
Sensors 2015, 15, 15033-15066; doi:10.3390/s150715033
OPEN ACCESS

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

A Novel Two-Tier Cooperative Caching Mechanism for the
Optimization of Multi-Attribute Periodic Queries in Wireless
Sensor Networks
ZhangBing Zhou 1,4,*, Deng Zhao 1, Lei Shu 2 and Kim-Fung Tsang 3

1 School of Information Engineering, China University of Geosciences (Beijing), Beijing 100083,
China; E-Mail: zhaodpx@163.com

2 Guangdong Provincial Key Lab. of Petrochemical Equipment Fault Diagnosis, Guangdong University
of Petrochemical Technology, Maoming 525000, China; E-Mail: lei.shu@ieee.org

3 Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China;
E-Mail: ee330015@cityu.edu.hk

4 Computer Science Department, TELECOM SudParis, Evry 91011, France

* Author to whom correspondence should be addressed; E-Mail: zhangbing.zhou@gmail.com;
Tel.: +86-10-8232-3184.

Academic Editor: Leonhard M. Reindl

Received: 10 May 2015 / Accepted: 17 June 2015 / Published: 26 June 2015

Abstract: Wireless sensor networks, serving as an important interface between physical
environments and computational systems, have been used extensively for supporting
domain applications, where multiple-attribute sensory data are queried from the network
continuously and periodically. Usually, certain sensory data may not vary significantly
within a certain time duration for certain applications. In this setting, sensory data gathered
at a certain time slot can be used for answering concurrent queries and may be reused
for answering the forthcoming queries when the variation of these data is within a certain
threshold. To address this challenge, a popularity-based cooperative caching mechanism is
proposed in this article, where the popularity of sensory data is calculated according to the
queries issued in recent time slots. This popularity reflects the possibility that sensory data
are interested in the forthcoming queries. Generally, sensory data with the highest popularity
are cached at the sink node, while sensory data that may not be interested in the forthcoming
queries are cached in the head nodes of divided grid cells. Leveraging these cooperatively
cached sensory data, queries are answered through composing these two-tier cached data.

Sensors 2015, 15 15034

Experimental evaluation shows that this approach can reduce the network communication
cost significantly and increase the network capability.

Keywords: periodic query optimization; cooperative caching; wireless sensor networks

1. Introduction

With the rapid development of microelectronic, wireless communication, new and renewable energy
technologies, smart sensor nodes become smaller in physical size, stronger in storage and computational
capabilities, more powerful in battery capacity and less expensive in price. Sensor nodes form wireless
sensor networks (WSNs), which have been adopted in widespread domain applications, including
ambient assisted living [1], target tracking [2], bridge or traffic monitoring [3], etc. Sensor nodes are
mostly battery-powered, which are difficult to be recharged and replaced, especially when deployed in
harsh environments. Although energy harvesting from natural sources [4], energy replenishment [5,6]
and radio optimization and charging [7,8] technologies have been developed to recharge the battery of
sensor nodes, network lifetime maximization and prolongation is still essential, and energy efficiency is
one of the most important research challenges in WSNs nowadays [7]. Note that the network lifetime can
be defined as various semantics depending on the context of application domains, and a definition with
wide acceptance is the time when the first sensor node depletes its energy [9]. Therefore, techniques that
facilitate sensory data gathering efficiently for answering queries, while prolonging the network lifetime
as much as possible, are fundamental.

As presented by Xu et al. [10], queries in WSNs are typically conducted in a periodic, rather
than one-shot, fashion for supporting one or multiple applications. Note that queries in WSNs are
different from those in query-based WSNs [11], where sensor nodes are producers (sources) and
consumers (sinks) of resources simultaneously. In this article, sensor nodes gather sensory data,
which are aggregated and routed to the sink node according to the requirement of certain applications.
Usually, WSNs can be shared by multiple applications to improve the network utilization efficiency [12].
Consequently, multiple queries are performed in a certain time period, and multiple-attribute sensory data
are often interested [13,14]. These queries may have overlapping sub-regions of interest. Besides, the
points of interest for certain applications may be within a certain sub-region for a certain time duration,
while evolving moderately to a neighboring sub-region [15,16]. In this setting, when the number of
queries is relatively large and each query is to be processed independently, the capability required for
processing these queries may be above the capability that the network can provide, and consequently,
the delay for query answering may be towards infinity [10,17]. Therefore, the mechanism for the
optimization of multi-attribute query processing, while prolonging the network lifetime, is an important
research challenge.

Traditional techniques have studied the query processing in WSNs from various aspects,
including in-network query processing [18], aggregated query processing [19], compressed data
aggregation [20], spatial correlation data aggregation [21], range query processing [22], opportunistic
sampling-based query processing [23], snapshot and continuous data aggregation [17,24], real-time

Sensors 2015, 15 15035

query processing [25], multiple dimensional or attributes query optimization [26–28], cooperative
caching-based query processing [29,30], etc. Generally, these techniques are mostly exploring the
one-shot query scheduling, where one single attribute is interested, whereas few efforts study periodic,
aggregated and multi-attribute query processing [31]. Note that queries to be conducted in a certain time
duration usually have overlapping sub-regions, where sensory data in these sub-regions gathered from
the network can be shared for answering these concurrent queries. Besides, sensory data gathered at
the current time slot may be reused for answering the forthcoming queries, when the variation of these
sensory data is within an allowed threshold. In fact, sensory data may not vary dramatically in certain
applications (like health or environmental monitoring), and many applications may work well when the
bias of sensory data ((i) being used and (ii) being sensed in real time) is within a certain threshold [32].
Without loss of generality, a time duration is divided and represented by discrete time slots. Queries
issued at a certain time slot are rewritten into one query. Hence, these concurrent queries are processed
in batches. Besides, certain sensory data are cached in the network for answering the forthcoming
queries and are retrieved from the network when the bias between the cached value and the current
sensing value is above a certain threshold. Generally, this threshold is pre-specified as an appropriate
value considering the characteristics of certain attributes and the requirements of certain applications.
This strategy should reduce the network communication cost, improve the network capability, shorten
the response time of query answering and, most importantly, prolong the network lifetime to some extent.
Consequently, caching and refreshing multi-attribute sensory data in the network, while diminishing the
cost of answering the forthcoming queries, is an important research problem to be explored further.

To remedy this issue, a two-tier popularity-based cooperative caching (PCC) mechanism is developed
to support the periodic query processing, where multi-attribute sensory data are cached in the sink node
and leaf head nodes of an index tree. Our main contributions are presented as follows:

• Given a network represented as square grid cells with inverted files, an index tree is constructed,
where grid cells correspond to the leaf nodes in this tree. A query expects to return sensory data
for certain attributes in a set of neighboring grid cells. For simplicity, sensory data in a grid cell
with an attribute is considered as an atomic unit for query answering and caching manipulation.
A query is answered through composing sensory data that are: (i) cached in the sink node; and
(ii) gathered from the network in real time.
• The sink node is usually limited in storage and computational capabilities and can hardly cache

sensory data of all sensor nodes in the whole network. Besides, a sub-region, rather than the whole
network, is usually interested in applications within a certain time duration. Therefore, a two-tier
cooperative caching mechanism is proposed, such that sensory data of the most popular are cached
at the sink node, and these data can be reused for answering the forthcoming queries. This strategy
can reduce the energy consumption of answering concurrent queries to a large extent. Specifically,
the popularity of sensory data, which are interested in most queries in the most recent time slots,
is the highest. These sensory data are assumed to be interested mostly in the forthcoming queries
and are cached in the sink node. On the other hand, as for a grid cell that may not be interested in
queries at this moment, sensory data in this grid cell are cached locally in the memory space of the
corresponding head node. A flag, which indicates that sensory data have been varied significantly,

Sensors 2015, 15 15036

is cached in the head node. When this grid cell is interested in queries, sensory data of these sensor
nodes, whose flags indicate a dramatic variation, are retrieved from the network in real time.
• Extensive simulations are conducted for evaluating the effectiveness and efficiency of the proposed

algorithms. The experimental results show that the technique proposed in this article outperforms
another technique proposed by Zhou et al. [33] where multiple-attribute query processing is also
explored. Generally, our technique is more efficient than [33] in reducing the communication
energy consumption and increasing the network capability, especially when the number of queries
and the number of attributes interested in these queries are relatively large.

