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Abstract: The state-of-the-art ultra-spectral sensor technology brings new hope for high
precision applications due to its high spectral resolution. However, it also comes with
new challenges, such as the high data dimension and noise problems. In this paper, we
propose a real-time method for infrared ultra-spectral signature classification via spatial
pyramid matching (SPM), which includes two aspects. First, we introduce an infrared
ultra-spectral signature similarity measure method via SPM, which is the foundation of the
matching-based classification method. Second, we propose the classification method with
reference spectral libraries, which utilizes the SPM-based similarity for the real-time infrared
ultra-spectral signature classification with robustness performance. Specifically, instead of
matching with each spectrum in the spectral library, our method is based on feature matching,
which includes a feature library-generating phase. We calculate the SPM-based similarity
between the feature of the spectrum and that of each spectrum of the reference feature library,
then take the class index of the corresponding spectrum having the maximum similarity as
the final result. Experimental comparisons on two publicly-available datasets demonstrate
that the proposed method effectively improves the real-time classification performance and
robustness to noise.
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1. Introduction

According to Hunt’s research [1], for earth materials, the typical half depth of absorption peaks
ranges from 20 nm to 40 nm. The hyperspectral sensors can offer high spectral resolution, which
is very important for many applications, such as land use analysis, environmental studies, military
surveillance, food quality control, and so on [2,3]. The spectral resolution of them has achieved
less than 10 nm, which enables precise classification among different materials. The classification
technology is currently the predominate method for analyzing hyperspectral images and has received
much attention. However, in some applications, such as gas spectral signature analysis [4,5], it requires

even higher spectral resolution, e.g., 1 cm™! (the unit “cm™!”

represents wavenumber resolution, and
the corresponding wavelength resolution differs for each band; for example, at the typical mid-infrared
waveband 3 pm, the corresponding wavelength resolution is 0.9 nm). Fortunately, the state-of-the-art
ultra-spectral sensor technologies [6], for example the tropospheric emission spectrometer (TES) [7] and
the infrared atmospheric sounding interferometer (IASI) [8], have achieved a spectral resolution less than
0.5 cm ™!, which brings new hope for those high precision applications. Nevertheless, the breakthrough
of spectral resolution leads to some new problems, which makes spectral signature analysis become
more challenging, especially in real-time applications, such as greenhouse gases surveillance [9,10],
target detection [11,12], etc.

Higher spectral resolution usually leads to a higher dimension of data, which is very challenging
to those real-time required applications mentioned beforehand. For example, typical airborne
visible/infrared imaging spectrometer (AVIRIS) hyperspectral data have 224 bands, while TES
ultra-spectral data have 9000 specific bands [13]. The conventional methods for spectral signature
classification are based on the Euclidean distance (ED) or Hamming distance (HD). In practice, a spectral
library is needed for classification. By calculating the ED/HD between the observed spectrum and
each spectrum of the library, the classification result can be obtained by searching the minimum of
the ED/HDs. Although the conventional methods are easy to implement, the time consumption is huge
for hyper-/ultra-spectral signature classification.

For hyper-/ultra-spectral sensors, the signal-to-noise ratio (SNR) is in direct proportion to the square
root of the scan time ¢, the spectral resolution Av and the radiation flux F, i.e., SNR VEAVE [14]. As
the spectral resolution improves, the SNR is decreased with a constant radiation flux and scan time. In
low SNR situations, the ED between detected spectra and real spectra increases, which probably degrades
the performance of ED/HD matching-based classification algorithms. Although a pre-processing is
usually used to deal with spectral noise [15,16], the pre-processing can not always perform well in
different situations. Therefore, how to address the problem that the classification accuracy decreases due
to the improvement of spectral resolution is another critical issue in ultra-spectral signature classification.

The traditional hyperspectral signature classification algorithms based on distance matching and
waveform prediction have low complexity and good classification accuracy. However, as the spectral
resolution improves, these methods have severe drawbacks, especially the huge time consumption. This
is because the traditional methods perform in a band-to-band fashion without considering the redundancy
between each band. Since the high number of bands causes dimensionality problems, a dimensionality
reduction (DR) of the hyperspectral vectors can highly facilitate the analysis afterwards [8]. The
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feature extraction and band selection are typical DR methods, which can significantly reduce the time
consumption in the classification process. However, the sensor, photon effects and calibration error [17]
unavoidably introduce noises into the acquired hyper-/ultra-spectral data and, thus, degrade the accuracy
of the classification performance.

