Here, it is very important to discretize the 

continuous values of SBP in a way to retain their semantic categories in the discretized range/interval. 

If not, then the rules mined, based on these discretized values, will not reflect the correct range or interval 

of the value. The exiting discretization approaches do not care about such semantics. For example, if we 

use the well-known Boolean reasoning approach [57], it gives only three intervals for the same SBP 

attribute in our dataset. These are, (SBP < 110), (SBP 110–116), (SBP ≥ 117), which do not reflect the 

real semantic categories of SBP. To overcome this problem, we propose a semantic interval-based 

discretization scheme that consumes domain knowledge for discretizing continuous values. In the 

scheme, we first define cut points for discretization using standard reference ranges for each attribute, 

as shown in Table 2. This knowledge makes the intervals and cut-points more meaningful from clinical 

perspective and results in meaningful rules. The set of cut-points, their corresponding intervals, and the 

discrete value for each attribute are shown in Table 5.  

Table 5. Set of cut-points and corresponding intervals for discretization of the Diabetes 

Mellitus Information System (DMIS). 

Attributes 

# Cut-Points:  

Cut-Points 

Description 

# Intervals: Interval Description 

Discrete 

Value for 

Interval 

Guidelines 

BMI 3: 18.5; 25; 30 4: (−∞, 18.5), [18.5, 24.9], [25, 30), [30, ∞) 0, 1, 2, 3 WHO [36] 

Gender NA NA NA - 

Age 2: 30; 50 3: (−∞, 30), [30, 50], (50, ∞) 0, 1, 2 - 

SBP 4: 120; 140; 160; 181 5: (−∞, 120), [120, 139], [140, 159], [160, 180], [181, ∞) 0, 1, 2, 3, 4 
JNC 7 report, 

AHA [37–39] 

DBP 4: 80; 90; 100; 110 5: (−∞, 80), [80, 89], [90, 99], [100, 110], (110, ∞) 0, 1, 2, 3, 4 
JNC 7 report, 

AHA [37–39] 

FBS 3: 70; 99; 126 4: (−∞, 70), [70, 99], (99, 126], (126, ∞) 0, 1, 2, 3 ADA [40,41] 

Hba1c 3: 5.9; 6.4; 7.4 4: [4, 5.9], (5.9, 6.4], (6.4, 7.4], (7.4, ∞) 0, 1, 2, 3 
ADA [40], 

NICE [42,43] 

TC 2: 200; 240 3: (−∞, 200), [200, 239], [240, ∞) 0, 1, 2 
NCPE [44], 

ADA [45] 

TG 3: 150; 200; 500 4: (−∞, 150), [150, 199], [200, 499], [500, ∞) 0, 1, 2, 3 
NCEP [44], 

ADA [45] 
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Table 5. Cont. 

Attributes 

# Cut-Points:  

Cut-Points 

Description 

# Intervals: Interval Description 

Discrete 

Value for 

Interval 

Guidelines 

HDL 2: 40; 60 3: (−∞, 40), [40, 60), [60, ∞) 0, 1, 2 
NCEP [44], 

ADA [45] 

LDL 4: 100; 129; 159; 189 5: (−∞, 100), [100, 129], (129, 159], (159, 189], (189, ∞) 0, 1, 2, 3, 4 
NCEP [44], 

ADA [45] 

AST(SGOT) 2: 5; 40 3: (−∞, 5), [5, 40], (40, ∞) 0, 1, 2 
LD[46], Mayo 

Clinic [47] 

ALT(SGPT) 2: 7; 57 3: (−∞, 7), [7, 56], [57, ∞) 0, 1, 2 
LD[46], Mayo 

Clinic [47] 

Legend: “[”or “]” means inclusive, “(”or “)” means exclusive, “∞” means ± infinity. 

After applying discretization process based on the cut-points, we obtained discretized information 

system (DIS). A partial view of the discretized DIS is presented in Table 6. 