The rest of this article is organized as follows. Section 2 introduces the energy model used in the
following. Section 3 presents the index tree construction algorithm and the network caching model.
Section 4 proposes our cooperative caching mechanism for facilitating query answering. Section 5
evaluates the technique developed in the previous sections. Section 6 reviews and compares traditional
techniques, and Section 7 concludes this work.

2. Preliminary: Energy Model

Several protocols for wireless sensor networks have been proposed leveraging the assumption made
for the radio characteristics in the transmission and receiving modes. Without loss of generality, we
apply the well-adopted first order radio model [34] in this article, for the computation of the energy
consumption, where the parameters are presented in Table 1. In this model, the energy consumed for
running the transmitter or receiver circuitry Eelec is set to 50 nJ/bit, while that for the transmit amplifier
εamp is set to 100 pJ/bit/m2. The energy consumption(s) ETx(k, d) (or ERx(k)) for transmitting (or
receiving) a packet of k bits within a distance d is (are) specified by the following equations:

ETx(k, d) = Eelec × k + εamp × k × dn (1)

ERx(k) = Eelec × k (2)

Table 1. Parameters in the energy model [34].

Name Description

Eelec Energy consumption constant of the transmitterand receiver electronics
εamp Energy consumption constant of the transmission amplifier
k The number of bits in one pocket
d The distance of transmission
n The attenuation index of transmission
r The communication radius of sensor nodes

ETx(k, d) The energy consumed to transmit a k bit packet to a distance d
ERx(k) The energy consumed to receive a k bit packet
Eij(k) Energy consumption for transmitting a k bit packet from a node i to a neighboring node j

Sensors 2015, 15 15037

Consequently, the energy consumption Eij(k) for transmitting a packet of k bits from a sensor node
i to a neighboring sensor node j is computed as follows:

Eij(k) = ETx(k, d) + ERx(k) =

{
Eelec × k + εamp × k × dn if j is SN
2× Eelec × k + εamp × k × dn otherwise

(3)

Note that the energy consumption of transmitting a packet to a sensor node is different from that to the
sink node (SN, or called the base station), since SN is assumed to have no energy constraint, and the cost
of receiving a packet is ignored in this model [34]. The parameter d refers to the distance between sensor
nodes i and j (or SN). The energy of transmitting a packet from a sensor node i to another j is assumed
the same as that of transmitting a packet from j to i, i.e., Eij(k) = Eji(k). The parameter n, which
refers to the attenuation index of transmission as presented in Table 1, is determined by the surrounding
environment. If sensor nodes in the network are barrier-free when forwarding packets, n is set to two.
Otherwise, n is set to a value between three and five, when sensor nodes for long-distance transmission
are distributed in the area of buildings and a vegetation cover. Without loss of generality, the network is
assumed to be deployed in an area that is barrier-free, and n is set to two in our experiments in Section 5.

As an example, Figure 1 shows part of our sample network region, as shown in Figure 2, where
13 sensor nodes are deployed in this sub-region. The lines of arrows reflect the fact that sensor nodes in
neighboring grid cells are within their communication radius r. Consequently, the energy consumed for
forwarding a packet with the size of k bits from a sensor node (e.g., 47) to a neighboring one (e.g., 49) is
computed as Eij(k) = 2×Eelec × k + εamp × k × dn = 2× 50× k + 0.1× k × d2, where the parameter
d represents the geographical distance between sensor Nodes 47 and 49.

Figure 1. An example of energy consumption for the transmission of packets, where the
sub-region is part of the network region, as shown in Figure 2.

Sensors 2015, 15 15038

Figure 2. An example of grid division, where 50 sensor nodes are deployed unevenly in the
network region and several kinds of attributes are assumed sensed by these sensor nodes.
The network region is divided into 25 square grid cells, which are the same in geographical
size. The region of a query (for instance, q1) is rewritten into a set of grid cells. For instance,
q1.qr can be rewritten into a set of grid cells of {gc0, gc1, gc2, gc5, gc6, gc7}.

3. Index Tree Construction and Network Caching Model

This section proposes an index tree construction algorithm leveraging the method developed by
Zhou et al. [33] and introduces the network caching model, which is used to facilitate the query
processing in Section 4.

3.1. Index Tree Construction

A tree-based routing structure has been used widely in WSNs for supporting the data gathering,
aggregation and transmission in a multi-hop manner [35,36]. Leveraging the index tree construction
algorithm developed in our previous work [33], we develop a novel index tree for organizing sensor nodes
in a balanced manner, which is better at facilitating the query processing when multiple kinds of attributes
are interested according to certain requirements of domain applications. Similar to the assumptions made
in our previous work [33], sensor nodes are assumed in a skewed distribution, where sensor nodes are

Sensors 2015, 15 15039

dense in some sub-regions of the network, while they are sparse in the others. In fact, sensor nodes are
distributed unevenly in real-world applications, including bridge or traffic monitoring scenarios [3]. An
example of sensor nodes in a skewed distribution is shown in Figure 2, where sensor nodes located in
the upper center and the right bottom of the network region are dense, while the others are sparse. A
sensor node is assumed accompanied by one sensing equipment for sensing a certain attribute, such as
humidity, temperature, gas flow, etc. Various sensor nodes with different sensing equipment are able to
sense diverse attributes. The index tree construction algorithm proposed by Algorithm 1 in our previous
work [33] works as follows:

• The network region is divided into square grid cells whose side-length is set to
√
2r, and an inverted

file [37] is attached to each grid cell for specifying the attributes to be sensed by the sensor nodes
therein. An example of grid cell division is shown in Figure 2, where the network is divided into
25 grid cells, and a two-dimensional matrix is adopted to represent the coordinates of these grid
cells. Actually, grid cells correspond to the leaf nodes of the index tree to be constructed.
• The weight between two neighboring grid cells or sub-regions is calculated according to the

mechanism proposed by the Algorithm 2 in our previous work [33]. This weight specifies the
energy consumption of forwarding the same size of message between neighboring grid cells.
Intuitively, sensor nodes in neighboring grid cells contribute to this weight calculation when the
Euclidean distance between them is no more than the communication radius of sensor nodes r.
• Neighboring grid cells or sub-regions are merged in a pair-wise fashion when the weight between

the candidates is the greatest, and the inverted file is processed accordingly. This merging
procedure iterates until the root node of the index tree, which is a binary tree in shape, is
constructed. Note that this merging strategy makes adjacent sub-regions, which may induce
relatively larger energy consumption when forwarding messages in between, to be included by
different children. Consequently, the energy consumption for routing data packets along the paths
specified by this index tree is balanced somehow.

Generally, the Algorithm 1 in our previous work [33] constructs a tree that may be unbalanced,
especially when sensor nodes are distributed unevenly in the network. Since [33] does not cache sensory
data in leaf head nodes, leaf head nodes gather sensory data from sensor nodes and route these data to
the SN. An unbalanced tree for a skewed distribution of sensor nodes prolongs the network lifetime, as
evidenced by the experimental evaluation conducted in [33]. On the other hand, leaf head nodes require
caching sensory data locally, as presented by Section 4 in this article, and sensory data, whose variation
is beyond an allowed threshold, are not required to be routed to the SN. Therefore, when sensory data
of most sensor nodes do not vary dramatically, the effort for routing sensory data to the SN should be
lighter than that of [33] in the network, but the effort of leaf head nodes should be heavier due to the
caching of sensory data locally. Intuitively, an unbalanced tree should a have much greater number of
head nodes whose children include sensor nodes and head nodes, while all head nodes should be leaf
head nodes for a half tree [38]. Therefore, more hops are to be involved when routing sensory data to the
sink node in a hop-by-hop manner, especially when the path is longer in hops. To facilitate the caching
mechanism upon leaf head nodes as presented in Section 4, a relatively balanced tree is constructed for
organizing sensor nodes in this article.