There is a continuous demand for reducing time consumption and improving the accuracy of
classification algorithms [18,19]. The spatial pyramid matching (SPM) method [20] has been
demonstrated as an excellent feature extraction method and is widely used in image feature
extraction [21,22] and image classification [23,24]. However, to the best of our knowledge, there is no
report that the SPM-based method has been used for ultra-spectral signature classification. In this paper,
to address the above-mentioned issues, we propose an ultra-spectral classification method based on
SPM, which includes the following two aspects. First, we introduce an infrared ultra-spectral signature
similarity measure via SPM, which is the basis of the matching-based classification method. Second,
we propose the classification method with reference spectral libraries, which utilize the SPM-based
similarity for real-time and robust infrared ultra-spectral signature classification. Specifically, we divide
the spectrum along the wavenumber axis into several sub-blocks. The histogram of each sub-block is
calculated by the SPM, which is taken as the elemental feature of a spectrum. To generate the histogram
of each sub-block, we quantize the spectral radiation values and choose a proper quantile interval to
suppress the negative effect of noise. As the feature of a spectrum, the histograms usually have much
lower dimension than that of the original spectrum, which achieve the goal of dimensionality reduction
for the ultra-spectral data. When the histograms of a spectrum are obtained, we use the introduced
similarity measure method for classification purpose. For real-time applications, instead of matching
with each spectrum of the spectral library, our method is based on feature matching, which includes
a feature library-generating phase. We calculate the SPM-based similarity between the feature of the
spectrum to match and that of each spectrum of the reference feature library, then take the class index of
the corresponding spectrum having the maximum similarity as the final result.

Our main contribution in this paper is that we propose a real-time ultra-spectral signature
classification method, which mainly includes the similarity measure and the real-time classification
method via SPM with reference spectral libraries. Compared with the other four methods, our
method can significantly improve the real-time and classification performance in ultra-spectral signature
classification applications, especially under a low SNR environment.

2. Related Work

Over the past years, two general approaches have been investigated for hyperspectral signature
characterization [25]. The first is a coding-based approach, which encodes spectral signatures as
code words. Then, spectral analysis is conducted by using the HD as a spectral similarity measure.
A typical example is binary coding (BC) [26]. It compares the radiation value of each waveband
with a threshold and then transforms the comparison results into binary numbers. The algorithm
has very low complexity. However, due to the significant error in quantization process, it may lose
some important spectral information. Moreover, it cannot classify spectra within the same class,

due to the homogeneity of spectral signatures in the same class [27]. To address these problems,
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other algorithms were proposed, for example the spectral analysis manager (SPAM) [28], the spectral
feature-based binary coding (SFBC) [29], the spectral derivative feature coding (SDFC) [25], etc.
All of these algorithms use extra bits to encode spectral features, such as spectral derivatives and
neighboring waveband differences, which can carry more spectral information. The second type of
approach is a signature estimation-based approach, which estimates spectral profiles for signatures,
and spectral analysis is then carried out by using the commonly-used least squares error as a criterion
for optimality, such as methods based on wavelets and the Kalman filter [25]. The above-mentioned
two kinds of methods have shown their good performance in multispectral or even hyperspectral
applications. However, for ultra-spectral technology, with its higher spectral resolution, the traditional
methods cannot meet the needs in real-time and robust detection well, such as greenhouse and target
detection applications.

To achieve the goal of dimensionality reduction, other feasible methods have been investigated. A
typical DR method is the band selection. For instance, the mutual information (MI)-based [30] method
calculates the MI between observed spectra and the reference spectral library, then selects the bands
with the relatively higher MI. The adaptive band selection (ABS) [31] selects the bands with the largest
possible information and the least correlation among them. Although those methods can reduce the
time consumption in the classification process, they need a large number of observed spectra for each
matching process, which cannot meet the needs of real-time classification. Recently, Fang et al. proposed
the crosscut feature extraction matching method (CF) [13], which can rapidly fulfill the matching process
and be implemented in real-time with excellent classification accuracy. However, it uses the crosscut
intersections as the feature and adopts the ED for matching, which could make the accuracy decrease
due to its sensitivity to noise. Besides, some feature matching methods [32—35] in the computer vision
area can also be generalized for spectral matching, but they have a prerequisite that the spectral features
should be extracted in advance.