The discretized output is used in rough set data exploration system (ROSE 2) [58,59] for further 

processing. ROSE 2 system operates on discrete value format of the continuous values, shown in fourth 

column of Table 5. Setup of this tool for processing discretized data is shown in Appendix A.2. 

After attributes values reduction using discretization, the next step is to create reducts, which are 

feature subsets of attributes in the original information system (i.e., DMIS). Reducts facilitate in the 

process of rule mining and classifying same dataset with same accuracy [11,12,60]. We adopted  

lattice reduct search method, implemented in ROSE 2 system [58,59] with the default configuration. 

The set of all possible reducts obtained are shown in Table 7. 

In all the reducts, total number of participating attributes are 12 and only one attributes TC is not 

considered in either of the reduct. The frequency of attributes Gender, DBP, TG and OT in all the reducts 

is 50% while the rest of attributes have 100% participation, which means that they appear in all reducts 

and are therefore essential. 

Like reduct, core is another important concept of RST, which comprises only the most relevant 

attributes in the original information system. If any attribute is removed from the core, the accuracy of 

classification rules drastically dropdown, therefore we apply the core generation operation in ROSE 2 to 

get the final key attributes. Core is generated using intersection operation over all reducts. In our case, 

the core consists of the features shown in Equation (1) 

Core(DIS) = Intersection (RED(DIS)) = {BMI, Age, SBP, FBS, Hba1c, HDL, LDL, PT} (1)

Prediction accuracy of the original set of attributes and the core attributes was measured.  

The objective of measuring accuracy is to show effectiveness of the reduced attributes and overall 

attributes in the original dataset. When measured, core attributes produced 0.9744% accuracy, while the 

all 13 attributes of the original information system produced 0.9872% accuracy. The total reduction in 

accuracy is only 0.0138%, which is almost negligible. However, the reduct and core operations of RST 

reduced the number of attributes by more than one third, which reduce the complexity of building the 

prediction model. Appendix A.3 shows a working example of our diabetes dataset for generation of 

reduct and core in ROSE 2 environment. 
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Table 6. Partial data of diabetes mellitus Information System in interval format after discretization. 

DiscBMI Gender DiscAge DiscSBP DiscDBP DiscFBS DiscHba1c DiscTC DiscTG DiscHDL DiscLDL DiscAST DiscALT TDM 

[18.5, 24.9] M (50, ∞) [120, 139] (−∞, 80) (99, 126] (7.4, ∞) (−∞, 200) (−∞, 150) (−∞, 40) (−∞, 100) [5, 40] [7, 56] T2DM 
[25, 30) M [30, 50] [140, 159] [100, 110] [70, 99] (7.4, ∞) (−∞, 200) [150, 199] [40, 60) (−∞, 100) [5, 40] [7, 56] T1DM 

[18.5, 24.9] F (50, ∞) (−∞, 120) (−∞, 80) (126, ∞) (6.4, 7.4] [200, 239] (−∞, 150) [40, 60) [100, 129] [5, 40] [7, 56] T2DM 
. . . . . . . . . . . . . . 
. . . . . . . . . . . . . . 

(−∞, 18.5) F [30, 50] (−∞, 120) (−∞, 80) (126, ∞) (7.4, ∞) (−∞, 200) (−∞, 150) [60, ∞) (−∞, 100) [5, 40] [7, 56] T1DM 
[25, 30) F (50, ∞) (−∞, 120) [80, 89] (99, 126] (5.9, 6.4] (−∞, 200) (−∞, 150) [60, ∞) (−∞, 100) [5, 40] [57, ∞) T2DM 

Legend: “[”or “]” means inclusive, “(” or “)” means exclusive, “∞” means ± infinity. 

Table 7. List of all possible reducts for the Discretized Information System after applying Lattice Reduct Search method. 