Sensors 2015, 15 15040

Algorithm 1 Index tree construction.
Require: LNset: the set of leaf nodes with inverted files
Ensure: rt: the root of the index tree

1: TNset← set of leaf nodes and initially set to LNset

2: nTNset← set of tree nodes recording newly-merged nodes
3: while |TNset| > 1 do
4: wgt(nd1, nd2) ← calNgbNdWgt(nd1, nd2) as presented by Algorithm 2 in our previous work

[33], where nd1 and nd2 are neighboring nodes in TNset

5: while ∃ nd1, nd2 ∈ TNset: nd1 and nd2 are neighboring nodes and wgt(nd1, nd2) is the biggest
do

6: tn← merge tree nodes nd1 and nd2
7: nd1, nd2← children of tn
8: tn.IvtF ← nd1.IvtF ∪ nd2.IvtF
9: TNset← TNset - {nd1, nd2}

10: nTNset← nTNset ∪ {tn}
11: end while
12: TNset← nTNset ∪ TNset

13: nTNset← ∅
14: end while
15: rt← tn

Algorithm 2 Data synchronization.
Require: SNIN : a set of sensor nodes that are contained in an intermediate node (IN)
Ensure: sensory data cached in IN are updated

1: for each vsn ∈ SNIN do
2: vsn.valdfvsn← |vsn.valcurvsn - vsn.valvsn|
3: if vsn.valdfvsn > thrhatr then
4: vsn.valvsn← vsn.valcurvsn

5: IN.vecvsnIN .tsfmS ← current time slot
6: if vsn.sdstt is active then
7: IN.vecvsnIN .valvsn← vsn.valcursn

8: else
9: IN.vecvsnIN .valvsn← null

10: end if
11: end if
12: end for

As previously mentioned, the index tree to be constructed in this article should be a relatively
balanced tree for a skewed distribution, rather than an unbalanced tree, as developed in our previous
work [33]. The difference lies mainly in the tree node merging strategy. As presented in
Algorithm 1, after dividing the network region into square grid cells whose side-length is

√
2r, we

Sensors 2015, 15 15041

firstly get the set of leaf nodes (denoted TNset) with inverted files as presented by Algorithm 1
(Lines 1–13) in our previous work [33] (Line 1). Note that these leaf nodes corresponds to
grid cells, rather than sensor nodes in the network. The weight (denoted wgt(nd1, nd2)) between
neighboring nodes (denoted nd1 and nd2), which reflects the energy consumption when routing
sensory data from one node to another, is calculated using the function calNgbNdWgt(nd1, nd2).
As presented by Algorithm 2 in our previous work [33] (Line 4), this function returns the sum
of weights among all pairs of neighboring grid cells in the corresponding neighboring sub-regions.
If there are neighboring nodes (i.e., nd1 and nd2) in TNset that can be merged, in other words,
wgt(nd1, nd2) is the biggest (Line 5), nd1 and nd2 are merged as a newly-generated node tn

(Lines 6–7), and the inverted files (denoted tn.IvtF , for instance) are processed accordingly (Line 8).
Note that tn corresponds to a sub-region in the network, which is the merger of sub-regions for nd1 and
nd2. After this merging procedure, nd1 and nd2 are removed from TNset (Line 9), while tn is inserted
into nTNset as a candidate for the next merging procedure (Line 10). This procedure iterates until all
neighboring nodes in TNset have been examined and processed. Thereafter, TNset and nTNset are
updated accordingly (Lines 12–13). The symbol ∅ in Line 13 means an empty set. This tree construction
procedure terminates one there is only one node left in TNset (Line 3), which corresponds to the root
node of the index tree (Line 15). An example of the index tree constructed through this algorithm is
shown in Figure 3, which is a binary tree and more balanced than the tree as shown in Figure 5 in our
previous work [33]. Specifically, 25 grid cells, as shown in Figure 2, correspond to the leaf nodes, and
sub-regions composed of multiple grid cells correspond to non-leaf nodes, in the index tree. This index
tree construction is to facilitate the popularity-based cooperative caching mechanism to be presented in
the following sections. The time complexity of Algorithm 1 is O(n× log2 n), where n is the number of
leaf nodes in, while log2 n is the height of the index tree.

Figure 3. An example of the index tree constructed through Algorithm 1, where 1000 sensor
nodes are deployed in the network region, and the skewness degree is set to 60%. The leaf
nodes in the index tree correspond to the grid cells (e.g., gc24), and non-leaf nodes (e.g., R5)
correspond to sub-regions containing multiple grid cells (e.g., gc22 and gc23).

Generally, a node in an index tree corresponds to a sub-region containing a subset of
tree nodes and/or sensor nodes, and these tree nodes are responsible for query propaga-

Sensors 2015, 15 15042

tion and sensory data routing to the SN. The low-energy adaptive clustering hierarchy pro-
tocol (LEACH) [39] is adopted for the head node selection in these sub-regions or grid
cells, where these sub-regions or grid cells correspond to the clusters as presented by
Heinzelman et al. [39]. LEACH incorporates randomized rotation of high-energy sensor nodes as
the head nodes to avoid draining the energy of head nodes. Consequently, the energy consumption
of being a cluster head node is distributed and balanced among sensor nodes. This strategy facilitates the
prolongation of the network lifetime to some extent. Optimal head nodes should be located at the center
of a cluster [40,41]. Therefore, a higher priority is given to sensor nodes that are closer to the center of
sub-regions or grid cells when voting for head nodes.

3.2. Two-Tier Cooperative Caching Model

Applications leveraging WSNs may require gathering sensory data in a short latency, while
minimizing the energy consumption of the network. Queries issued periodically and continuously for
gathering sensory data of multiple attributes should induce high communication cost, which may be
above the network capability. Without loss of generality, we divide the time duration into time slots as
our previous work [42], and queries are assumed to be conducted in batches in each time slot. Note that
sensory data in some applications, such as health or wildlife monitoring, may not change dramatically
within a certain time duration. Besides, some applications may tolerate a bias of sensory data, when the
variation of these data can satisfy a certain constraint. These suggest that sensory data may be valid for
the applications within some time slots after the sensing time point. Therefore, these sensory data may
be appropriate to reuse for answering the forthcoming queries, rather than fetching from the network
in a real-time fashion [42]. To facilitate this sensory data reusability strategy, this article proposes a
cooperative data caching mechanism, where sensory data are cached in the memory of: (i) the SN; and
(ii) head nodes of grid cells, which correspond to the leaf nodes in the index tree. We use the notion of
intermediate nodes (INs) to represent these leaf head nodes in the following. Generally, the SN, which
has a larger memory space and more capability in computation than sensor nodes, is responsible for
caching the bulk (may be not all) of sensory data from the network. An IN is required to cache sensory
data of sensor nodes in the corresponding grid cell. Since there are usually a limited number of sensor
nodes in each grid cell, an IN is assumed to have enough memory space and computational capability
for processing sensory data of all sensor nodes in the corresponding grid cell. To facilitate the query
processing mechanism in the following sections, we define a wireless sensor network as follows:

Definition 1 (WSN). A wireless sensor network is a tuple wsn = (SN , VIN , Vsn, ATR), where:

• SN is the sink node of this network.
• VIN is a set of intermediate nodes, which are responsible for handling sensory data in grid cells.
• Vsn is a set of sensor nodes in the network.
• ATR is a set of attributes to be sensed by Vsn.

Given a sensor node vsn ∈ Vsn, vsn is defined in terms of the vector:

vsn =< sdid, sdatr, sdstt, valvsn > (4)

Sensors 2015, 15 15043

where sdid means the identifier of this sensor node vsn, sdatr ∈ ATR represents the single attribute to be
sensed by vsn, sdstt specifies the status of vsn, which can be active or inactive, and valvsn is the sensory
data that may be cached in the corresponding intermediate node vIN ∈ VIN and the SN. Note that valvsn
is not the sensory data valcurvsn at this moment, and valvsn is to be replaced by valcurvsn only when the bias
between valvsn and valcurvsn is above an allowed threshold thrd. In this case, vsn should:

• report valcurvsn to the corresponding vIN for the update of this sensory data in vIN when vsn is in the
status of active, which means that vIN is interested in queries in recent time slots.
Note that the SN should synchronize with vIN for retrieving the last sensory data when a query
interest a grid cell vIN . When vIN is not interested in queries for a certain number of recent time
slots, vIN is assumed not interested currently, and all sensor nodes in vIN are set to the status of
inactive. On the other hand, when vIN is interested in a query, all sensor nodes in vIN are reset to
the status of active immediately.
• Otherwise, vsn should report a sensory data change notification message to vIN when vsn is in the

status of inactive, and thereafter, vIN will invalidate the sensory data in the cache.

Note that thrd is determined according to: (i) the kind of attribute to be sensed by vsn; and (ii) the
specific requirement of certain applications. As for the sensory data synchronization procedure, we refer
to Section 4.1 for the details.

