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Abstract: In this paper, a new algorithm to improve the accuracy of estimating diameter at 

breast height (DBH) for tree trunks in forest areas is proposed. First, the information is 

collected by a two-dimensional terrestrial laser scanner (2DTLS), which emits laser pulses 

to generate a point cloud. After extraction and filtration, the laser point clusters of the 

trunks are obtained, which are optimized by an arithmetic means method. Then, an algebraic 

circle fitting algorithm in polar form is non-linearly optimized by the Levenberg-Marquardt 

method to form a new hybrid algorithm, which is used to acquire the diameters and 

positions of the trees. Compared with previous works, this proposed method improves the 

accuracy of diameter estimation of trees significantly and effectively reduces the 

calculation time. Moreover, the experimental results indicate that this method is stable and 

suitable for the most challenging conditions, which has practical significance in improving 

the operating efficiency of forest harvester and reducing the risk of causing accidents. 

Keywords: hybrid circle fit algorithms; diameter at breast height estimation;  

two-dimensional terrestrial laser scanner 
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1. Introduction 

In forestry, Light Detection and Ranging (LiDAR) devices are often used for remote sensing 

applications to record inventory parameters that can describe the state of forests. Besides traditional 

satellite laser scanning (e.g., ICESat-GLAS) [1,2] and airborne laser scanning (e.g., SLICER, LVIS) [3,4], 

small and portable terrestrial laser scanning (TLS) devices, which can be mounted on a static tripod or 

transported by a forestry vehicle, have been readily introduced into the field [5]. For forestry resource 

survey purposes, TLS has generally been a fast, efficient and automatic tool for determining  

basic properties and structural parameters of forests such as discrimination of plant components [6],  

stem count density [7], three-dimensional forest reconstruction [8], canopy height modelling [9], 

chlorophyll level measurement [10] as well as variables recognition [11]. Especially, the living-tree 

diameter at breast height (DBH) is the basic parameter in forestry resources surveys [12] and is a good 

predictor for many features of interest (e.g., above-ground biomass) [13,14]. Measuring the diameter of 

tree trunks is inherently related to the location and regeneration of the living trees and obstacles [15], 

thus a solution strategy to the advanced measurement and perception system for enhancing the 

automation of forestry vehicles such as forest harvesters [16]. A typically application is a forestry 

machine carrying a 2D laser scanner using simultaneous localization and mapping (SLAM) algorithms 

to create local tree maps of the environment in real-time [17,18]. The resulting maps, which are based 

on the estimated position and diameter of the trees, would be used for autonomous navigation, 

including path planning and obstacle avoidance [19]. This will improve various semi-autonomous 

functions including positioning the harvester head and selecting trees automatically, thus relieving the 

pressure of the operator [20,21]. In other words, DBH is important in the forestry area both for 

traditional remote sensing applications and advanced automation solutions. 

A large number of experimental studies have confirmed the potential of TLS to successfully extract 

the DBH as mentioned. All of these have investigated the tree trunk diameter with three-dimensional 

terrestrial laser scanners (e.g., Faro LS 800, Riegl LMSZ420i, Leica HDS6000). As DBH is defined as 

the diameter 1.3 m above the finished grade at the end of the trunk, a horizontal slice with a thickness at 

a height of 1.3 m above the representative ground point is cut from a high resolution 3D point cloud in 

the usage of 3D terrestrial laser scanners. Then an adjusting circle is fit into the 2D projection of the 

points of that slice to estimate the DBH as well as location, and high level tree features [7,12]. 

However, 3D scanners are expensive and impose hardware limitations in laser data processing, which 

makes them unsuitable for the real-time diameter-measuring equipment used by forestry harvesters and 

their autonomous navigation. In the experiments on forestry harvesters, the processes of feeling, 

delimbing, peeling, and cutting-in-length can be completed fast, but during the process of the alignment 

of the harvesting head to capture the trunk, the operator has to perform repeated observations, 

judgments and operations due to the complex forestry environment and the continual vibration of the 

vehicle, which lead to time and fuel losses and reduce the logging efficiency [22]. Therefore, it is 

significant to find an efficient and fast method to confirm target trees for the harvesting head to achieve 

automatic capture. This leads to the fact that low-cost and robust 2D terrestrial laser scanners has been 

successfully used to obtain the point cloud of the surrounding trees for a better price-performance ratio 

in logging operations. For estimating the diameter information of tree trunks from TLS data accurately, 

a large number of related studies have been carried out. 
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A standard pattern recognition method with a Hough-transformation was applied by Aschoff and 

Spieker [23] to detect the trees and extract the features. The diameter of a tree is determined as an 

adjusted circle and adjusted ellipse. By using the circle fitting algorithm, better results were produced 

concerning their arithmetic mean and their maximum in comparison to the ellipse fitting. Therefore 

other researchers have looked beyond the ellipse mode, seeking efficient and high-accuracy circle fitting 

algorithms for estimating the DBH based on the 2D laser data. For instance, some apply geometric 

distances from the circle center to the detected cluster points to estimate the trunk diameter, which is 

defined as geometric fit [24]. The two triangle diameter estimation (TDE) is a fundamental geometric 

model for living-tree diameter estimation (STDE) in the application of 2D laser scanners. This method 

uses two right-angled triangles (TDE) to confirm the center point of the fitting circle and the tree trunk 

diameter, with the shortest range and angular resolution of the laser scanner in the original work [25]. 

To improve the accuracy of the measuring system, the first and the last cluster with the resolution of 

the laser scanner based on viewing angle were proposed by Jorma to estimate trunk diameter [26]. 

Others methods have been developed to match laser data as circles for estimating a trunk diameter. 

Those geometric fitting approaches aim at minimizing the error between the sum of the squares of the 

distances of laser points and the radius of the fitted circle. There exist various numerical algorithms  

to find the circle that best fits a given set of measured laser data pairs. The problem of solving the 

equation of a circle is restated by Wang [27] as a linear least square fitting (LST) problem, which 

estimates the DBH quickly and accurately. In order to improve the time consumption of calculations 

compared with the LSF algorithm, the Fletcher-Reeves conjugate gradient algorithm (FR) is applied  

to calculate the radius and center locations of the trunks in the scanning range. This method was 

validated through experiments of automatic trunk capture for the harvesting head [28]. Similarly, the 

Polak-Ribiere-Polyak conjugate gradient algorithm (PRP) is also described as a circle fitting procedure 

for 2D laser point clouds. The method meets the requirements for the automatic selective cutting of the 

logging harvester [29]. 