Reduct # # Attributes Reduct (Attributes) 

1 10 {BMI, Gender, Age, SBP, DBP, FBS, Hba1c, HDL, LDL, PT} 
2 10 {BMI, Age, SBP, DBP, FBS, Hba1c, TG, HDL, LDL, PT} 
3 10 {BMI, Gender, Age, SBP, FBS, Hba1c, HDL, LDL, OT, PT} 
4 10 {BMI, Age, SBP, FBS, Hba1c, TG, HDL, LDL, OT, PT} 
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3.3.3. Rules Mining and Validation Phase 

Once the core attributes are selected, the next step is to mine decision rules from the discretized 

information system for the core attributes using learning from example module, version 2 (LEM2) 

algorithm [34]. We have used the basic minimal covering criteria of LEM2 algorithm implemented in 

ROSE 2 system [59]. The DIS (setup, results of the experiments performed in ROSE 2 system, and data 

in anonymized form can be provided on reader’s personal request) contains 391 instances that are used 

for mining rules to predict diabetes types. In total, 23 rules are mined. One rule is approximate, with 

inconsistent prediction for the same condition attributes. Extracted partial rule set is shown in Table 8. 

Table 8. A Partial list of rules extracted from discretized information system (DIS) using 

rough set (RS) learning from example module, version 2 (LEM2) algorithm. 

Rule # 
Prediction 

for TDM 
Prediction Rule Significance 

1 (T1DM) 
(BMI = [18.5, 24.9]) and (Age = (50, ∞)) and (SBP = [120, 139]) and  

(Hba1c = (7.4, ∞)) and (TC = (−∞, 200)) and (SGPT = [7, 56]) 
20 (17.70%) 

2 (T2DM) (Gender = M) and (SBP = (−∞, 120)) and (Hba1c = (6.4, 7.4]) and (LDL = [100, 129]) 17 (6.12%) 

3 (T2DM) 
(BMI = [18.5, 24.9]) and (Age = [30, 50]) and (SBP = (−∞, 120)) and  

(TG = (−∞, 150)) and (HDL = [40, 60)) 
23 (8.27%) 

4 (T1DM) 
(SBP = [120, 139]) and (DBP = [80, 89]) and (Hba1c = (5.9, 6.4]) and  

(HDL = [40, 60)) and (SGPT = [7, 56]) 
7 (6.19%) 

5 

(approximate 

rule) 

(T1DM) 

OR 

(T2DM) 

(BMI = [18.5, 24.9]) and (Age = (50, ∞)) and (FBS = 3) and (Hba1c = (126, ∞)) and 

(TG = (−∞, 150)) and (LDL = (−∞, 100)) and (SGPT = [7, 56]) 
[5, 5] [2, 3] 

Legend: “[”or “]” means inclusive, “(” or “)” means exclusive, “∞” means ± infinity. 

Table 8 shows decision attribute of the rule, ingredients of the rules (i.e., condition attributes with 

values) and significance value in columns 2–4, respectively. The significance describes coverage of the 

rule its own class. For example, rule 1 has 17.7% significance value in its class T1DM that supports  

20 instances of the training information system. After creation of the rules, the prediction model is stored 

in the knowledge base within DM prediction rules repository, DMPR. These rules are used in the live 

execution process of H2RM. Details of the experimental setup of ROSE 2 system for the rule mining 

process is given in Appendix A.4. 

Validation of the prediction model (rules extracted using rough set LEM2 method [34]) is performed 

using 10-fold cross validation approach. The details are given in Section 4 and the setup of the ROSE 2 

system is described in Appendix A.5. 

3.4. Hybrid Rule-Based Reasoning 

Online phase of the proposed H2RM is based on RBR methodology, which internally uses two levels 

of reasoning in sequential way. In the first level, rough set-based reasoning (RSR) methodology is 

activated for those patients who are not registered before. In this process, the RSR engine loads rules 

from the DMPR repository and executes them on the current observations of the patient. Diabetes type 

is predicted from the patient’s observations and withheld till the second level of reasoning process is not 
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completed. In the second level, reference range-based reasoning (3R) is performed over BMI, SBP, DBP, 

FBS, Hba1c, TC, TG, HDL, LDL, AST (SGOT), and ALT (SGPT) using reference range rules defined 

in Table 2 to categorize the observations as either normal, borderline, abnormal, risky, etc. This 

automatic categorization of the observations further assist physician in easy understanding and quick 

decision-making. The final results of HRBR are provided to physicians to assist them in diagnosis and 

analysis of the patient’s current observations. This process is shown in detail in Algorithm 1. 