An intermediate node vIN should cache sensory data of all sensor nodes in the corresponding grid
cell, in terms of the vector for a sensor node vsn:

vecvsnIN =< sdid, sdatr, sdstt, valvsn, tsfmS, tstoSN > (5)

where sdid, sdatr, sdstt and valvsn are the same as those of vsn, respectively. tsfmS records the time slot
when valvsn is reported from the sensor node, while tstoSN records the time slot when valvsn is retrieved
by SN. When tsfmS is the same as tstoSN , the last sensory datum of vsn has been cached in the SN if the
SN has enough memory space. Otherwise, the cached sensory data in the SN is not synchronized with
that in the corresponding IN. Note that vecvsnIN .valvsn should be set to null when vsn reports a sensory
data change notification message to the IN.

The SN caches sensory data of sensor nodes in terms of the vector:

vecvsnSN =< sdid, gcid, sdatr, valvsn > (6)

where sdid, sdatr and valvsn are the same as those of sensor node vsn, respectively. gcid refers to the ID
of the corresponding grid cell where vsn lies. Since the SN has a limited storage capability, sensory data
of sensor nodes, which are the most popular according to the recent query history, are to be cached in
the SN. The popularity computation of grid cells is presented in Section 4.2.

4. Query Processing with Cache Mechanism

Given a network deployed in a certain region where multiple kinds of attributes are interested, queries
are to be issued periodically and continuously according to the requirement of certain applications.
Generally, a multiple-attribute query can be described in terms of a three-dimensional vector, including:

Sensors 2015, 15 15044

(i) a query region; (ii) a set of interested attributes; and (iii) a certain time slot. A query region is typically
represented by a rectangle. As mentioned in Section 3.1, the network region is divided into grid cells.
Consequently, a query region is transferred to a set of grid cells with the minimum number, which can
cover the rectangle prescribed by this query. Formally, a query is defined as follows:

Definition 2 (Query). A query is a tuple q = (tm, qr, ATR), where:

• tm is the time slot when the query q is issued.
• qr is the query region, which is represented by a set of corresponding square grid cells.
• ATR is a set of attributes interested in q.

Given a query q = <tm, qr, ATRq> where q.qr is rewritten as a set of grid cells GCq (i.e.,
q.qr = GCq), q returns sensory data at q.tm of sensor nodes: ∀ vsn ∈ GCq: (vsn.sdid is contained by
a grid cell within GCq) ∧ (vsn.sdatr ∈ ATRq).

It is worth mentioning that in certain domain applications, including health monitoring, queries
are typically issued continuously and periodically. The points of interest should be within certain
sub-regions for certain contiguous time slots, while evolving moderately to neighboring
sub-regions [15]. In this context, when the sub-regions for the queries in contiguous time slots have
overlapping sub-regions, query results in the previous time slots should be valid and (partially) reusable
for answering the forthcoming queries. On the other hand, queries are answered independently by the
SN. Generally, for a certain query q to be processed by the SN, q is answered by a cooperative caching
mechanism, including the following steps:

• Step 1: The SN determines a set of grid cells GCq of a minimum number that can cover the query
sub-region q.qr.
• Step 2: The SN synchronizes with the intermediate nodes (INs), which are actually the head nodes

of gcq ∈ GCq in the index tree, for retrieving the last sensory data. It is worth mentioning that the
SN may cache sensory data of some, but not all, INs. Intuitively, a flag is adopted for specifying
whether sensory data of a certain IN has been cached in the memory space of SN or not.
• Step 3: An IN examines the freshness of cached sensory data for each sensor node (denoted vsn)

in the corresponding grid cell gcq.

– When vsn.tsfmS = vsn.tstoSN , which suggests that sensory data cached in IN is up-to-date,
and is synchronized with that cached in the SN, a flag indicating this scenario is sent to the
SN, whereas sensory data of vsn do not need to be forwarded to the SN.

– Otherwise, sensory data cached in the IN are not up-to-date. Consequently, the head node
of the IN requests to retrieve the last sensory datum from vsn, which is to be routed to the
SN afterwards.

Note that the status of vsn is set to active when vsn is interested in queries currently and/or in recent
time slots. The reader is referred to Section 4.1 for the details of the sensory data synchronization
mechanism between an IN and the sensor nodes contained therein.
• Step 4: When the SN gets sensory data of all sensor nodes in each grid cell gcq ∈ GCq, the answer

to the query q is aggregated. Sensory data, which were cached in the memory space of the SN
and are not consistent with the last ones retrieved from INs, are updated accordingly. Note that the

Sensors 2015, 15 15045

SN usually has a constraint in storage and computational capabilities. As presented in Section 4.2,
when sensory data of some grid cells are retrieved from INs, sensory data cached in the SN, which
may not be reused for answering the forthcoming queries, should be removed, and the released
storage capability can be adopted for caching more popular sensory data.

As discussed at Steps 2–4, the technical details of our two-tier cooperative caching mechanism on the
SN and IN for query answering are presented in Section 4.3.

4.1. Sensory Data Synchronization for INs and Corresponding Sensor Nodes

As discussed, in certain applications of WSNs, the points of interest may be within certain regions
in certain time durations, while evolving to neighboring sub-regions moderately and continuously. This
suggests that a certain grid cell may be interested in applications of some time durations, while not in
the others. To reduce the energy consumption, sensor nodes, which do not contribute to answering the
queries in a few recent time slots, are set to the status of inactive. Therefore, these sensor nodes are not
required to send sensory data to the IN at each time slot afterwards. Instead, when their sensory data
have been changed dramatically and the variation is not tolerable for applications, a flag indicating this
situation is sent to the IN. It is worth mentioning that the strategy of active and inactive is different
from adaptive sleeping [43,44] and duty-cycle [45,46] strategies, where sensor nodes do not sense
environmental variables and respond to queries. For simplicity, we assume that sensor nodes decide
to send either sensory data or a flag (data of a bit usually) to the IN according to the status of active or
inactive. This strategy decreases the amount of data to be sent and thus reduces the energy consumption.
In fact, adaptive sleeping and duty-cycle strategies complement our technique, and when applied, energy
consumption should be further reduced.

The sensory data synchronization strategy for the IN and contained sensor nodes is presented in
Algorithm 2. For each sensor node vsn in each IN, vsn examines whether the sensory data at this
moment (denoted vsn.valcurvsn) have been changed dramatically with respect to the sensory data reported
to the IN (denoted vsn.valvsn) in previous time slots (Line 2). If the variation vsn.valdfvsn, which is
represented by the absolute value of the difference between vsn.val

cur
vsn and vsn.valvsn, is above an

allowed and pre-specified threshold (denoted thrhatr), vsn should report this data change situation to
the IN (Line 3). In this case, vsn sets its reported sensory data vsn.valvsn as the current value vsn.valcurvsn

(Line 4). IN.vecvsnIN .tsfmS is set to the current time slot (Line 5). vsn.valcurvsn is reported to the IN for
updating the cached data when vsn is in the status of active. To be specific, IN.vecvsnIN .valvsn is replaced
by vsn.valcursn (Lines 6–7). Otherwise, a flag indicating this dramatic data change situation is reported to
the IN, and the corresponding sensory data for vsn cached in IN is set to null (Lines 8–9). Consequently,
sensory data cached in the IN are synchronized with those of sensor nodes contained in this IN. Note
that this data synchronization procedure is performed at each time slot, which facilitates the answering
of queries as presented in Section 4.3.

The time complexity of Algorithm 2 is O(mgc), where mgc is the maximum number of sensor nodes
contained in a grid cell. The worst case occurs when sensory data of all sensor nodes have been changed
dramatically, and thus, all sensory data cached in the IN have to be updated consequently.

Sensors 2015, 15 15046

4.2. Popularity-Based Sensory Data Replacement Mechanism in the SN

As mentioned in Section 3.2, sensory data of certain sensor nodes may not change dramatically in
certain time durations, and domain applications may work well when the bias of sensory data is beyond
a certain threshold with respect to the data in real time. In this setting, sensory data cached in the
memory space of the SN may be appropriate to be (partially) reused for answering the forthcoming
queries, rather than retrieving from the network in real time. This mechanism should reduce the
effort of sensory data sensing, gathering and routing and, thus, should prolong the network lifetime
to some extent. Note that the SN usually has limited storage and computational capabilities, which
may not be capable of caching sensory data of all sensor nodes in the network. Therefore, sensory
data that have a high possibility of being reused for answering the forthcoming queries should be
cached. Generally, queries are issued at each time slot. When fresh sensory data of sensor nodes
are retrieved from the network, these fresh sensory data should be used for updating the obsolete
counterparts if cached in the SN previously. On the other hand, sensory data cached in the SN,
which may not contribute to the forthcoming queries, should be removed, and the released memory
space is used for caching the fresh sensory data. This section proposes a mechanism for sensory
data replacement in the cache of the SN depending on the popularity of sensory data. Note that the
network is divided into square grid cells in this article, and a grid cell (denoted gd), with an interested
attribute (denoted atr), is considered as an atomic unit for query processing. Intuitively, the vector
vc = <gd, atr> is applied to represent the index of the set of sensory data to be cached in the SN.