However, a major concern in geometric fitting is that the minimization algorithms require iterative 

and computationally intensive numeric schemes. Thus the algorithm estimating the DBH fits an algebraic 

equation to represent a circle. Corresponding algebraic fitting methods such as the Kasa algorithm are 

non-iterative and thus faster than geometric fitting as reported in [30]. Here the residual tree stems in 

the layers are mapped as circle rings, which are detected by using a Hough-transformation method and 

fitted as circles accurately by using the Kasa algorithm. On the other hand, it has been found that the 

accuracy of the Kasa fitting suffers in cases when the observed points do not represent complete circular 

arcs [31]. Thus, several modifications have been developed to overcome this limitation in single scan 

mode. The algebraic-based algorithms Pratt and Taubin are tested to circle fit the DBH accounting for 

the incomplete laser circular representation [32]. 

Nevertheless, their performances strongly depend, among other factors, on the choice of the initial 

laser data of the 2D laser scanner (2DLS). When a single 2DLS laser pulse is sent out and reflected by 

an object surface within the range of the scanner, the elapsed time between emission and reception of 

the laser pulse serves to calculate the distance between the object and the 2DLS [33]. Since the 

reflectivity is based on the material and position of the various objects, a ranging error exists in a forest 

raw point clouds, which causes a loss of accuracy in estimating the DBH severely in circle fitting. 

Therefore, robust estimation techniques allow gross errors in the data points to be eliminated, which 
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may for instance be caused by leaves, twigs, neighbouring shrubs or instrument errors, thus warranting 

high reliability of the measuring system. Since a laser scanner typically generates several scans per 

second with a frequency of around 50 Hz, it is possible to combine multiple scans even for mobile 

applications. In consideration of the laser scanning data error caused by the laser beam width, the 

circle fit algorithms combined with beam width compensation by fusing multiple scans (CFAA-MS) 

was chosen to modify outer points and all tree cluster points in order to adjusting the diameter 

estimation [34,35]. 

However, a systematic study of the factors which influence the accuracy of information extracted 

from laser data DBH estimation algorithms is still lacking, even though the need for such analyses is 

already formulated at quite an early stage. To solve this problem, this paper investigates the possibility 

of using enhanced algorithms with polar parameters to estimate the diameter of tree trunks by using 

2DLS data. This work applies the algebraic fit method to linearly fit the discretely distributed laser points 

as a circle to form the initial guess. Then the Levenberg-Marquardt scheme is selected to minimize the 

algebraic distances from the contour points to the resulting circle nonlinearly. After cluster extraction and 

filtering, this hybrid algorithm uses the arithmetic mean method based on multiple scans to adjust the 

original laser points for obtaining a higher accuracy in the diameter estimation. From the comparison 

results, this proposed method improves the accuracy of DBH estimation and effectively reduces the 

calculation time, which is also affected weakly by the harsh environment puzzling the drivers and 

suitable for the challenging conditions in forestry. 

The rest of this paper is as follows: Section 2 briefly addresses algorithms for 2D point cloud 

segmentation and a new algorithm to improve the accuracy of 2DLS. Section 3 presents the principle and 

notations of our new circle fit method for DBH. Compared with related methods, experimental results 

obtained in a number of pilot studies will be analyzed in Section 4. Lastly, Section 5 concludes the 

algorithm presentation in this paper. 

2. Experimental Description and Trunks Feature Extraction 

2.1. The Experimental Facilities 

For continuous accurate measurements rapidly, a LMS511-pro type 2D laser scanner produced by 

the SICK Company (Waldkirch, Germany) is used as the essential sensor to build the system for 

measuring the DBH parameter of living-trees in forest areas. The measurement data corresponding to 

the surrounding contour scanned by the LMS511-pro is output in hexadecimal format to form the raw 

point cloud via the Ethernet interface at the rate of 100 Hz. A computer having a conventional 

Windows 7 operating system installed is applied to link with the 2D laser scanner and analyze the 

measurement data, which are stored exclusively for post-processing. In the PC, the actual data 

acquisition and analytical software is programmed with M language to set the operating parameters of 

the laser scanner and handle the laser data in offline model by using Matlab 2012b. 

To acquire abundant tree features with adequate resolution from the laser cloud measurements taken 

in the forest, the scanning angular resolution of the LMS511-pro is set to its minimum value 0.1667°. 

Then the maximum scanning angle is set to 100° and maximum scanning distance is 32 m. Therefore, the 

measurement result of LMS511-pro laser scanner is a right ahead semicircle in the front of the device, 
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while its centre is the scanner’s location, the radius is 32 m and the scanning degree is 100° in a range 

from 40° to 140°. The electronics of the LMS511-pro are directly powered by a 24 V lithium battery. 

In order to recording the corresponding visual information, a Fluke TI55 type infrared thermal camera 

with images of 640 × 480 pixels resolution is mounted on the side of the laser scanner. This device can 

obtain both RGB visible and infrared thermal images simultaneously and regularly. Visible images 

reflect the visual reality and infrared thermal images record the temperature of the environment. 

Because of the complicated surroundings in a forest, it is difficult to detect targets guided by any single 

information source. When it is dark or misty in the forest, it becomes difficult to distinguish the objects 

in the RGB images without information about temperature, whereas after a period of extensive cooling 

(e.g., after a long period of rain or early in the morning), the infrared images are less detailed in 

representing the background due to the low thermal levels compared with visible images. In this 

situation, the fusion of the visible and thermal image on a single display could enhance the fused images’ 

clarity and capture more abundant information about the reality. Therefore, an algorithm based on a 

Contourlet transform and a pulse coupled neural network (PCNN) is used to generate the mutual 

complementary blending images (the detail description can be found in [36]). Considering that the 

outdoor experiments are carried out in different places, this paper will apply those fused images to track 

both the pose of the laser scanner and the measured trees, which will establish a corresponding 

relationship between the fitted diameter data and the corresponding observed diameter for further 

accurate data processing. The complete measurement equipment setup is shown in Figure 1. 