3. The Spatial Pyramid Matching Kernel

In this section, we introduce the original formulation of the spatial pyramid matching kernel
commonly used in image processing, which is the theoretical foundation of our work. The spatial
pyramid matching kernel is based on the histogram intersection kernel, which is also known as the
min kernel and has been widely used in image classification [36—40]. The histogram intersection kernel

function is shown as follows [37]:
I(a,b) = > min (a;b;) (1)
i=1

where a and b denote two vectors with the dimension of n and a; and b; denote the i-th entries of a
and b, respectively. In image processing, vectors a and b can be taken as the histograms of two images.
Thus, when the images are divided into different indexed sub-blocks, a; and b; are referred to as the i-th
histograms of the i-th sub-blocks.

Graumann and Darrell [41] proposed the pyramid matching method to find an approximate
correspondence between two vectors. However, the pyramid scheme works with an orderless image

presentation and discards all spatial information. To address this issue, Lazebnik et al. [20] proposed a
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spatial pyramid scheme to utilize the spatial information of data. In this paper, we regard the inter-bands
relationship as the corresponding spatial information of a spectrum. The spatial pyramid matching works
by placing a sequence of increasingly coarser cells over the feature space and taking a weighted sum of
histogram intersection kernels that occur at each level of spatial resolution. Those cells are generated by
repeatedly subdividing along the wavenumber axis into different cells at increasingly fine resolutions.
More specifically,  and y denote two spectra of the same dimension V. 0,1, ..., L denote the resolution
levels from coarse to fine, where L <= log, N. At level [, the two spectra are divided along the
wavenumber axis into 2 cells, which are of the same length. Then, the histograms of each cell for the
two spectra are calculated, where H, (i) and H} (i) denote the histograms of the i-th cells at the resolution
level [. Thus, the histogram intersection kernels can be calculated by [20]:

D
[(Hy, Hy) = > min (Hy(z:), Hy(y:)) 2
i=1
where D (D = 2) denotes the number of cells. Since the coarser resolution levels include more
dissimilar features, it is reasonable to penalize matches found at the coarser levels. Then, we get the
following definition of a spatial pyramid matching kernel [20]:

L-1

1, 1
:Q_LI +Z2L—l+1l 3)

where I° and I' represent the histogram intersection kernels at the resolution levels 0 and [, respectively,
which can be obtained according to Equation (2).

4. The Infrared Ultra-Spectral Signatures Similarity Measure Method via SPM

In this paper, we use a matching-based method to classify the spectra, which needs the criterion of a
similarity measure. Based on the spatial pyramid matching kernel mentioned above, we introduce the
following method for measuring the similarity of the infrared ultra-spectral signatures. Specifically,
first, we quantize the spectral value of  and y into M discrete levels. Second, we calculate the
histogram intersection kernel at each discrete level and the spatial pyramid matching kernel according
to Equations (2) and (3), respectively. In detail, for each resolution level /, we divide the total N bands
into 2! sub-blocks and calculate the corresponding histograms. Then, the histogram intersection kernel /;
can be obtained according to Equation (2). Specially, /, represents histogram intersection at the coarsest
spatial resolution level, i.e., the histogram intersection across the entire bandwidth. When we get I; and
Iy, the spatial pyramid kernel can be obtained according to Equation (3). Finally, we use K* as the
classifier, which can be obtained by summing up each entry of the spatial pyramid kernel. The classifier
K can be expressed as follows:

M
Kz, y) =) rh(z,y) (4)

m=1
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where xL denotes the m-th entry of the spatial pyramid kernel vector x~. The higher the K is, the
more similar the two spectra « and y are. Note that we do not combine the kernel Equation (4) with
SVM like [20] does. This is because, once the supervised training joins in, the real-time performance
could be sacrificed. Additionally, supervised classifiers require a large quantity of labeled data due to
the high dimensional spectral data vector. However, labeled instances are often difficult, costly or time
consuming to obtain [42].