Given a set of sensory data represented by the vector vci =<gci, atri>, where these data are (i) cached
in the SN or (ii) were not cached in the SN and are retrieved from the network at this moment, we
calculate the popularity popivc of vci according to (i) the history of queries conducted in the previous k
time slots and (ii) the size of sensory data contained by vci. A large value of popivc means that vci is
higher in possibility of being cached in the SN and of being interested in the queries in the consequent
time slots. Specifically, popivc is calculated using the following formula:

popivc =
1

szvci
×
∑k

j=1(α
j × fj

i

fj
all

) (7)

where szvci means the size of sensory data in vci, which is proportional to the number of sensor nodes
contained in gci accompanying the attribute atri and the size of sensory data for the attribute atri. This
indicates that the larger the size of vci is (i.e., 1

szvci
is smaller), the higher the possibility that vci is

removed from the SN. f j
i represents the number of queries that are interested in vci at the time slot j,

while f j
all represents the number of all vectors vc = <gd, atr> interested in all queries issued at the

time slot j. Generally, the more frequently that the vci is interested in queries, the larger the popularity
popivc is. The parameter α corresponds to an attenuation coefficient, which is set to a value between zero
and one. In fact, α reflects the importance of queries conducted in a recent, while different, time slot.
Intuitively, the more recent queries the vci is interested in, the larger the popularity popivc is.

Given a set of V C = {vc1, vc2, · · · } that are gathered at a certain time slot, the popularity popivc of vci
∈ V C is calculated using Formula 7. popivc are ranked according to their values. Sensory data of vci are
cached in the SN until not enough storage capability in the SN is available for the next. These cached
sensory data are used for facilitating the cooperative caching mechanism, as detailed in the following.

Sensors 2015, 15 15047

4.3. Query Processing with Two-Tier Cooperative Caching Mechanism

Leveraging sensory data cached in the memory space of INs and the SN, we propose a two-tier
cooperative caching mechanism for answering periodic queries. As presented in our previous work [33],
the network region is divided into square grid cells. A two-dimensional matrix is used to represent grid
cells, where each grid cell is accompanied by an identifier (denoted gcid). gcid is computed based on the
value of (i) row (denoted row) and column (denoted col) coordinates of the grid cell and (ii) the columns
of the grid cell in the matrix (denoted cols). Specifically, gcid = row× cols + col. An example is shown in
Figure 2, where pi (i = 1, 2, ...) represents sensor nodes sensing various kinds of attributes. As for the
grid cell containing sensor node p17, its grid cell ID is computed as 7 = 1 × 5 + 2, and this grid cell is
denoted as gc7. The first grid cell, which contains p1, as shown in Figure 2, is denoted as gc0.

Given a query q to be answered, q is rewritten for determining a minimum set of grid cells that q.qr
covers. When a grid cell is intersected with q.qr, this grid cell is counted. An example is shown in
Figure 2, where the query region is represented using a rectangle with dotted lines, and grid cells for
q.qr are marked in gray. The attributes that q.ATR includes are represented using a bitmap. An example
is shown in Table 2, where one means that the query interests in the corresponding attribute, while zero
means it is not. The parameter k represents the number of attributes to be sensed in a certain network.

Table 2. An example of a bitmap for attributes interested in a certain query q, where atri
specifies the i-th attribute. The value 1 means that a certain attribute (e.g., atr3) is interested
in this query q, while 0 means it is not.

Attribute atr1 atr2 atr3 atr4 ... atrk

Bit 1 0 1 0 ... 0

When answering a query q, sensory data of multiple attributes in a certain grid cell should be
gathered and aggregated once. An example is the attributes atr1 and atr3 with respect to grid cells
gc0, gc1, gc2, gc5, gc6 and gc7, as shown in Figure 2 and Table 2. To facilitate the query processing, a
GC-attribute table is adopted to clearly represent this relation for grid cells and interested attributes. For
instance, Table 3 shows the relation for grid cells (i.e., gc0, gc1, gc2, gc5, gc6 and gc7) and interested
attributes (i.e., atr1 and atr3). It is worth mentioning that a grid cell with a single attribute of interest is
considered as the atomic unit for query processing and the sensory data caching mechanism as presented
in Section 4.2. Generally, Table 3 is an example for the relation of grid cells and attributes for a single
query, where one means that the corresponding attribute in the certain grid cell is interested in the query,
whereas zero means it is not. A table in this format can also be applied to specify the relation of grid
cells and attributes aggregated for multiple queries that are to be processed concurrently at a certain time
slot. For simplicity, as presented by Algorithm 3, a single query is considered for the query processing
procedure leveraging the cooperative caching mechanism, whereas multiple queries can be handled in
a similar fashion. Besides, a table, which is named the GC-SNCache table and an example shown in
Table 4, is used to represent sensory data of grid cells that are cached in the SN currently, where one
means that the corresponding attribute in the certain grid cell has been cached in the memory space of
the SN, whereas zero means it is not. Note that the SN is usually limited in storage and computational

Sensors 2015, 15 15048

capabilities and should cache sensory data of grid cells, which have a high possibility of being covered
by the forthcoming queries.

Table 3. An example of the GC-attribute table, where gci specifies the i-th grid cell and atrj
specifies the j-th attribute. The value 1 means that the sensor nodes in a certain grid cell
(e.g., gc1) are interested in a certain attribute (e.g., atr3), while 0 means they are not.

gc0 gc1 gc2 gc5 gc6 gc7

atr1 0 1 0 0 1 1
atr2 0 0 0 0 0 0
atr3 1 1 1 1 1 0
...
atrk 0 0 0 0 0 0

Table 4. An example of the GC-SNCache table, where gci specifies the i-th grid cell and
atrj specifies the j-th attribute. The value 1 means that sensory data for a certain grid cell
(e.g., gc1) with a certain attribute (e.g., atr1) are cached in the memory of the SN, while 0
means they are not.

gc0 gc1 gc2 gc5 gc6 gc7

atr1 1 1 0 0 1 0
...
atri 0 1 0 1 1 0
...
atrk 0 1 0 1 0 1

As presented by Algorithm 3, when a query q is issued at a certain time slot, q is rewritten and a set
of grid cells (denoted GCq

set) are retrieved that covers q.qr, as illustrated by Figure 2 (Line 1). If the
attributes interested in the query q (denoted q.ATR) are not sensed by the sensor nodes in the sub-region
corresponding to the tree node tn or the query region (i.e., GCq

set) and the sub-region contained in the
tree node (denoted tn.GC) have no overlapping areas (Line 2), no sensory data should be returned, and
the tree node tn does not contribute to the query q (Line 3). The symbol ∅ in Line 2 specifies an empty
set. Otherwise, tn contains sensor nodes that can contribute to the answering of the query q.

Generally, two scenarios are considered leveraging the fact of whether tn corresponds to a leaf node
in the index tree or not. When tn does not reflect a leaf node in the index tree (Line 5), the left and right
children of tn are processed independently, and their results are represented as qlfrt and qrtrt , respectively
(Lines 6–7). The querying result of q (denoted qrt) is assembled as the aggregation of qlfrt and qrtrt (Line 8).

On the other hand, when tn reflects a leaf node in the index tree, tn corresponds to a grid cell actually.
In this setting, the intermediate node (IN) with respect to tn is identified (Line 10), and the set of sensor
nodes (denoted V all

sn) contained in tn, which contribute to the answering of q, are retrieved (Line 11).
The status of sensor nodes in V all

sn is changed to active, when it is inactive currently (Line 12).