 

Figure 1. The measurement equipment includes sensor equipment fixed on the tripod 

platform as well as the data acquisition PC and lithium batteries providing 24 V for the 

system. The experiment is used in a birch forest. 

To measure the DBH of living-trees in a real forestry environment, outdoor experiments were carried 

out in birch forest located in the Peking Olympic Park. In our experiments, the 2D laser scanner is fixed 

on a tripod with telescopic legs as seen in Figure 1. The laser scanner sends and receives the laser beams 

reflected by tree trunks or other objects to form a fan-shaped scan, which is represents the surrounding 

area as shown in Figure 2. Here the height of the scanning plane is equal to about 1.3 m from the ground, 

as measured by a tape. This leads to better results because the understory and other uninteresting objects 

lie below the scanning plane in this experiment. The equipment was placed at different 15 places and  
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60 trees were nearly totally scanned. In order to completely demonstrate the procedure of laser data 

optimization and DBH estimation, only the raw laser clouds at the position with the eight silver birches 

are presented in the experiment results using real data. Those targets are applied to reveal the DBH 

estimation error fitted by the hybrid algorithm in contrast with the manual work. The actual laser data 

is shown in the Figure 2, and the images obtained by the thermal camera are seen in Figure 3. 

However, all 60 targets measured are used to confirm the excellence of the proposed method compared 

with other algorithms in the comparison part. 

 

Figure 2. The raw laser data scanning result. 

 
(a) (b) (c) 

Figure 3. The corresponding visual information of the forest area: a visible image (a); an 

infrared thermal image (b); a fused image with clarity enhanced and more abundant 

captured information (c). 

In order to increase the target quantity, a further outside and indoor simulation is performed to reveal 

the influence of the distance and diameter on the diameter estimation error. For each abovementioned 

birch, the 2DTLS scanned all eight targets at a distance ranging from 2 m to 12.2 m every 0.6 m to the 

tree. Then, thirteen tree trunk sections with diameters in the range of 9–35 cm and lengths in the range 

of 40–49 cm are used in the indoor experiment. They are also placed at distances from the 2DTLS 

varying between 2 m and 12.1 m in 0.3 m steps. The diameter range and length of the trunks are recorded 

in Figure 4 and Table 1. In total, 378 sets of laser data integrating the outside and indoor measurement 

experiment are scanned to calculate the diameter error for a better statistical consequence. 



Sensors 2015, 15 15667 

 

 

Figure 4. The thirteen tree trunks and the indoor experimental scene. 

Table 1. Tree species, diameter range and length of the trunk sections scanned in the experiment. 

Species Diameter Range (mm) Length (mm) 
Weeping willow (Salix babylonica) 173.6–178.2 470.8 
Weeping willow (Salix babylonica) 264.2–279.4 401.4 
Weeping willow (Salix babylonica) 310.9–347.5 433.2 
Weeping willow (Salix babylonica) 243.2–250.4 427.1 
False acacia (Robinia pseudoacacia) 225.8–227.2 429.6 
False acacia (Robinia pseudoacacia) 147.8–148.4 452.4 
False acacia (Robinia pseudoacacia) 296.2–310.5 416.1 
False acacia (Robinia pseudoacacia) 235.8–256.4 482.6 
Abele (Populus alba) 259.0–266.2 411.5 
Abele (Populus alba) 158.4–160.8 416.1 
Abele (Populus alba) 197.2–198.1 420.5 
Abele (Populus alba) 294.4–316.1 429.4 
Silver birch (Betula platyphylla) 99.4–101.8 408.8 

2.2. Clustering, Filtering and Extracting the Trunks 

As the measurement data is processed in increasing order of the bearing angle from 40° to 140° 

with the chosen angular resolution, a vector Li = [Di, θi] in polar form is supposed to describe the 

single laser beam, where i is the sequence of laser beam distribution from 1 to 601, θi is the angular 

position and Di is the value of the horizontal distance between the laser reflecting point and the device. 

Before filtering, the raw laser data are passed through the clustering algorithm based on difference 

calculation to form a difference vector satisfying the following equation: 

( ) ( 1) ( )D i D i D iΔ = + −  (1)

where ∆D(i) is the new difference vector representing the range between two adjacent laser beams Li 

and Li+1. As shown in Figure 5, dramatic changes will occur in the value of the difference vector when 

the edges of objects are detected in the original laser data [37]. After calculation of the difference, the 

independent objects are separated from the background in the vector curve as follows. 
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Figure 5. The schematic of the difference calculation for clustering the raw laser data. 

Then the values of vector are compared with the depth threshold ∆Rmax, which is the allowed 

difference in ranges inside a cluster. If two neighbouring differences ∆D(m) and ∆D(n) satisfied the 

constraint as follows, the laser cloud clusters will be selected for further disposition: 

max( ) ; ( ) ;max min maxD m R D n R N < n - m < NΔ > Δ Δ < −Δ  (2)

where Nmin is the smallest acceptable width of the cluster and Nmax is the related greatest acceptable width 

of the cluster. Those laser points from the m-th to the n-th belong to the cluster and the others belongs to 

the background or another cluster.  