Algorithm 1 Hybrid Rule-based Reasoning (HRBR) 
Input: KB:	Knowledge	Base, E:	Encounter 
Output: TDM, INTERPRETATION 
Begin ܀۰܀۶ܡܔܘܘۯ	(۳), where {E|E	is	EncounterOfNonRegisterdUser, E: = {Pid, OBS}}, OBS:={BMI, SBP, DBP, FBS, Hba1c, TC, TG, HDL, LDL, AST(SGOT), ALT(SGPT)}  ۯ. Knowledge	From	Rules	Prediction	Rough Set Reasoning [Load // (۳)܀܁܀ܕܚܗ܎ܚ܍۾ Base] 
1. DMPR:= 	LoadRulesFromKB(RULES that contain TDM as CONC);where	CONC:={	T1DM, T2DM}  
2. [Execute	Rules	For	Predicting	Types of Diabetes] ܐ܋܉܍ܚܗ۴ RULE in DMPR 

a. ۴ܐ܋܉܍ܚܗ	CA	in	RULE	//CA:= {BMI, Age, SBP, FBS, Hba1c, HDL, LDL, PT} 
b. ۷܎	CA. values	 ≠ 	E. OBS. value		THEN	Try	next	RULE ۳܎۷܌ܖ 
c. TDM ≔ CONC	of	the	RULE;	
d. ۵ܗܜܗ	Step	۰	
e. ۳ܚܗ۴܌ܖ	ܚܗ۴܌ܖ۳	 

3. TDM = Message("UNDEFINED")	۰.  Base]	Knowledge	From	Rules	Range	Reference	Reference Range-based Reasoning [Load // (۳)	܀૜ܕܚܗ܎ܚ܍۾
4. ATAR:=	LoadRulesFromKB(RULES	that	contain	INTERPRETATION	as	CONC);where	CONC:={	Table	2. INTERPRETATION. Value} [Execute	Rules	For	Finding	Current	Status	of	Each	Observation] 
 ATAR	in	RULE	ܐ܋܉܍ܚܗ۴ .5

a. ۴ܐ܋܉܍ܚܗ	CA	in	RULE	//CA ≔{BMI, SBP, DBP, FBS, Hba1c, TC, TG, HDL, LDL, AST(SGOT), ALT(SGPT)} 
b. ۷܎	CA. values	 ≠ 	E. OBS. value	THEN	Try	next	RULE ۳܎۷܌ܖ 
c. INTERPRETATION	[] ≔ CONC	of	the	RULE;	۳ܚܗ۴܌ܖ		ܚܗ۴܌ܖ۳		۱. ۼۯ۷۱۷܁܇۶۾ ∶= ,܌ܑ۾)	ܛܜܔܝܛ܍܀܍܌ܑܞܗܚ۾ ,ۻ۲܂  (ۼ۽۷܂ۯ܂۳܀۾܀۳܂ۼ۷

End 
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Algorithm 1 has four main functions. These are defined for activation of HRBR, rough set-based 

reasoning, reference range-based reasoning and final results propagation. When a new patient arrives in 

the hospital and his observations are recorded, the main function of HRBR, ܴܤܴܪݕ݈݌݌ܣ	(), is activated. 

This function, called the rough set-based reasoning function, ܴܴܲ݁ܵ݉ݎ݋݂ݎ(), for predicting diabetes 

type. The process of rough set reasoning starts with loading rules from knowledge base using the 

function, ܤܭ݉݋ݎܨݏ݈݁ݑܴ݀ܽ݋ܮ(). Once rules are loaded, execution of rules starts and final decision is 

obtained either as T1DM, T2DM or UNDEFINED. 