Sensors 2015, 15 15049

Algorithm 3 QueryProcCoopCaching
Require: q: a query issued at a certain time slot

tn: a node in the index tree
Ensure: qrt: the result for the query q

1: GCq
set← set of grid cells that are covered by q.qr

2: if q.ATR ∩ tn.IvtF = ∅ or tn.GC ∩ GCq
set = ∅ then

3: return
4: end if
5: if tn has children then
6: qlfrt ← QueryProcCoopCaching(q, tn.lfCld) when the left child tn.lfCld exists
7: qrtrt ← QueryProcCoopCaching(q, tn.rtCld) when the right child tn.rtCld exists
8: qrt← aggregation of qlfrt and qrtrt
9: else

10: IN← get the intermediate node that contains tn
11: V all

sn ← set of sensor nodes in tn, where ∀ vsn ∈ V all
sn and vsn.sdstr ∈ q.ATR

12: vsn.sdstt← active, where ∀ vsn ∈ V all
sn and vsn.sdstt = inactive

13: for each vsn ∈ V all
sn and (IN.vsn.tsfmS 6= IN.vsn.tstoSN or IN.vsn.tstoSN = null) do

14: Vsn← Vsn ∪ {vsn}
15: end for
16: IN retrieves sensory data from grid cell tn for Vsn, replaces cached sensory data in IN for Vsn and sets

IN.vsn.tsfmS and IN.vsn.tstoSN to the current time slot for ∀ vsn ∈ Vsn
17: if grid cells for tn and q.ATR are not cached in the SN according to the GC-SNCache table then
18: for each vsn ∈ V all

sn do
19: Vsn← Vsn ∪ {vsn}
20: end for
21: mark all grid cells for tn and q.ATR as being cached in the GC-SNCache table
22: end if
23: for each vsn ∈ Vsn do
24: SN.vecvsnSN .valvsn← IN.vecvsnIN .valvsn, where vsn.sdid = SN.vecvsnSN .sdid = IN.vecvsnIN .sdid
25: end for
26: for ∀ vsn ∈ V all

sn and vsn.sdid = SN.vecvsnSN .sdid do
27: qrt← insert SN.vecvsnSN .valvsn
28: end for
29: end if

For each sensor node vsn ∈ V all
sn , when the sensory data for vsn cached at the corresponding

IN are not aligned with those cached in the SN (indicated by IN.vsn.tsfmS 6= IN.vsn.tstoSN or
IN.vsn.tstoSN = null, where IN.vsn.tsfmS 6= IN.vsn.tstoSN suggests that the last sensory data provided
by vsn have not been synchronized with those cached in the SN, while IN.vsn.tstoSN = null

suggests that the sensory data for vsn have never been reported to the SN) (Line 13), the last
sensory datum for vsn should be retrieved from the network, and the time slots, which reflect the
time when (i) sensor nodes report their sensory data to the IN (denoted tsfmS) and (ii) the IN
reports sensory data of certain sensor nodes to the SN (denoted tstoSN), are updated accordingly

Sensors 2015, 15 15050

(Line 16). It is worth mentioning that, when the status of vsn is inactive, the IN may not
cache the sensory data for vsn, according to our data synchronization mechanism presented by
Algorithm 2. As for the sensor nodes whose cached sensory data are consistent between the SN and
the corresponding IN, according to the GC-SNCache table, these sensory data are not required to be
retrieved from the network and to be routed to the SN. Instead, the sensory data cached in the SN are
adopted for answering the query q. This strategy should reduce the energy consumption, which may
be unnecessary somehow. Otherwise, the GC-SNCache table is updated for showing the sensory data
consistency between the SN and the corresponding IN at this moment (Lines 17 and 21). Note that when
the SN does not cache the sensory data for sensor nodes in V all

sn (Line 17), the sensory data of all sensor
nodes in V all

sn should be forwarded to the SN for answering the query q (Lines 18–20). Consequently,
sensory data of all sensor nodes in V all

sn are synchronized between the SN and the corresponding IN
(Lines 23–25). The result of the query q, which is represented by qrt, is assembled leveraging the
sensory data cached in the SN accordingly (Lines 26–28).

The time complexity of Algorithm 3 isO(n×m), where n is the number of tree nodes to be examined
in the index tree leveraging the inverted file, andm is the maximum number of sensor nodes in grid cells.
The worst case occurs when all sensor node in the whole network are to be traversed. In this setting, all
sensor nodes are required to report their sensory data to the SN.

5. Implementation and Evaluation

A prototype has been implemented in a Java program, and experiments have been conducted for
evaluating our technique. In the following, we introduce the environment settings and discuss the results
of our experiments.

5.1. Environmental Settings

Experiments are designed for evaluating our technique, and the factors considered include various
skewness distributions for the network setting and various cache sizes in the SN. In the network
setting, 1000 sensor nodes are generated and distributed unevenly with skewness degrees varying from
20%–80%. Intuitively, a skewness degree (denoted sd) is computed using the formula: sd = dn−sn

N
, where

dn and SN refer to the number of sensor nodes in dense and sparse sub-regions, respectively, while N is
the number of sensor nodes deployed in the network (i.e., N = dn+ sn) [33]. For instance, assuming a
network contains N (e.g., N = 1000) sensor nodes, the network region is divided into four sub-regions,
which are rectangular in shape and the same in geographical size. A skewness degree is set to sd (e.g.,
sd = 60%). Consequently, n× (1− sd) (1000 × (1 − 60%) = 400) sensor nodes are deployed evenly in
the whole network, while the remaining n× sd (1000 × 60% = 600) sensor nodes are distributed to any
two dense sub-regions in a random fashion. Therefore, a network region with N sensor nodes, whose
distribution follows a skewness degree sd, is constructed.

Experiments are performed on a desktop with an Intel(R) Core(TM) i5-2400 CPU at 3.10 GHz, a
4-GB memory and a 32-bit Windows system. Parameter settings for our experiments are presented
in Table 5. Note that several, but typically not too many, kinds of attributes are interested in domain
applications. Without loss of generality, 10 kinds of attributes are assumed interested in the experiments.

Sensors 2015, 15 15051

A sensor node is randomly assigned an attribute to be sensed, and each kind of attribute is sensed by
around 1000/10 = 100 sensor nodes. The network region is set to 350 m × 350 m, which is divided into
square grid cells with the same geographical size. The side-length of grid cells is set to

√
2r [40], where

r = 50 m is the communication radius of sensor nodes. The size of cache in the SN is set to a number
between 500 and 900, which means that the SN can accommodate sensory data for 50–900 sensor nodes,
respectively. The attenuation coefficient α and the number of preceding time slots k used in Equation (7)
are set to 0.6 and four, respectively. Queries are issued every 2 min, and sensory data between INs and
the corresponding sensor nodes are synchronized every 5 min, when the status of these sensor nodes is
inactive. These parameters can be set to other values if appropriate.

Table 5. Parameters settings in the experiments.

Parameter Name Value

Network region 350 m × 350 m
Skewness degree 20%–80%
Number of sensor nodes 1000

Number of attributes 10

Cache size in the SN 500–900
Communication radius (r) 50 m
Attenuation index of transmission (n) 2

Energy consumption constant for the transmit and receiver electronics (Eelec) 50 nJ/bit
Energy consumption constant for the transmit amplifier (εamp) 100 pJ/(bit × m2)
Attenuation coefficient (α) 0.6

Number of time slots considered for computing the popularity of vectors (k) 4

Length of a time slot for query processing 2 min
Time interval for data synchronization 5 min
Time interval for head node reselection 20 min

5.2. Experimental Evaluation

An index tree is constructed through recursively merging neighboring sub-regions when forwarding
messages of the same size in between is minimum in energy consumption. An example is shown in
Figure 3, where the skewness degree is set to 60%. Leaf nodes are denoted by the IDs of correspond grid
cells, as mentioned in Section 3.2, andRi (i = 1, 2, ...) represents non-leaf nodes, which are (sub-)regions
composed of several neighboring grid cells. For instance,R5 represents a sub-region whose grid cells are
gc22 and gc23, while R2 is composed of R3 and grid cell gc24. Query answering is performed leveraging
this index tree for data gathering, aggregation and routing to the SN.

Our technique is evaluated with respect to four types of queries [33] leveraging the sub-region and
attributes of interest, and a query is denoted as q = <tm, qr, ATRq>:

• Single-attribute query in the whole region (SAQWR): q retrieves sensory data of all sensor nodes
in the whole network region (i.e., q.qr = nr) for a certain attribute (i.e., |q.ATR| = 1). nr specifies

Sensors 2015, 15 15052

the whole network region. Sensory data of the attribute q.ATR at nr are gathered and routed to
the SN at a certain time slot q.tm.
• Single-attribute query in a sub-region (SAQSR): The difference between SAQSR and SAQWR lies

in the query region. SAQSR retrieves sensory data of sensor nodes in a sub-region of the network
(i.e., q.qr $ nr) with a certain attribute q.ATR (i.e., |q.ATR| = 1).
• Multi-attribute query in the whole region (MAQWR): q.qr is the whole network region (i.e., q.qr
= nr). q.ATR contains some, but not all, attributes. Generally, sensory data of the attributes in
q.ATR at nr are gathered and routed to the SN at q.tm.
• Multi-attribute query in a sub-region (MAQSR): The difference between MAQWR and MAQSR

lies in the query region where MAQSR retrieves sensory data of sensor nodes in a sub-region of
the network (i.e., q.qr $ nr) with multiple attributes.