Using Equation (2) is certainly effective and sufficient for extracting laser clusters of targeted trunks 

from the point cloud in a forest with a few bare living-trees. However, the laser beam may be reflected 

by uninteresting things such as branches, stones or the ground in a more complex environment, which 

causes measurement errors in the point cloud. Thereby, the incorrect points clustered from the raw laser 

cloud should be filtered out with some detective criteria to obtain the actual trunk clusters. Here the 

filtering is performed by testing the curvature of each cluster, which describes the diameter of the tree. If 

the feature width and the curvature inspection satisfy the constraints simultaneously, the clusters will be 

accepted as trunk features of living trees. The curvature values are calculated for each individual point 

l(j) (m < j < n) that has surrounding points as follows: 

l(j)= D(j+1)+ D(j -1)- 2D(j)  (3)

By using the curvatures of each point, the curvature of the whole cluster is calculated as follows: 

2

n

j m

min

l(j)

curv
(n - m)L

==


 

(4)

In the equation, Lmin is the minimum measured range of the cluster and j is the sequence of points in 

the cluster. For both the individual points and the whole cluster, the values must be greater than or 

equal to zero, which means the laser clusters all have a convex surface. Moreover, the measurement 

clusters also satisfy following criteria: 

0; 0; min maxl(j) curv curv < curv < curv≥ ≥  
(5)

where curvmin is the minimum curvature of the whole cluster and curvmax is the corresponding 

maximum limit, which prescribes the acceptable value scope of the trunk radius. Finally the laser data 

clustered by the acceptable width and depth in Equation (2) can filter out the ground or other 

uninteresting things with the above Formula (5). Considering that the distance between two trunks is 

large in the experiment, ∆Rmax is chosen as 0.8 m and the width of cluster is limited in the range of 3 to 
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50 based on the divergence of the laser scanner. Eventually, eight clusters can be confirmed as tree 

trunks from the raw point cloud after clustering and filtering as shown in Figure 6. 

 

Figure 6. The clustering and filtering result of the experiment in polar form. 

2.3. Laser Point Cloud Optimization 

According to the working principle of 2D laser scanners, the distance value of a laser beam is 

influenced by the reflectance of objects and the returned energy of the laser beam. In the actual process 

of a single continuous measurement, the laser reflection ability of various objects is not only directly 

affected by the coarseness and color of objects, but also influenced by the incidence angle and laser 

beam spot size. 

With the discrepancy of reflectivity and the change of the laser speckle, the size of the laser energy 

obtained by the measurement instrument is different in the same laser beam as time goes by. 

Therefore, the measuring value of the same laser beam are also disturbed by fluctuating errors like the 

temporal extension. This is the main factor affecting the measuring accuracy of a laser scanner in the 

application for DBH estimation. To confirm the range of the error, a white board is located in 2 m 

distance from center of the laser scanner and perpendicular to the 24-th laser beam. The measured 

distances for 100 scans are obtained to establish the relationship between multiple scans of an object 

and the corresponding frequency of occurrence as follows. 

 

Figure 7. Relation histogram of the measured values vs. to the corresponding frequency. 

As shown in Figure 7, the result indicates that the experimental distance values are normally 

distributed around a measurement value of 2000 mm approximately, which is equal to the actual 
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distance between the object and the 2DTLS. Since the error is distributed in different regions in the 

range of plus or minus 10 mm, the 95-percent confidence interval of this normal distribution of the fit 

is plotted in the histogram as follows: 

3 3im P m− ξ < < + ξ  
(6)

where the initial parameter values Pi represents the distant value of the i-th laser point measured by 
2DTLS. The mean or expectation of the distribution m  is confirm as 2000m =  and its standard 

deviation is ξ = 2. With the correlation matrix of the fit parameters being tabulated, the true distance 

values lie within the confidence interval with a confidence level of 95 percent. Considering that the 

expectation of multiple scanning data is approximate to the desired measuring data, the mean of the 

distance value of the same laser beam at different moments represents the expectation of the standard 

normal distribution, which is applied to reduce the fluctuating error. Thus the arithmetic mean method 

is applied to calculate the distance mean value, which is close to the actual distance value compared 

with the distance value of one single scanning datum at a random moment. N consecutive samples 

values are arithmetically averaged with mathematical expression as follows: 

1

1 N

i
i

P P
N =

=   (7)

where N is the number of scan times and P  is the arithmetic mean after optimizing. This algorithm 

reduces the fluctuant error of laser scanner data and promotes the initial raw laser data in a certain 

degree. With the noisy optimization of all laser beams, the estimation of the trunk diameter with the 

mean of several repeated laser scans is better than independent single estimates.  

3. Method of Hybrid Circle Fit 

After extracting and optimizing the trunk features from the point cloud, the trunk clusters are ready 

for the DBH estimation with the circle fitting algorithm. There exist a number of different methods to 

fit a circle and estimate its parameters [38]. However the best fitting arc of traditional methods depend 

on a Cartesian coordinates system. This is not suitable for measuring the laser scanner clouds, which 

are obtained originally in polar form. If the raw data points changed to the Cartesian coordinate form 

lie along a circular arc with low curvature, the best fitting circle would have a large radius R and a far 

deflected center, which do not fit the real situation. To avoid this problem, this paper uses the polar 

form to calculate the so-called algebraic circle fitting parameters. 

Another issue is that the accuracy of diameter estimation in the mentioned studies is severely 

influenced by the initial guess. If the initial guess is picked at random or disturbed by noise, the chance 

of divergence may be very high [39]. To resolve this issue, a new circle fitting algorithm is proposed to 

calculate the DBH in two steps. Firstly, the initial parameters of the fitted circle are confirmed by a 

non-iterative algebraic operation in polar form. Then the geometric distances from the measured points 

to the fitting circle are minimized to fix the initial guess in the Levenberg-Marquardt method with a 

modified convergence principle, which generally eliminates the non-linear errors [40]. 

For estimating the diameter with the new hybrid method, it is necessary to assume that the cross 

section of the living-tree is an ideal circle and there are at least three laser points in polar form located on  

the living-tree.  
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Similarly, we assume that the vector Pi = (licosα, lisinα) represents the position of every point in the 

trunk cluster in polar form, where li is the distance value of the i-th measurement and α is the 

corresponding azimuthal angle. Supposing that the expression O(Ox, Oy) = (ρcosθ, ρsinθ) represents  

the center of the fitting circle and its radius is assumed to be R, here (ρ, θ) is the distance and  

related angle of the circle center. Then, the vector Pi satisfies the fitting circle with polar coordinate  

as follows: 
2 2 2( cos cos ) ( sin sin )i i i iR l l= α − ρ • θ + α − ρ • θ  (8)

To obtain an initial guess for the circle center, the cost function E was minimized as follows: 

2 2 2

3

( , , R) 2 cos( ) R min
n

i i i
i

E l l
≥

ρ θ = + ρ − ρ α − θ − →  (9)

This equation can be solved by setting: 

;
3 3

2 2 cos( ) 0 2 sin( ) 0
n n

i i i i
i i

E E
l l

≥ ≥

∂ ∂= ρ − α − θ = = ρ α − θ =
∂ρ ∂θ   (10)

Simplify Formula (9) to get the initial parameters of the fitting circle: 

; ;3 3
0 0

3

2 2
0

3

sin cos( )
arctan( )

2cos

1
2 cos( )

2

n n

i i i i
i i
n

i i
i

n

i i i
i

l l

nl

R l l
n

≥ ≥

≥

≥

α α − θ
θ = ρ =

−α

= + ρ − ρ α − θ
−

 





 (11)

Once the initial guess for the circle center is ensured, we need to improve the circle for some 

definition of best fit against the points set. Using an iterative method for nonlinear least squares 

problems such as the Levenberg-Marquardt estimator based on the geometry distance between the 

points and the circle is a wise choice [41].  