After diabetes prediction, physicians are usually interested in knowing the exact status of the 

observations of the patient. For this purpose, reference range-based reasoning is activated using the 

function, ܲ݁3ܴ݉ݎ݋݂ݎ	(). Like rough set reasoning, first, rules are loaded from knowledge base, and 

then they are executed one-by-one to find out whether the current value for that observation is  

normal, borderline, risky, etc. Finally, the function ܲݐ݈ݑݏܴ݁݁݀݅ݒ݋ݎ() propagates the results of rough set 

reasoner and reference range reasoned, in integrated from, to physician for further assessment and  

final decision. 

3.5. Diabetes Management: Correlation-Based Trend Analysis for Prognosis 

In the online phase of H2RM, when a registered patient visits hospital for follow-up and new 

observations are recorded then physician usually desires to review past history of all encounters of the 

patient. This is an essential step for them to further analyze the patient’s conditions and prescribe 

medications or provide general wellbeing recommendations or consult patient regarding the next  

follow-up, etc. Moreover, they are also interested in seeing future trends of the patient’s observations, 

based on the current and past observations, in order to predict future and take preventive measures. 

However, they are unable to get all these benefits in the current scheme of clinical charts, where the 

observations are inconsistent and placed randomly with different naming convention, etc. in excel sheets. 

The literature listed in this paper lack the capability of transforming these clinical charts to structured 

data format and building management and trend analysis services for physician to support them in 

decision-making. To overcome these shortcomings, and support physicians with comprehensive insights 

of the past observations of patients, we propose a correlation-based trend analysis technique. 

Correlation analysis is one of the important future trends prediction technique applied to numeric  

data [61]. We adopt this technique in our study for analyzing abnormal trends in patient observations. 

For correlation and trend analysis, we used MS Excel [62] as our experimentation tool. In the knowledge 

execution flow of H2RM, when a registered patient visits the hospital for follow-up, his observations 

are recorded and scattered line graphs is drawn for the current and past observations, as shown in  

Figure 4a–k. It is represented by the bold-faced blue line in the graph. Furthermore, a correlation-based 

polynomial trendline of order 3 is added to the graph to predict future trend of the observation. We also 

compute residue R2 value to the trendline to show accuracy of the future prediction for new encounters. 

The selection of polynomial trendline for future prediction is due to the fact that clinical values, always, 

gradually fluctuate rather than move sharply. Polynomial trendlines with order 3 have two peaks or 

bottom values in the regression equation. 
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Figure 4. Correlation-based trend analysis for prognosis of diabetes mellitus. The bold-faced blue line represents scatterd line graph of the 

current observations, the dotted black line shows future polynomial trendline for future prediction and  the light orange strap represents normal 

ranges of the observations. 
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The proposed CTA provides two insights to physicians: current status of the patient’s observation, 

whether normal, abnormal, etc. and future trends. Hence, the physician is assisted to see all the relevant 

information one place. 

4. Experiments and Results 

4.1. Evaluation Criteria 

To evaluate the proposed hybrid RS reasoning model, a number of evaluation criteria can be used, 

such as prediction accuracy, precision, recall, F-measure, balanced accuracy and end user (physician in 

our case), satisfaction, etc. [63]. These criteria can be grouped into system-centric (focus on system 

accuracy, precision, recall, etc.) and user-centric (focus on user satisfaction, etc.) [64]. A good evaluation 

criterion can be the one taking both system centric and user centric parameters into account. However, 

in our evaluation, we stick to only the system centric approach due to the prototype implementation of 

H2RM. We use average accuracy and balanced accuracy evaluation metrics to evaluate the performance 

of our proposed model. The prediction rules derived by the rough set knowledge acquisition component 

are used to test data in the diabetes dataset and assess the performance. 

4.2. Experimental Setup 

H2RM consists of two main modules: offline knowledge acquisition and online knowledge execution. 