The detailed procedures of the method can be referred to in Algorithm 1.

Algorithm 1: The similarity measure via spatial pyramid matching (SPM).

Input: measure_simi(vy, - - - vy, 71, TN, L, M) % v; and r; denote the two spectra.
Output: The pyramid matching kernel K’

1 Initialize k¥ = 01527, To~ I, = O1r;

2for!{=0,---,Ldo

3 D; = 2'; % divide N into D, parts.

4 dim; = N/2'; % the dimension of parts belonged to the I-th level.
5 fori=1,---,D;do

6 % ha; and hb; denote the i-th sub-blocks of the two spectra.

7 ha; = calculate the histogram from v((;—1)sdim,+1) tO Visdim, ;

8 hb; = calculate the histogram from 7((;—1)«dim,+1) tO Tixdim;s

9 I; = I, + min(ha;, hb;);

10 end

11 end

12 calculate k% according to Equation (3);
13 calculate KL according to Equation (4);

For better understanding, we choose two spectra for illustration. These two spectra are named as
Spectrum A and Spectrum B (Spec. A and Spec. B), respectively. Both of them have the same dimension
of N. The spectral quantile level M is set to 10 for the histogram calculation. For simplicity, when
L = 2, the spatial pyramid will have three levels, i.e., [ = 0,1,2. The procedures are shown with the

following steps.
e Step 1. Calculating I, (I = 0):

As shown in Figure 1, when [ = 0, calculate the histograms of Spectra A and B with the entire

wavebands. Then, calculate /; according to Equation (2), where [ is a vector with M dimension.
e Step 2. Calculating I; (I = 1):

As shown in Figure 2, when [ = 1, divide Spectra A and B into two sub-blocks with the same length,
respectively. Calculate the histograms of all sub-blocks of Spec. A and B. Then, obtain two minimum
vectors by comparing the histograms of all parts of Spec. A with that of Spec. B, respectively. Finally,
we have [; by summing up the two minimum vectors, where /; is a vector with M dimension.

e Step 3. Calculating 15 (I = 2):
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As shown in Figure 3, when [ = 2, divide Spectra A and B into four sub-blocks with the same length,
respectively. Calculate the histograms of Block 1 to 4 of Spec. A and B. Then, obtain four minimum
vectors by comparing the histograms of all sub-blocks of Spec. A with that of Spec. B, respectively.
Finally, we have I, by summing up the four minimum vectors, where /5 is a vector with M dimension.

e Step 4. Calculating x*:

We get k' by the weighted sum of Iy, I, I, according to Equation (3), where s is a vector with

M dimension.
e Step 5. calculating K*:

Calculate K* according to Equation (4).
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Figure 1. The spatial pyramid at Level O (! = 0). The first row: Spectrum A (left),
Spectrum B (right). The second row: the histogram of Spec. A (left), the histogram of
Spec. B (right). The third row: the histogram intersection kernel referred to in Equation (2).
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Figure 2. The spatial pyramid at Level 1 (! = 1). The first row: the two spectra (Spectrum
A (left), Spectrum B (right)) are divided into two sub-blocks, respectively. The second row
(from the left to the right): the histogram of Block 1, Spec. A, the histogram of Block 2,
Spec. A, the histogram of Block 1, Spec. B, the histogram of Block 2, Spec. B. The third
row: the histogram intersection kernels. The fourth row: the summation of the histogram

intersection kernels referred to in Equation (2).
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Figure 3. The spatial pyramid at Level 2 (I = 2). The first row: the two spectra (Spectrum
A (left), Spectrum B (right)) are divided into four sub-blocks, respectively. The second row
(from the left to the right): the histogram of Block 1, Spec. A, the histogram of Block 2,
Spec. A, the histogram of Block 3, Spec. A, the histogram of Block 4, Spec. A, the histogram
of Block 1, Spec. B, the histogram of Block 2, Spec. B, the histogram of Block 3, Spec. B,
the histogram of Block 4, Spec. B. The third row: the histogram intersection kernels. The
fourth row: the summation of the histogram intersection kernels referred to in Equation (2).