To improve the circle fitting with an independent variable x of m parameters to a set of n data points 

ti = (li, ai), it is customary and convenient to minimize a given function F(x), which presents the sum of 

the weighted squares of the errors between the measured data di = (x, ti) and the curve-fit radius R: 

2

=1

min
n

i i 0
i

F(x,t ) d R= − →  (12)

where x = (ρ, θ, R) and 2 2( cos cos ) ( sin sin )i i i i id l l= α − ρ• θ + α −ρ• θ . To simplify the target 

function, a derived function i i 0f(x,t ) d R= −  is given to change the equation as follows: 

22

=1

1 1 1
( ) (x, ) (x) (x) (x) min

2 2 2

n
T

i i
i

F x f t f f f= = = →
 

(13)

Thus this general optimization problem can be solved by finding xmin to minimize f(x) equivalently: 

[ ]arg minminx F(x)=  (14)
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Providing that the function F is differentiable and f has continuous second partial derivatives,  

the function evaluated with perturbed model parameters may be locally approximated through a  

second-order Taylor series expansion as follows: 
2

min min( ) ( ) ( ) ( )f x h f x J x h O h+ = + +  (15)

where h is a random perturbation, and 
2

( )O h  is the sufficiently small term which can be omitted. J(x) 

is the Jacobian matrix that contains the first partial derivatives of the function components as follows: 

1 1 1( , ) ( , ) ( , )

(x)
( )=

( , ) ( , ) ( , )n n n

f x t f x t f x t

R
f

J x
x

f x t f x t f x t

R

∂ ∂ ∂ 
 ∂ρ ∂θ ∂ ∂ =  

∂  ∂ ∂ ∂ 
∂ρ ∂θ ∂  

    (16)

As regards F, its partial differential is expressed as: 

'

3

(x)(x)
( ) = (x) ( ) (x)

n
Ti

i
i

fF
F x f J x f

x x≥

∂∂= =
∂ ∂  (17)

Similarly the Hessian of F in position (j, k) is: 

2
'' ''

1

(x) (x) (x)
(x) ( , ) (x) = ( ) ( ) (x) (x)

n n
Ti i i

i i i i
i r ij k j k

f f f
H F x t f J x J x f f

x x x x≥ =

 ∂ ∂ ∂= = • + + ∂ ∂ ∂ ∂  
   (18)

This shows that F is approximately quadratic in the perturbation h, finding the perturbation hlm to 

minimize the function F as: 

min
min

( )
-2 ( ) ( ) 2 ( ) ( ) 0T T TF x h

f x J x h J x J x
h

∂ + ≈ + =
∂

 (19)

The resulting normal equations for the Levenberg-Marquardt perturbation are: 

with ( ) ( ) , ( ) (x), 0T T
lmJ x J x I h g g J x f + μ = − = μ >   (20)

where small values of the algorithmic parameter μ result in a Gauss-Newton update and large values of 

μ result in a gradient descent update. The parameter μ is initialized to be large. If an iteration happens 

to result in a worse approximation, μ is increased. As the solution approaches the minimum, μ is 

decreased, the Levenberg-Marquardt method approaches the Gauss-Newton method, and the solution 

typically converges rapidly to the local minimum. 

The stopping criteria for the algorithm should reflect that at a global minimizer, thus the LM 

algorithm terminates when at least one of the following conditions is met: 

(1) The magnitude of the gradient of JT(x)f(x) drops below a threshold δ1: 1(x) (x)TJ f δ≤  

(2) The error f(x)Tf(x) drops below a threshold δ2: 2

(x) (x)

1

Tf f

n m
δ≤

− +
 

(3) The relative change in the magnitude of hlm drops below a threshold δ3: 3/i ih x δ≤  

(4) A maximum number of iterations Kmax is completed safeguard against an infinite loop: K ≥ Kmax. 
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Otherwise, iterations terminate when the iteration count exceeds a pre-specified limit. In our 

experiment, Kmax is set to 1000 and the initial threshold δ1 = δ2 = 10−4, δ3 = 10−5 consequently, faster 

convergence can be expected. The optimized estimation of the DBH and other trunks’ parameters in 

the horizontal plane can be calculated via this hybrid circle fit algorithm. For detailed explanations of 

the LM method, readers should refer to [42].  

Finally, the overall data analysis flow of the equipment for the measurement and calculation of the 

tree parameters is shown in Figure 8. It is mainly divided into six consecutive phases. The first phase is 

fusing the visible and thermal image to track the pose of 2DTLS and the trees. Then 2DTLS scans the 

trees in the forest area continuously and projects the raw point cloud onto a horizontal scanning plane 

according to the angle resolution. The third phase is clustering trunks in difference vectors and filtering 

the invalid scanning data against some criteria of curvatures calculation, then extracting each trunk 

from the calibrated point cloud. Furthermore, those multi-scanned laser data are optimized in an 

arithmetic mean algorithm for reducing the fluctuating errors of the laser scanner data. The fifth phrase 

is determining the trunk diameter and location of the trunks in the proposed method for the harvesting 

head. Lastly, compared with related works, the sixth phrase is storing and displaying the results and 

graphing the useful information on the human-computer interface. 