Therefore, we setup two sets of experiments. The first set is to mine prediction rules from the diabetes 

dataset and the second one is to provide real time services on top of these rules for new patient/encounter. 

For both sets, we used ROSE 2 system [58,59] in Windows environment in a PC with specification of 

Intel Pentium Dual-CoreTM (2.5 GHz) and RAM 4GB. For the first set of experiments, setup and 

detailed description is given in Section 3.3. The second set of experiments further consists of validation 

of mined rules and trend analysis of past and current encounters of a patient. Setup for the latter 

experiment is explained in Section 3.5, while for validation of mined rules, we use basic minimal 

covering technique of the RST with default parameters setting in ROSE 2 system. The default parameter 

settings are shown in Table 9 and a working example of the validation process is shown in Appendix A.5. 

Table 9. Experimental setup used for validation of prediction rules in ROSE 2 system. 

S.No Parameters Values 

1 Test k-fold cross validation 
2 Number of passes 10 
3 Majority threshold 21% 
4 Minimum similarity 50% 
5 Partially matched rules All 
6 Rule support strength × similarity 

  



Sensors 2015, 15 15940 

 

 

4.3. Results 

The results of first set of experiments are described in Section 3.3.3. In total, 23 rules are  

extracted from 391 instances of the dataset. Table 8 shows a partial list of the rules along with their 

significance values. 

Results of the validation experiment are shown in Table 10. 

Table 10. Confusion matrix (sum over 10 passes) describing overall output of the validation process. 

Type of DM T1DM T2DM None 

T1DM 106 (TP) 7 (FN) 0 
T2DM 9 (FP) 269 (TN) 0 

Table 10 shows that 7/113 cases of T1DM are incorrectly predicted as T2DM and 9 T2DM cases are 

incorrectly predicted as T1DM. There is no such example, either of T1DM or T2DM, in which neither 

T1DM nor T2DM is predicted. Therefore, the “None” column is zero for both class. Average accuracy 

(%) of the prediction model and individual accuracies of each class (T1DM, T2DM) are shown in Table 

11. The average predictive accuracy of the model is 95.91% with 4.09% incorrect predictions. Standard 

deviation of the percent incorrect predictions, for all the 10-folds of the model is 2.61, while for the 

individual classes are 6.16 and 4.11, respectively. The individual class level accuracy for class T1DM is 

94.59% and for class T2DM is 96.85%. 

Table 11. Average accuracy (%) of the model for individual class and overall model. 

Type of DM Correct Incorrect None 

T1DM 94.59 ± 6.16 5.41 ± 6.16 0.00 ± 0.00 
T2DM 96.85 ± 4.11 3.15 ± 4.11 0.00 ± 0.00 
Total 95.91 ± 2.61 4.09 ± 2.61 0.00 ± 0.00 

The results show that the predication accuracy for class T2DM is higher than the prediction accuracy 

of class T1DM. The reason for incorrect prediction of T1DM cases as T2DM and vice versa is due to 

the approximate rule (rule #23) of the prediction model. 

To know results in terms of percent accuracy and percent error for each fold, we generate fold-wise 

test results. Figure 5 show the test results for each fold of the 10-fold cross validation process. 

 

Figure 5. Test results of each pass of the 10-folds cross validation process. 
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In Figure 5, plus sign (+) shows correct prediction, while negative sign (−) shows incorrect prediction. 

The first pass/fold contains 40 examples/instances while the rest include 39 instances each. Table 12a 

shows the percent accuracy and percent error of each pass of the 10-fold-testing process. 

In Table 12b, we calculate average accuracy from the percent accuracy of each fold, which is 95.9%. In 

the same way, standard deviation is calculated from the percent error of each fold-test. Its value is 2.61. 