Figure 4. Comparison of the accumulated energy consumption for multi-attribute query in
the whole region (MAQWR), where the number of attributes are set to 1, 3, 5, 7 and 9,
respectively. The gradient of the curves represents the ratio of energy consumption for query
answering. This figure shows that when the cache size in the SN is relatively small and is not
capable of caching all sensory data requested by a certain query, more sensory data should be
replaced in the SN according to our data replacement mechanism, as presented in Section 4.2,
and more energy is required for answering the query. For instance, in comparison with the
case when the number of attributes is three, 198% (or 355%) more energy is consumed for
the case when the number of attributes is seven (or nine).

Experiments are conducted to evaluate the performance of these four kinds of queries leveraging
our two-tier cooperative caching mechanism. Figure 4 compares the energy consumption of MAQWR,
where the number of attributes varies as 1, 3, 5, 7 and 9, respectively. The cache size of the SN is
set to 600, and the skewness degree is set to 60%. It is worth mentioning that Figure 4 shows the
energy consumed in total from scratch, rather than that at a certain time point. The gradient of a curve

Sensors 2015, 15 15053

corresponds to the energy consumed at a certain time point. The same principle holds for the energy
consumption shown in Figures 5–7. Intuitively, more energy is consumed when more attributes are of
interest, since more sensor nodes are involved in sensory data gathering and aggregation. The energy
consumption for the scenarios, where the number of attributes is 1, 3 or 5, is relatively small and stable.
In contrast, the energy consumption for the scenarios, where the number of attributes is seven or nine,
increases to a certain extent. Note that sensor nodes involved in the query answering should be 700 (or
900), when the number of interested attributes is seven (or nine). Since the cache size is 600, the sensory
data of around 100 (or 300) sensor nodes cannot be cached in the SN. Hence, some sensory data have to
be gathered from the network at each time slot, and the sensory data replacement mechanism is always
enacted to cache sensory data with the highest popularity. These are the main causes for the increase of
energy consumption. For instance, in comparison with the case when the number of attributes is three,
198% (or 355%) more energy is consumed for the case when the number of attributes is seven (or nine).
Generally, the larger the cache size of the SN, the less the energy consumption in the network is. Caching
in the SN should reduce the energy consumption to a certain extent, especially when the query region is
relatively large and the number of interested attributes is relatively big.

Figure 5. Comparison of the accumulated energy consumption for MAQWR, where the
cache size of the SN is set to 500, 600, 700, 800 and 900, respectively. The gradient of
the curves represents the ratio of energy consumption for answering the query. This figure
shows that when the cache size of the SN is large enough to cache all sensory data requested
by the query, the energy consumption is relatively small and steady. Otherwise, the energy
consumption is much more and increases significantly. For instance, in comparison with the
case when the cache size is set to 800, 66% (or 40%) more energy is consumed for the case
when the cache size is set to 500 (or 600).

Sensors 2015, 15 15054

Figure 6. Comparison of the accumulated energy consumption for single-attribute query
in the whole region (SAQWR), where the skewness degree for the sensor node distribution
in the network is set to 20%, 40%, 60% and 80%, respectively. The gradient of the curves
represents the ratio of energy consumption for answering the query. This figure shows that
the bigger the skewness degree is, the less energy is consumed for answering the query. For
instance, in comparison with the case when the skewness degree is set to 80%, 73% (or 91%)
more energy is consumed for the case when the skewness degree is set to 40% (or 20%).

Figure 8 shows cache hit rates hrtcah for MAQWR. hrtcah is calculated as the ratio of
|SDq

cah| / |SDq|, where (i) SDq
cah is the set of sensory data cached in the SN that contributes to answering

of the query q and (ii) SDq is the set of sensory data of q inquiries. Without loss of generality, the value
of sensory data is assumed to vary according to the formula: valvsn = log (k × tcur + 1) + C, where:
(i) tcur is the current time; and (ii) k and C are constants, which are initially set to random values, and
vary according to a normal distribution. Therefore, sensory data of sensor nodes are mostly different and
change moderately. Figure 8 shows that cache hit rates for the scenarios, where the number of attributes
is 1, 3 or 5, are quite high (roughly 95%), since the SN can have enough storage capability to cache
almost all sensory data gathered in recent time slots. As for the scenarios where the number of attributes
is seven or nine, cache hit rates are relatively lower (roughly 70%). Similar to the situation for energy
consumption, a certain amount of sensory data has to be gathered from the network for query answering
in real time. In addition, sensory data, which may be reused for answering the forthcoming queries, have
to be removed from the cache by the data replacement mechanism, due to the limitation of the storage
capability of the SN. Figure 8 shows that cache hit rates drop every 5 min. Since INs synchronize
with sensor nodes in the corresponding grid cells every 5 min, sensory data, which have been changed
remarkably, are retrieved from the network. These variations are routed to the SN, but these sensory data
are not counted in SDq

cah, which induces the dropping of hrtcah consequently.

Sensors 2015, 15 15055

Figure 7. Comparison of the accumulated energy consumption for single-attribute query
in a sub-region (SAQSR) with various query configurations, where S1-sparse means the
sparse sub-regions with our cache mechanism, S2-sparse means sparse sub-regions without
our cache mechanism, S1-dense means the dense sub-regions with our cache mechanism
and S2-dense means the dense sub-regions without our cache mechanism. The gradient
of the curves represents the ratio of energy consumption for answering the query. This
figure shows that the energy consumption is decreased dramatically when our cooperative
caching mechanism is adopted, especially when the sensors nodes are densely deployed
in the network. For instance, 348% (or 599%) more energy is consumed for the case of
S2-sparse (or S2-dense) than the case of S1-sparse (or S1-dense).

Figure 8. Comparison of cache hit rates for MAQWR, where the number of attributes are
set to 1, 3, 5, 7 and 9, respectively. Similar to Figure 4, when the cache size of the SN is
relatively small and is not capable of caching all sensory data requested by a certain query,
the cache hit rates for sensory data cached in the SN decrease significantly (roughly from
95% down to 70%).

Sensors 2015, 15 15056

Figures 5 and 9 show the energy consumption and cache hit rates for MAQWR, where: (i) the cache
size of the SN is set to 500, 600, 700, 800 and 900, respectively; and (ii) the number of attributes
interested in queries is seven. Sensory data of around 700 sensor nodes are able to be cached in the SN.
When the cache size is more than 700, much less energy (roughly 40%∼66% of a decrease) is consumed,
as shown in Figure 5, and cache hit rates are much higher (roughly 25% of an increase) as shown in
Figure 9. As discussed, the sensory data replacement mechanism and real-time data gathering from the
network are the main causes of more energy consumption and cache hit rates dropping.

Figure 9. Comparison of cache hit rates for MAQWR, where the cache size of the SN is set
to 500, 600, 700, 800 and 900, respectively. Similar to Figure 8, when the cache size of the
SN is relatively small and is not capable of caching all sensory data requested by a certain
query, the cache hit rates for sensory data cached in the SN decrease significantly (roughly
from 95% down to 70%).

Figure 6 shows the energy consumption for SAQWR, where: (i) the skewness degree is set to 20%,
40%, 60% and 80%, respectively; and (ii) the cache size of the SN is set to 600. Note that around
100 sensor nodes are responsible for the query answering, and the cache of the SN can accommodate
all of these sensory data. This figure shows that the bigger the skewness degree, the less the energy
consumption is for the query answering in the whole network. For instance, in comparison with the case
when the skewness degree is set to 80%, 73% (or 91%) more energy is consumed for the case when
the skewness degree is set to 40% (or 20%). As presented in Section 3.1, our index tree is constructed
through merging two neighboring sub-regions, where the energy consumption of forwarding the same
size of messages is the least. Besides, our index tree is a relatively balanced tree, which reduces the
path length of dense sub-regions for routing sensory data to the SN. Generally, our technique is more
efficient, when sensor nodes are distributed in a skewness fashion.