Fuse the visible 
and thermal image

2DTLS scans trees 
in the forest land 

continuously 

Track the pose of
 2DTLS and trees

Cluster in difference vector, 
Filter in  curvatures calculation, 
and Extracting the trunks from 

the original laser data

The raw 
laser clouds

Optimize the 
Laser data in 

arithmetic mean

Multi-scanned 
clusters of trunks

Fit the diameter and 
the location of trunks 
in hybrid algorithm

Store , display and 
graph the result

Compare with 
related methods

 

Figure 8. The analysis flow of DBH estimation with 2DTLS data for the harvesting head. 

4. Experimental Results and Discussion 

4.1. Experiment Results with Real Data 

The trunk feature extraction process presented in the previous section was programmed in 

MATLAB. All of the calculation results such as radius, location of the trunks and distances between 

adjacent trunks could be displayed on a human-computer interface for the researchers’ use.  

In the experiment, there were eight fitted circles representing living-trees chosen to estimate the  

trunk parameters in this proposed method in contrast with manual work. Supposing the measurement 

base point the origin of laser scanner in the polar form, the fitting results of the trunk point cloud (red 

points) are shown as the blue circles in Figure 9 and the centres of the circles were marked by the 

green five-pointed stars. 

The parameters of the trunk could be extracted from the point cloud with the new fitting algorithm, as 

shown in Table 2. In addition, several contrast parameters were also selected to verify the high accuracy 

of the new algorithm proposed in this paper as shown in Table 2.  
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Figure 9. The fitting results of the trunk with laser clouds acquired by 2DTLS. 

Table 2. Parameters of the trunks acquired by different methods and the corresponding error. 

Sample Manual New Algorithm Error 

 
Center Location 

(mm) 

Radius 

(mm) 

Center Location 

(mm) 

Radius 

(mm) 

Central Angular 

Deflection 

(degree) 

Central 

Distance 

Deflection (mm) 

Radial 

Absolute 

Error (mm) 

Radial 

Relative 

Error (%) 

Tree first (−275.4, 1986.1) 96.89 (−273.5, 1987.9) 97.611 0.061 1.557 0.721 0.744 

Tree second (20.2, 1984.3) 78.21 (18.6, 1973.5) 75.534 0.043 10.829 2.676 3.421 

Tree third (288.6, 1990.6) 54.22 (285.3, 1972.6) 53.233 0.00057 4.276 0.987 1.821 

Tree fourth (−9260.3, 8302.7) 146.315 (−9249.3, 8285.7) 155.331 0.024 19.562 9.016 6.162 

Tree fifth (−3200.5, 8282.5) 134.205 (−3190.5, 8282.5) 130.082 0.060 3.604 4.123 3.072 

Tree sixth (2722.9, 8335.1) 127.61 (2727.7, 8328.0) 131.496 0.044 5.307 3.886 3.045 

Tree seventh (3913.9, 7502.5) 143.82 (3922.9, 7492.7) 146.877 0.084 4.544 3.057 2.126 

Tree eighth (8802.7, 8172.0) 156.52 (8812.3, 8170.1) 148.545 0.038 5.709 7.976 5.096 

The manual measurement values of the central location and radius of the trunk were also given in 

the 1st and 2nd column of Table 2, which were acquired manually by a range finder and a Vernier, 

respectively. The error values were evaluated for systematic bias between the manual measurement 

centres and the estimated results via the hybrid algorithm in the 5th and 6th column, whereas, the 7th and 

8th column gave the absolute error and as relative percentage error of radius to analyze if the diameter of 

the fitting circles was significantly separated from the manually measured value. Absolute error was 

calculated as the absolute value of the difference between estimated and observed diameter, while the 

relative percentage error was calculated as the absolute error divided by the observed diameter and 

then multiplied by 100. The errors were mainly caused by the resolution and systematic errors of the 

laser device and its related interaction effects of the new algorithm. The detailed results within all 

samples were shown as follows: as shown in Table 2, the angular deflections of the center locations 

were nearly the same for all targets, which were less than 0.1 degree, but the distance deflections of the 

center location were significantly increased as the distance between the base point of the laser scanner 
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and the trunk increased. The maximum error of distance deflections was obtained for the fourth tree, 

which indicated that a stout tree with large diameter resulted in higher errors than a slender tree at the 

same distance. Moreover, the absolute error and the relative error of radius were also influenced by the 

trees’ real diameter and the distance to the tree. The max radial error of the calculation was less than 

10 mm at nearly 13 m, which met the requirements of the accuracy for logging harvesting operations 

and other mobile applications in a forestry environment. 

4.2. Comparison 

To evaluate the effect of circle fitting optimization and beam improvement with multiple scans, the 

proposed algorithm was analyzed in a series of computer tests by comparing the results with those 

obtained with other methods. As competitors, two triangle diameter estimation (TDE) methods 

described in [23] was chosen. Then the circle fit algorithms combined with beam width compensation 

by fusing Multiple Scans (CFAA-MS) in [34] was also chosen to evaluate the diameter. Similarly, the 

least square fitting algorithm (LSF) in [26], Fletcher-Reeves conjugate gradient algorithm (FR) in [27] 

and the Polak-Ribiere-Polyak (PRP) conjugate gradient algorithm in [28] based on algebraic circle 

parameters were also selected to calculate the DBH. Here all 60 targets measured in 15 positions are 

used to estimate the parameters for confirming the excellence of the proposed method compared with 

other algorithms. 

To verify the feasibility of the proposed circle detection algorithm, Gaussian noises with mean 0 

and standard deviation 5 (mm) were also added to the trunk clusters in the radar slice plane detected by 

scanners, which were approximately the same as the observed noise distribution in sensors. The 

Gaussian noises were also independent among trials. Several contrast parameters were selected to 

verify high accuracy of diameter estimation with the new algorithm proposed in this paper as shown  

in Table 3. 

Table 3. Experimental result of new algorithm compared with related works. 