Sensors 2015, 15 15876

5. The Proposed Real-Time Infrared Ultra-Spectral Signature Classification Method via
SPM with Reference Spectral Libraries

5.1. Methodology

In practice, the matching-based ultra-spectral signature classification methods are commonly based on
reference spectral libraries. Usually, the libraries have a large number of spectra with a high dimension.
Moreover, the observed spectra to be matched are usually corrupted by the environmental noise. To
achieve better performance, we propose the real-time infrared ultra-spectral signature classification
method via SPM, which is based on the following considerations.

The CF [13] method just uses the cross lines to extract the spectral features. However, it is sensitive
to noise, and the classification performance decreases when the spectra are degraded by noise. To make
it robust to the noise, the spatial pyramid kernels we used are based on the histograms. As we analyzed,
a proper quantization process can improve the tolerance for the noise. The larger the quantile interval is,
the more robust the method for noise is.

However, an improper selection of quantile interval could bring quantile error for the method.

Specifically, it is assumed that the quantile error is uniform distributed in the quantile interval

[ dintereal | 4 dinteral | thys, the variation of quantile error is:

2
+qinterval/2 +qinterval/2 1 q2
UéE - / €2p(e)de = / e2 de = interval (5)

Qinterval/2 Qinterval/2 Qinterval 12

1

Qinterval

where e denotes the quantile error and p(e) = is the probability density function of the quantile

error. To obtain the SNR, we have to calculate the uniformed signal power:

M - Qinterval M? - ¢?
2 interval \2 interval
= p— 6
s = (—tena . ©)
where M denotes the number of quantile levels. The SNR can be computed as follows:
82 2. qunterval/4
= M 5 = 3M? (7
UQE qinterval/12

According to Equation (7), it is obvious that SNR 1is in direct proportion to M. It is also shown that

SNR =

when quantile levels increase, the negative effect of quantile error can be reduced. However, according
to the previous analysis in the beginning of this section, when the quantile levels increase, the robustness
to noise would decrease. Thus, to achieve good classification performance, we should strike a balance
between the quantile error and the robustness to noise, which can be obtained by selecting the optimal
quantile level in the following experimental works.

The traditional matching-based classification method does not consider the dimensionality reduction,
which would be time consuming. Besides, if a spectral library is directly used as a reference for matching
via Algorithm 1, it also cannot meet the real-time needs, because it contains both the feature extraction
and matching phases.

In this paper, we achieve the dimensionality reduction of the infrared ultra-spectral signatures via

SPM. The reduced dimension is calculated as follows:

L
Dim = M - Z 2l (8)
=0
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where M denotes the quantile levels and L represents the max spatial resolution levels. For example, a
spectrum has the dimension of 4287 if we set the quantile level to 10 and the spatial resolution level to 2.
Therefore, the total dimension is significantly reduced to 70 according to Equation (8). Meanwhile,
we split the feature extraction and matching of Algorithm 1 into two independent phases, the time
consumption of which can be significantly reduced because the matching process is based on the features,
and the feature library is calculated in advance according to the original spectral library.

According to the considerations mentioned above, we proposed the real-time infrared ultra-spectral
signature classification method via SPM, which includes two independent phases. The first one is for
spectral feature library generating, and the second one is for spectra matching. The detailed procedures
of the 2 phases are shown in Algorithms 2 and 3, respectively.

Algorithm 2: The proposed method to generate a spatial pyramid feature library.
Input: buildSPfeatlib(S, L, M) % S denotes the reference spectral library.
Output: The spatial pyramid S Py, of each spectrum in S

1 Initialize SPL = 0(1—2(L+1))/(1—2)><M7 Spr = O2l><]\/17 l e {0, cee ,L} )

2 forallve S,v=uv,--- oy do

3 for(=0,---,Ldo

4 D; = 2'; % divide N into D parts.

5 dim; = N/2'; % the dimension of parts belonged to the -th level.

6 fori:=1,---,D;do

7 h;= calculate the histogram from v((;_1)«dim;+1) tO Vixdim,;

8 spii = hi; % sp;; denotes the i-th row of spj.