The dataset we used for prediction and classification of diabetes as type-1 or type-2 has class 

distribution of 113:278. This shows that the ratio is greater than 1:2 for type-1 to type-2. Hence, type-2 

is dominant over type-1. Therefore, to verify that our predictive model has produced unbiased results, 

measured as overall accuracy, we use the measure of balance accuracy, which is defined as arithmetic 

mean of sensitivity and specificity [65,66]. For computing balanced accuracy, we extract True Positive 

(TP), False Positive (FP), True Negative (TN) and False Negative (FN) evaluation measures from  

Table 10 and use Equation (2). Values of these measures are shown in Table 13. Balanced	accuracy = 0.5 × TPTP + FN + 0.5 × TNTN + FP = 0.9522 (2)

Table 12. Percent accuracy and percent error for each test of the 10-fold cross validation 

process along with average accuracy and standard error of all 10-folds 

(a) Percent Accuracy and Percent Error for Each Pass 

Pass Number 
Fold 
Size 

Incorrect 
Examples 

Correct 
Examples 

Percent 
Accuracy 

Percent 
Error 

Pass 1 40 1 39 97.5 2.5 
Pass 2 39 3 36 92.30769231 7.6923077 
Pass 3 39 2 37 94.87179487 5.1282051 
Pass 4 39 3 36 92.30769231 7.6923077 
Pass 5 39 2 37 94.87179487 5.1282051 
Pass 6 39 0 39 100 0 
Pass 7 39 1 38 97.43589744 2.5641026 
Pass 8 39 2 37 94.87179487 5.1282051 
Pass 9 39 1 38 97.43589744 2.5641026 

Pass 10 39 1 38 97.43589744 2.5641026 

(b) Average Accuracy and Standard Error for 10-Folds 

No. Instances 391 
Total Number of Incorrect Examples 16 
Total Number of Correct Examples 375 

Average Accuracy 95.90384615 
Average Error 4.096153846 

Standard Error based on Percent Error of each Fold 2.61660764 
Average Accuracy ± Standard Errors 95.9 ± 2.6 

Table 13. Evaluation parameters for computing balanced accuracy. 

True Positive 
(TP) 

False Positive 
(FP) 

True Negative 
(TN) 

False Negative 
(FN) 

106 9 269 7 
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The results of balanced accuracy (Equation (2)) and conventional average accuracy (Tables 11 and 12) 

are the same, which shows that our predictive model performs equally well on either class (T1DM  

and T2DM). 

The results of the final correlation-based future trend analysis experiment are shown in Figure 4. 

These results assist physicians in assessing patient observations from three perspectives: pattern of past 

and current observations (blue line graph), deviation of the observations from normal ranges (light 

orange strap), and prediction of future trend (dotted black line). A correlation equation of order 3, along 

with R2, show accuracy of future trend prediction for that observation. 

5. Conclusions and Future Directions 

Patient clinical charts and online guidelines are the most important available knowledge sources for 

physicians. A patient clinical chart data helps physicians stay aware of a patient’s present and past 

observations. They make future predictions regarding specific observations of the patient. In the above 

situation, physicians would like to have an intelligent prediction and forecasting system to automatically 

predicts a patient’s diabetes type and analyze future trends. Suitable prediction models and tools can 

help physicians to understand patient and make wise decisions. 

This work designed a hybrid RS reasoning model, incorporating PCG as knowledge sources, CGT as 

translation and knowledge extraction process, RKA as rules mining process, KBs as knowledge 

repository, hybrid RBR as live prediction/classification process and CTA as future trend analysis of 

patients observations. The H2RM model first applies a manual process for clinical charts and guidelines 

translation, then uses semantic interval-based discretization, RS reducts generation and understandable 

decision rules extraction using the LEM2 algorithm [34] from the original diabetes dataset. Experimental 

results for the prediction model reveal that performance of the model is 95.91% in classifying diabetes 

types. Correlation-based trends analysis results suggest insights of the patient conditions to physicians 

in an appropriate way and assisting them in controlling risky stages. 

Although the proposed hybrid model performs well, further experiments and improvements are 

required. Future studies should apply experiments to appropriately manage diabetics’ complications and 

risky behaviors, and provide support to physicians in automatic generation of treatments and wellbeing 

recommendations. Additionally, the proposed model can be applied to prediction problems in other 

fields. In the near future, we plan to implement this prototype model of the recommender system as a 

full working system and deploy in real setups. This will support physicians in real practices to support 

their diagnose decisions with the suggested decisions of the proposed diabetes recommender system. 