Parameter TDE LSF F-R PRP CFAA-MS New Method 

Average radial absolute error (mm) 13.976 8.341 5.761 6.599 5.894 3.655 

Max error of radius (mm) 26.089 13.078 11.469 12.716 10.805 8.579 

Average radial relative error (%) 12.125 7.486 4.707 5.683 5.253 2.893 

RMSE 15.671 8.913 6.748 7.277 6.465 4.464 

STD 7.580 3.358 3.757 3.277 2.839 2.742 

R-square 0.161 0.729 0.844 0.819 0.857 0.932 

Time consumption (ms) 0. 019 6.296 488.622 288.789 9.771 4.745 

As shown in Table 3, the new method obtained the minimum value in the average absolute error of 

all samples compared with other methods, which indicated the diameters of trees fitted by this method 

were accurately close to the observed diameter. Similarly, the max error of radius with this algorithm 

was limited into 9 mm in different positions and distances. This parameter demonstrated that, when the 

data points lay along a circular arc with low curvature, the new method avoided catastrophic 

cancelations of large circles with a large radius and a far away center such as TDE. Similarly, the 

average relative radius error was following a diminishing trend during the experiment concerned and 
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reached the minimum value by using the new algorithm, and was decreased by 44.9% compared with 

the best of the other methods, CFAA-MS. This meant that the new algorithm was suitable for different 

test constraints with totally chaotic samples and was more stable than others. 

For testing the measurement effectiveness of each algorithm further, the proposed algorithm was 

compared with a few others in a series of statistic parameters. The Root Mean Square error (RMSE) of 

the absolute errors of estimated diameter in this algorithm was close to 4.5 mm, which was the smallest 

among all methods. The value of RMSE in this paper showed the obvious improvement by 71.5% 

compared with TDE and by 30.9% corresponding to CFAA-MS, which suggested a higher fitting 

precision of this chosen estimated model and a better prediction ability for laser data. What’s more, the 

minimum value of the Standard Deviation (STD) for the estimated diameter errors obtained by this 

proposed method indicated that the error distribution was not very discrete. In a sense, this measuring 

system could deal with the worst case scenario corresponding to very noisy laser data. Thus it 

indicated that this algorithm was suitable for the most challenging conditions and was more stable and 

robust than others in this paper.  

Next, the coefficient of determination of regression squares (R-square) was applied to demonstrate the 

superiority of our new algorithm over the main existing algorithms. This parameter was decided by the 

sum of squares of the regression (SSR) divided by the total sum of squares (SST), which was through 

the change of the data to represent the fitting effect. By the above expression, the normal value of  

R-square was distributed in the certain range of [0, 1]. The numerical result in this new algorithm 

obtained a maximal value approximating 1, which suggested that the equation of this circle fitting 

method had stronger diameter estimation ability compared with the others. Also the estimation errors 

were weakly affected by distances and poses of the object and the fitting result for diameters was more 

stable and accurate. Lastly, Table 3 gives the time consumption for the calculation by different 

algorithms, respectively. Except for the TDE method, the new method displayed the minimum time 

consumption, which was reduced enormously compared with the F-R and PRP algorithms. This time 

consumption of the calculation met the requirements of the accuracy and real time for logging 

harvesting operations.  

A further experiment dealing with the influencing factors on the estimation error was performed. The 

errors were mainly caused by the resolution, specular energy errors of the laser device and the 

approximation errors of the fitting algorithm. The error also was impacted by the distance between the 

base point of the laser scanner and the device. In addition, the distance was positively related to the 

size of the circles corresponding to the actual diameter of the trees. To confirm the significant factors, 

the paper was simplified with removing insignificant factors if they did not have any significant main 

or interaction effect. Then the iterations, the tree trunk diameter and its distance from the scanner were 

entered as core-variates affecting the error, which would be analyzed further. 

4.3. Error Factor Discussion 

To reveal the influence of the number of repeated laser scans on the absolute error of diameter 

estimation, an experiment was performed with the abovementioned trees 1 to 8. Those birches were 

encircled with coarse white bark at a height of 1.3 m above the ground, which made the reflectivity of 

scanned trees increase up to 100%. This eliminated the influence of different reflectivity on the 



Sensors 2015, 15 15677 

 

 

diameter estimation. Then the 2DTLS acquired the laser scanning data of all trees for 100 consecutive 

trials. Consequently, the point clouds were distributed around the outline of trunk at a slight difference, 

which was caused by the fluctuating error as seen in the abovementioned analysis. According to 

Equation (7), the target clusters scanned at different times were applied to form an optimized cluster, 

which represented the mean value of several scans. For each tree, the number of multiple scans 

changed from 1 to 100, which was defined as the repetition number. As a consequence, there were  

100 optimized laser data being generated to calculate the absolute errors for DBH estimation of one tree. 

The variation tendency between the absolute estimation error and the number of repeat is displayed 

in Figure 10, where the x-axis represented the number of repeats in the range of 1 to 100, and the  

y-axis represented the estimation error for diameters. When analyzing the effects on all targets in general, 

it is revealed that the absolute errors of most trees were increased at the earlier stage, then decreased and 

finally tended to be stable with increasing number of repeats. The relationship is statistically significant 

except for the second tree. The error of the second tree decreased from the start until 8 and tended to 

smooth with the minimum value at 15.  

 

Figure 10. The relationship between the number of repeat and the absolute error of 

diameter estimation for all trees. 

A specific section analysis of the others suggested that the errors increased to the peaks of the curve 

at different number. Trees 1, 3 and 6 gave a maximum error value between 11 and 13, while the other 

trees (4, 5 and 8) reached the peak value in the range of 6 to 8. Only the 7th tree gave the maximum at 

20. Then, all curves of error and repeated number decreased to the smallest error threshold at a similar 

range between 20 and 25, including the second tree. In spite of different changes (Tree 4 and 8 rose, but 

the trees 1, 3, 5 and 7 fluctuated over a small range), the error curves tended to smooth after about 45 

except for the 6th tree, which continued to decline until 70 and then tended to be stable, so according to 

the experimental results, it could be seen that 20 repeats had reduced the laser fluctuating error, which 

would effectively improve the accuracy of diameter estimation. As a result of considering that the 

scanning frequency of 2DTLS was set as 100 Hz, taking 20 scans to calculate the average just 

consumed 0.2 s in measuring process, which met the requirements of the real-time and accuracy  
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for the measuring system in forestry harvesters. Therefore, it could be concluded that the design of  

this repeat number was optimal in terms of minimization of estimated errors and the actual forestry 

vehicle applications. 