9 end

10 if | == 0 then

1 SPp o011y = 555P1 % SPp g au+1 1y denotes the 2'-th to 20+Y) — 1-th rows of
SPr.

12 end

13 else

14 SPp o201 1) = ﬁspl

15 end

16 end

17 end

5.2. Time Complexity Analysis

The proposed method is matching based, which mainly needs to iteratively extract the features and
measure the similarity. Therefore, we regard those iterations as the major contributors to the complexity,
for two reasons: the time complexity for feature extraction and similarity calculation. They are denoted

as Ty and T, respectively.

e Analysis on T



Sensors 2015, 15 15878

Algorithm 3: The proposed classification method with a reference spectral feature library.
Input: fastSPM(v, R, L, M) % R denotes the reference spectral feature library.
Output: indexgr % denotes the matching result and the spectrum index in the library.

1 Initialize SP = 0 _yw+1))/1-2)xam> % The spatial pyramid feature of the observed spectrum.

2 Initialize K%, = 0, indexgr =1; % Kf,, = 0and indexyr = 1 denotes the max kernel
and the corresponded index.

3 SP = buildSPfeatlib(v, L, M );

4 forall RSP € Rdo

5 K =11 (1_a@+1)y 1 _z) - min(SP, RSP); % RSP denotes the spatial pyramid feature of a
spectrum.

6 | K'=r" 1mxi

7 | if K¥ > KL . then

8 Koo = K5

9 assign the index of RSP of the library to indexgr ;

10 end

11 end

According to Algorithm 2, the feature extraction includes the multi-level histogram calculation and
other assignment operations. The latter is trivial for the time complexity, and the histogram calculation
is the major contributor to the complexity. For a feature extraction scheme with spatial resolution level
L, we can obtain the highest spatial resolution level (I = L) histograms, while the lower levels can be
simultaneously generated by summation operations. Therefore, the complexity is mainly concentrated
on the calculation of the highest level histograms. Suppose we have the quantile level M; the time
complexity of feature extraction is:

Ty =O(MN) 9
where N is the spectrum dimension. If we adopt the binary-search method in the quantization process,
T’ then becomes:

Ty = O(logy, M N) (10)

Actually, for dimension reduction purpose, M is usually small (M << N). Thus, log, M << N,

and then, we have:
T; = O(N). (1)

e Analysis on T:

When the feature extraction is completed, the output features can be contained by a vector, which has
the dimension of M ) ZL: o 2. According to Algorithm 2, the complexity of the similarity calculation is:

L
T.=0(M) 2 (12)
=0

where M ZzL:o 2! is a constant. For dimension reduction purposes, M ZZL:() 2! is far smaller than N.

Thus, the complexity can be expressed by:

T, = O(1) (13)
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Similarly, we investigated the complexity of the four compared methods, including BC, SFBC, SDFC
and CF (see Table 1). The results show that CF and the proposed method are superior to the others,
especially in the complexity of similarity calculation. Note that we also denote the complexity of the
encoding phases of BC, SFBC and SDFC as 7.

Table 1. Time complexity comparisons. SFBC, spectral feature-based binary coding; SDFC,
spectral derivative feature coding; CF, crosscut feature.

Algorithm Ty Ts
BC O(n) O(n)
SFBC O(n) O(n)
SDFC O(n) O(n)
CF O(n) O(1)
The proposed method O(n) O(1)

6. Experimental Setup

6.1. Datasets and Settings

In order to validate the feasibility of the proposed method, we conducted the experiments with 2
spectral libraries (the Advanced Spaceborne Thermal Emission Reflection Radiometer (ASTER) [43]
and the Environmental Protection Agency (EAP) [44] spectral libraries), which are taken as the reference
spectral libraries. The dimensions of spectra from ASTER and EPA spectral library are 42,861 and
32,000, respectively. There are 1432 types of materials in the ASTER dataset and 384 types of
materials in the EPA dataset, respectively. Additionally, we evaluate our method on all of the spectral
signatures contained in the datasets. Figure 4 shows the 5 spectra of solid man-made materials in the
ASTER dataset, and Figure 5 shows the 5 spectra of compound 1,1-dimethyl hydrazine with different
concentrations in the EPA dataset.

Reflectance

1000 1500 2000 2500 3000 3500 4000 4500 5000
Wavenumber(cm'l)

Figure 4. Five spectra of solid man-made materials in the ASTER dataset.
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Figure 5. Five spectra of compound 1,1-dimethyl hydrazine with different concentrations in
the EPA dataset.