Furthermore, it will provide a base for new physicians to learn about diabetes from the decisions of  

the system. 
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Appendix A 

A.1. Missing Values Treatment 

Table A1a shows encounters of only one patient (PID = 50) with missing values in BMI, SBP, FHx, 

SHx, FBS Hba1c and LDL attributes. Table A1b shows the filled dataset after applying the missing 

value completion strategies, defined in the Preprocessing Section of the Methodology. 

Table A1. Encounters of a single patient before and after applying the missing value 

completion strategies. 

(a) Encounters of Patient No. 50 with Missing Values in Encounters 

PID EID BMI Age SBP FHx SHx FBS Hba1c HDL LDL ALT (SGPT) TDM 

50 e1 21.1 41 109 no yes NULL NULL 44 107 36 T2DM 

50 e2 21.1 41 NULL no NULL 144 11.6 44 107 46 T2DM 

50 e3 21.3 42 NULL NULL NULL 116 NULL 44 110 36 T2DM 

50 e4 22.2 42 104 NULL yes 155 6.6 42 150 64 T2DM 

50 e5 NULL 42 123 NULL NULL NULL NULL 42 NULL 64 T2DM 

50 e6 22.1 42 123 NULL NULL 246 8.9 52 165 39 T2DM 

50 e7 22.1 42 114.0 no NULL 240 7.2 50 130 40 T2DM 

50 e8 22.2 42 191.0 NULL NULL 230 9 51 162 45 T2DM 

(b) Filled Encounters after Applying Missing Value Treatment Strategies 

PID EID BMI Age SBP FBS Hba1c HDL LDL ALT(SGPT) TDM 

50 e1 21.1 41 109 144 8.66 44 107 36 T2DM 

50 e2 21.1 41 109 144 11.6 44 107 46 T2DM 

50 e3 21.3 42 104 116 8.66 44 110 36 T2DM 

50 e4 22.2 42 104 155 6.6 42 150 64 T2DM 

50 e5 22.2 42 123 155 8.66 42 150 64 T2DM 

50 e6 22.1 42 123 246 8.9 52 165 39 T2DM 

50 e7 22.1 42 114.0 240 7.2 50 130 40 T2DM 

50 e8 22.2 42 191.0 230 9 51 162 45 T2DM 
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A.2. Discretization Setting in ROSE 2 System 

Figure A1 shows the final discretized dataset in discrete value (i.e., 0, 1, …) and range-value formats. 

ROSE 2 system operates on the discrete value format for further operations of reduct and core generation 

and rules induction. The range-value format is manually created for easy understanding and 

interpretation of the discrete values. The interpretation of both the formats can be seen in Table 5 in the 

Methodology Section. 

 

Figure A1. Final discretized results of the diabetes mellitus dataset. 

A.3. Reducts and Core Generation Settings in ROSE 2 System 

Figure A2 shows how reducts and core are generated for a discretized dataset. First reducts, whose 

output is input for core operation, are generated. 
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Figure A2. Reducts and core generation process in rough set data exploration system  

(ROSE 2) system along with the outputs. 

A.4. Rules Induction Setting in ROSE 2 System 

Figure A3 shows how rules are mined from the core attributes using the Basic Minimal Covering 

method of the ROSE 2 system. This option use LEM2 [34] algorithm for mining rules. 
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Figure A3. Rules induction setting in rough set data exploration system (ROSE 2) system 

along with the inducted rules as output. 

A.5. Rules Validation Setting in ROSE 2 System 

Figure A4 shows default settings of ROSE 2 system for validating the rules generated in rule  

induction phase. The output is the average classification accuracy. 
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Figure A4. The validation process in the rough set data exploration system (ROSE 2) system 

for validating and testing mined rules. 
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