However, the Figure 10 also revealed that the errors of diameter estimation were very different for 

different targets, which had diverse diameters and were located at different distances from the 2DTLS. 

Therefore, a further outdoor experiment was performed to reveal the influence of the distance on the 

average absolute error of diameter estimation. For each abovementioned birch, the 2DTLS was placed at 

a distance ranging from 2 m to 12.2 m to the tree in 0.6 m steps. Then the device scanned all eight targets 

20 times to achieve the optimized laser data. In order to increase the quantity of targets, thirteen tree 

trunk sections with diameters in the range of 9–35 cm and lengths in the range of 40–49 cm were used 

for the indoor experiment as recorded in Table 1. Considering that the measured trees in outdoor 

experiment were all silver birches, the distinguishing species were placed in an indoor corridor, at 

distances varying between 2 m and 12.2 m every 0.6 m, with varying sides facing the laser scanner. 

Then the 2DTLS was set at the same height of 35 cm above the ground and all observations were 

scanned 20 times in various combinations. In total, 378 sets of laser data integrating the outside and 

indoor measurement experiments were scanned to calculate the diameter estimation errors for a better 

statistical determination. When analyzing the effects on one treatment combination (distance-error) in the 

proposed methods, the laser data at same distance (21 sets every distance) were applied to compute the 

fitting diameters in all the methods mentioned above. For each algorithm, the average of diameter 

estimation errors in one distance was performed to draw the distance-error curve as illustrated in  

Figure 11, where the x-axis represented the distance between the trees and the laser scanner, and the  

y-axis represented the average of estimated errors.  

 

Figure 11. The changes in the relationship between the distance and the estimation error. 

A simple analysis explained that the trend of the average estimation error was increasing with 

increasing distance for most methods. The error curve using the TDE and LSF algorithms rose 

persistently with increasing distances in the distance range, as well as the curve computed with the PRP 

method except for the sudden huge error at some distances (3.8 m). For the FR method, the error was 
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badly disturbed by noise and did not increase with distance until the end of the curve, but the relationship 

only explained 66.7% of the observed variation respectively except for the results calculated by the 

CFAA and the new algorithms. The new algorithm and the CFAA method had less change error with 

increasing the distance, in other words, the errors obtained by the two methods were affected weakly 

by the distance. The error curve of this proposed algorithm was smoother than the CFAA curve and 

had smaller values for most distances, which showed the higher accuracy and stability in estimating 

the diameters of trees with this algorithm. Therefore, this proposed method was suitable for the 

measuring tasks of the logging harvester operations when the cutting targets were distributed at 

different distances. 

 

Figure 12. The estimation error decreased with increasing number of point hitting the tree, 

which was associated with the size of the circles. 

In view of that the error curves was seriously noisy, a potential cause was that the average error in 

one distance was achieved by using tree trunks with different diameters. Thereby, a depth analysis was 

carried out to reveal the effects of diameter on the estimation error. To avoid the influence of distance 

on the error, only partial laser data at three distances (2 m, 2.6 m and 3.2 m) were chosen as 

independent observations. Meanwhile, the number of laser points hitting the tree corresponded to the 

actual diameter of the trees and distances. Thus, the parameter was designed as a single predictor to 

reveal the influence of the trunk diameters on the estimated errors. Finally, 29 sets of data were 

randomly selected to compute the estimation errors in different algorithms as shown in Figure 12. For 

observation trees with diameters between 9 and 35 cm, there was a reasonable relationship in that the 

error decreased with increasing tree trunk diameter in different positions and distances. As presented in 

Figure 12, the result demonstrates that the estimation error was influenced by tree trunk diameter in a 

negative correlation. The error curve in the proposed algorithm was much smoother than the curves in 

other methods except for the TDE algorithm, which obtained an even smoother (almost linear) curve. 

This indicated that the new method lowered the error noise regardless of the number of points, and in a 

sense, this method was much more stable in the process of estimating diameter errors corresponding to 

most of the other methods. Moreover, the new method obtained the lowest error value comparing with 
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most of the algorithms in the range between 3 and 21, except for the CFAA algorithm, which was 

affected significantly by the noise. When the number of points reached 21, the proposed method 

maintained the minimum value. Thus, with the efficiency of the diameters varying between distances, 

our algorithm could have highest accuracy in estimating the diameters of the tree trunks and suffered 

lower error estimation noise. 

5. Conclusions and Outlook 

In summary, a new algorithm to improve the accuracy of tree trunk diameter estimating in forest 

area is proposed in this paper. First, the measuring information is collected by laser using a 2D laser 

scanner and an infrared thermal imager. Then, after cluster extraction and filtration, the features of the 

trunk could be obtained from the raw laser point cloud. Further, by optimizing the laser data based on 

the arithmetic mean method, a new hybrid algorithm based on an algebraic circle fitting algorithm in 

polar form fused with a non-linear optimization principle in the Levenberg-Marquardt method is 

generally used to determine the radii and positions of the trees. 

Compared with previous works published by other researchers, the experimental results show that 

the proposed measuring system accomplishes the trunk detection and diameter estimation of trees 

effectively with the minimum value in the average absolute error and average relative error, which 

indicates that the estimated diameters best fitted the observed diameter. Moreover, by analyzing the 

RMSE, STD and R-square, we found that this proposed method is suitable for the most challenging 

conditions and is more stable and robust than others while also showing reduced calculation times, 

which are practical significance in improving the operating efficiency of forest harvesters and reducing 

the risks of causing accidents. 

Finally, this paper reveals the influence of the number of repeats on the estimation error. The 

experimental results indicate 20 times is the best value of this repeat number, which will reduce the 

laser fluctuation errors and effectively improve the accuracy of diameter estimation. Furthermore, 

according to our study of the effects of external factors (diameters and distances) on the estimation 

error, the hybrid algorithm performs well in improving the estimation effectiveness of tree trunk 

diameter. Thus the improved diameter estimation algorithm is important for forestry logging 

operations, localization and automation of forest machines, SLAM generation of local maps and so on. 

However, the current diameter estimation method is proposed on the basis of a static system. In the 

future, a dynamic diameter estimation combining a laser scanner with cameras will be studied in order to 

achieve real-time and rapid measuring results in the forest environment. 
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