The four compared methods are as follows: BC [26], SFBC [29], SDFC [25] and CF [13]. According
to the experiments in [13], M = 20, s = 20 are validated as the optimal settings. Thus, we choose these
settings for the following experiments for CF.

An experiment is conducted for the proposed method with different parameter settings to choose the
optimal one in advance. In detail, we iteratively pick each spectrum from the two libraries to classify
20 times, respectively. Then, we calculate the average accuracy 7,,. To simulate the actual situation
in applications, at first, we add noise to the picked spectrum, then we remove the noise according to
the algorithm in [45]. The result is shown in Table 2. Therefore, the parameter setting we chosen is
M = 30, L = 3 for the following experiments.

Table 2. Performance comparisons of the proposed method with different parameter settings.

Parameter Setting nZFPA(%) nASTER(%)

M=10,L =1 91.67 99.23
M =10,L =2 93.75 99.44
M=10,L=3 93.23 99.58
M=20,L=1 91.15 99.37
M=20,L=2 92.19 99.86
M=20,L=3 92.71 99.72
M=30,L=1 92.71 99.51
M =30,L=2 93.49 99.65
M =30,L=3 94.01 99.93

6.2. Experimental Method

For each compared method, we iteratively pick each spectrum from the 2 libraries to classify 20 times,
respectively. Then, we calculate the average accuracy 7),, and average time consumption %,,.

To validate the robustness of all of the methods, before classification, we add different level of noise
to the spectra to classify. Specifically, the spectra picked from the 2 spectral libraries are added to the



Sensors 2015, 15 15881

noise of SNR = 45, 50, 55 dB. When noise is added to the spectra, a normalization process is needed.
We use the normalization method as follows:

v — min (v)

(14)

Vnormalized = max (’U) _ in (’U)

where v denotes the original spectral vector. max (v) and min (v) denote the maximal and minimal
entry of v, respectively. Besides, to guarantee that the average accuracy results are robust in the sense of

statistics, we analyze the standard deviation:

20

1
I i — 11)2 15
7=\ 55 ;(x ) (15)
We use o*STER and oFPA to denote the standard deviations for ASTER and EPA experiments,
respectively. Note that we do not make a similar analysis on time performance experiments, because

the time consumption of each algorithm is nearly constant and the deviation is trivial.
7. Results and Discussion

7.1. Classification Accuracy

Tables 3-5 illustrate the results of the experiments for the accuracy comparisons. The BC method
shows good accuracy performance under different noise levels. Here, the BC method we used is the
traditional binary coding algorithm with just one threshold, which is set to the mean of the entire spectral
radiation value. The BC method also shows good robustness to noise. The accuracy gaps between
different noise levels are not sharp. As we know, the main reason to explain why the traditional method
has good performance in the experiments is that the noise we added is additive white Gaussian noise,
while the threshold of BC uses the mean value to improve SNR, so as to reduce the negative effect of
noise. Moreover, the accuracy performance of BC has obvious differences between ASTER and EPA
spectral libraries. The results with the ASTER spectral library are better than those of the EPA spectral
library. This is because the profiles of ASTER spectra are relatively smoother than those of the EPA’s
spectra. If the profiles of the spectra have too many steep and large slopes under a low SNR situation,
the noise could affect the coding process, which may cause the problem that a correct binary bit could
be turned into a false one.

The SFBC method generally has better accuracy performance than the BC. This is because the SFBC
includes the BC coding binary bits while using extra binary bits to describe the inter-band information.
The extra bits include the slope bits and the mean derivation bits, which describe the slopes between
bands and the variations of amplitude about mean derivations, respectively.

The SDFC method has the poorest accuracy performance in the experiments. This is because the
SDFC includes the BC method while using extra binary bits to describe the derivative information. The
noise we added is additive white Gaussian noise, which could make the derivate bits jitter and disable
the extraction of the band-wise information.

The CF shows good results, but without good robustness. It uses a number of equally-spaced

horizontal lines to intersect with the spectral curve and takes the total of intersections for each line.
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Finally, the total intersections over each line compose a vector, which is taken as the feature of the
spectrum. The spectral discrimination between two spectra can be executed by measuring the ED
between the feature vectors of the two spectra. Due to the dimensionality reduction via the feature
extraction process, this method has low complexity, which can be used in high real-time applications,
and it also has decent classification accuracy according to the experiments. However, it has some critical
flaws. First, the distance measured by the ED is sensitive to noise, and the threshold needs a sophisticated
design. Second, if the spectrum is smooth and relatively monotonous, there may be few intersections,

which could a decrease in the robustness of the method.

Table 3. Accuracy comparisons of different algorithms with the 2 datasets and SNR =45 dB.

Algorithm nEPA (%) oA (%) nASTER(%)  oASTER(%)
BC 88.37 0.20 99.16 0.03
SFBC 89.38 0.20 99.58 0.02
SDFC 78.13 0.25 41.90 0.05
CF 79.17 0.10 99.51 0.01
The proposed method  89.58 0.10 99.60 0.01

Table 4. Accuracy comparisons of different algorithms with the 2 datasets and SNR = 50 dB.

Algorithm nEPA (%) oFPA(%) nASTER(%)  oASTER(%)
BC 92.45 0.23 98.81 0.03
SFBC 89.84 0.19 99.37 0.03
SDFC 73.44 0.21 43.36 0.02
CF 91.66 0.16 99.59 0.01
The proposed method 94.01 0.05 99.93 0.01

Table 5. Accuracy comparisons of different algorithms with the 2 datasets and SNR = 55 dB.

Algorithm nEPA (%) oA (%) nASTER(%)  oASTER(%)
BC 97.40 0.18 99.30 0.02
SFBC 95.83 0.16 99.86 0.02
SDFC 86.46 0.19 45.88 0.03
CF 96.88 0.08 99.72 0.01
The proposed method ~ 97.40 0.05 99.93 0.00

The experiments for accuracy performance validation demonstrate that the proposed method has
the best classification accuracy and robustness in different noise levels for the two datasets. This is
because we select the proper quantile levels to improve the robustness to noise, which is discussed in
Section 5. Furthermore, the standard deviations at different SNRs are superior to those of other methods,
which shows that our method has the highest robustness in the sense of statistics.
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7.2. Real-Time Performance

Table 6 illustrates the results of the experiments for time consumption comparisons. BC, SFBC
and SDFC are point-wise coding scheme-based methods. Thus, every band of the spectrum should
be encoded as one or more binary bits (if the dimension of a spectrum is N, the encoded binary bits
are N, 3N — 4, 3N — 4 via BC, SFBC and SDFC, respectively). Therefore, the data dimensions of
spectra are not reduced through these methods, which are time consuming. The CF has good real-time
performance, because the data dimension is significantly reduced by the feature extraction. Then, the
matching process is conducted based on the feature discrimination, which has low dimension. As the
highlight of the method, the time consumption is about 100-times lower than that of BC, SFBC and
SDFC. Comparing with CF, the proposed method reduces 0.6% and 35.9% of the time for the EPA and
ASTER datasets, respectively.

Table 6. Time consumption comparisons of different algorithms with the 2 datasets.

Algorithm tEPA(ms)  tASTER (1)
BC 2311.85 9422.01
SFBC 2351.65 10,067.12
SDFC 2440.47 9976.25
CF 21.98 58.25
The proposed method 21.85 37.33

Note that, according to the analysis in Section 5.2, all methods have the same time complexity in
feature extraction phases. Actually, in the experiments, the time consumption of the feature extraction
phase of the proposed method ¢, is slightly higher than that of BC and CF. This is because our method
needs multi-scale processes in both spatial and radiation fields, which takes more time for summation
and search operations. In the similarity calculation phase, the proposed method shows its advantages,
because the complexity does not increase with /N. Although CF has the same complexity as the proposed
method, the actual time consumption is higher than that of the proposed method. This is because CF
needs to calculate the ED, which suffers a lot of multiplication operations, while the proposed method

just needs summation operations.

8. Conclusions

In this paper, we analyzed the high dimension and noise problems caused by the increase
of the spectral resolution in ultra-spectral technology, which probably decreases the classification
performance. To address these issues, we proposed a real-time method for infrared ultra-spectral
signature classification based on SPM. Experimental comparisons on two publicly-available datasets
demonstrate that the proposed method can effectively improve the real-time classification performance
(the time consumption is about 100-times lower than that of traditional methods) and robustness to noise.
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