Sensors 2015, 15 15057

As mentioned, the points of interest (POI) of domain applications are usually within a certain
sub-region for a certain time duration, while evolving to neighboring sub-regions moderately. Queries
are often issued periodically and continuously; a query region is typically part of a POI region, and
concurrent queries often have overlapping sub-regions. Experiments are conducted for SAQSR, where
a skewness degree is set to 60% and the cache size is set to 600. A POI region is assumed to be a
rectangle in shape and is set to be dense or sparse sub-regions of the network. A query region is
encoded as a set of grid cells contained in the POI region. These grid cells may not be neighboring,
for simulating the scenario where multiple queries are issued concurrently. Grid cells at a certain time
slot are randomly determined, and the number of grid cells may be different in contiguous time slots.
The settings of experiments include: (i) S1-sparse: sparse sub-regions with our cache mechanism; (ii)
S2-sparse: sparse sub-regions without our cache mechanism; (iii) S1-dense: dense sub-regions with
our cache mechanism; and (iv) S2-dense: dense sub-regions without our cache mechanism. Figure 7
shows the energy consumption for these four types of experimental configurations. Intuitively, our cache
mechanism can reduce the energy consumption to a large extent, when the query region is within sparse
or dense sub-regions, i.e., S2-sparse is 348% more in energy consumption than S1-sparse, and S2-dense
is 599% more in energy consumption than S1-dense. Note that the difference of energy consumption for
S1-sparse and S1-dense is quite small. This indicates that our cache mechanism is efficient in reducing
energy consumption and increasing the network capability, especially when the cache of the SN can
accommodate almost all sensory data interested in queries.

Figure 10. Comparison of cache hit rates for S1-sparse and S1-dense, where S1-sparse
means sparse sub-regions with our cache mechanism, and S1-densemeans dense sub-regions
with our cache mechanism. Similar to Figure 6, this figure shows that our cooperative
caching mechanism benefits the cache hit rates for cached sensory data of the SN (roughly
from 30%–65%), especially when sensors nodes are densely deployed in the network.

Sensors 2015, 15 15058

Figure 10 shows the cache hit rates for the scenarios S1-sparse and S1-dense. Generally, the cache
hit rate of S1-sparse (roughly 30%) is lower than that of S1-dense (roughly 65%), although the energy
consumption for S1-sparse and S1-dense is almost the same, as shown in Figure 7. Since grid cells
are chosen randomly for representing a query region, common grid cells between continuous queries are
relatively less in number than those of Figure 6, which induces a smaller value of the cache hit rates.
Note that relatively few sensor nodes are involved in S1-sparse, and a minor change of the number of
sensor nodes may have a relatively big impact on cache hit rates, which results in a relatively smaller
value of cache hit rates for S1-sparse. Consequently, our cache mechanism is more efficient, especially
when periodic and continuous queries have more overlapping sub-regions.

5.3. Comparison with Relevant Techniques

This section presents the results of our experiments comparing the efficiency and performance
of our popularity-based cooperative caching mechanism (denoted PCC) with respect to those of our
multiple-attribute query processing (MQP) mechanism, as presented by Zhou et al. [33]. Different
from PCC, the cooperative caching mechanism has not been adopted in MQP for facilitating the query
processing with the same environmental settings.

Experiments have been conducted for the comparison of the energy consumption for PCC and
MQP [33] with respect to the query types of MAQWR and SAQWR. The number of attributes are
set to 1, 3, 5, 7 and 9, respectively. The cache size of the SN is set to 900, and the skewness degree
is set to 60%. Figure 11 shows the experimental results, where the energy consumption at certain time
points (e.g., TP2, TP4, etc.) is illustrated. Note that the symbol TPi (e.g., i = 2) means the i-th (second)
time point. It is worth mentioning that the energy consumption for MQP is almost the same for all time
points, whose values are illustrated at the left side of Figure 11. As for our PCC, the energy consumption
is quite large at the first time point (denoted INITin Figure 11), since no sensory data have been cached
in the SN for reducing the data gathering from the network in real time, and all intermediate nodes
(INs) are required to gather sensory data from the corresponding sensor nodes and to cache them locally.
The energy consumption at the succeeding time points decreases to a large extent due to the reusability
of sensory data cached in the SN for supporting the forthcoming query answering. This figure shows
that the energy to be consumed will be in a steady state after around 18 time slots when the number
of attributes is one and around 40 time slots when the number of attributes is nine, due to the fact that
sensory data cached in the SN and INs can hardly reduce the energy consumed for query processing
any further. Generally, our PCC outperforms MQP on energy consumption, especially when the query
attributes are relatively large in number.

Figure 12 illustrates the energy consumption for our PCC and MQP [33] at different time points. As
previously mentioned, the energy consumption for MQP is the same for all time points. Figure 12 shows
that more energy is consumed at the first time point (denoted INIT). The energy consumption for our
PCC is much less than that of MQP in the consequent time points. It is evident from this figure that
our PCC is more energy efficient than MQP, especially when the query attributes are relatively large
in number.

Sensors 2015, 15 15059

Figure 11. Comparison of energy consumption of our popularity-based cooperative caching
(PCC) and multiple-attribute query processing (MQP) [33] for the query types of MAQWR
and SAQWR, where the number of attributes is set to 1, 3, 5, 7 and 9, respectively. The
energy consumption at various time points (TP2, TP4, etc.) are illustrated. Generally, the
energy consumption of our PCC is much smaller than that of MQP (roughly 30% less on
average for PCC than MQP), especially when the number of query attributes is relatively
large. Note that the energy consumption of PCC is quite large at the first time point, since no
sensory data have been cached in the SN for reducing the data gathering from the network in
real-time to facilitate the query processing.

Figure 12. Comparison of energy consumption of our PCC and MQP [33] for the query
types of MAQWR and SAQWR, where the number of attributes are set to 1, 3, 5, 7 and 9,
respectively. This figure shows that more energy is consumed for our PCC than MQP at the
first time point (denoted INIT), while much less energy is consumed afterwards.

Sensors 2015, 15 15060

6. Related Work and Comparison

Traditional techniques have been developed for facilitating the query processing in wireless sensor
networks (WSNs) leveraging the cooperative caching mechanism. We have proposed a popularity-based
caching mechanism for optimizing periodic queries in WSNs [42]. One kind of attribute is sensed by
sensor nodes in the network. Sensory data are cached only in the memory space of the sink node, and
these data are assumed to be valid for answering the forthcoming queries within a certain number of
time slots. Usually, the point of interest evolves moderately to neighboring sub-regions, whose sensory
data may have become stale already and are not being cached at the sink node at this moment. To
facilitate this query processing procedure, grid cells, which may be covered by the forthcoming queries,
are derived from the previous queries according to the popularity of interested grid cells. Sensory data
are pre-fetched from the network for these grid cells whose popularity is among the highest. Generally,
the technique developed in this article is inspired by our previous work [42]. However, multiple kinds of
attributes are considered to be sensed by sensor nodes in this technique, and the staleness of sensory data
is determined according to whether sensory data have been changed significantly. Besides, this technique
removes the assumption made by Zhou et al. [42] that the sink node has enough storage capability for
caching sensory data of sensor nodes in the whole network. Instead, only sensory data, which have a high
possibility of being reused for answering the forthcoming queries for certain attributes, are cached in the
sink node. Grid cells, which are not covered by recent queries, cache sensory data of certain attributes or
just a flag indicating a dramatic change of sensor nodes. This two-tiered cooperative mechanism, which
caches sensory data at the sink node and the head nodes of grid cells, is efficient for facilitating the query
answering, as evidenced by the experimental evaluation in Section 5.3.

A cluster-based cooperative caching mechanism is developed by Chauhan et al. [47] for supporting
query processing. The network is divided into non-overlapping clusters, and each sensor node is assumed
to have some cache space. Sensory data are stored in the cache space of sensor nodes that are near
the sink node. When a query request is to be responded to, sensory data are retrieved through a cache
discovery process. Generally, a sensor node that is responsible for this query is examined for determining
whether the required sensory data are saved in its cache space. If not, the cluster of the source sensor
node is examined, and the source sensor node is visited for routing the required sensory data to the sink
node. This method claims to reduce the requirement for bandwidth, energy and storage of the network.
However, the sink node is not responsible for caching sensory data. In fact, sensor nodes near the sink
node should cache sensory data and are responsible for routing data to the sink node. These sensor nodes
have much more energy consumption and should deplete their energy quickly. In our technique, sensory
data are cached in the sink node and the head nodes of grid cells, and the popularity of sensor nodes is
considered when determining which sensory data of certain attributes should be cached. A cooperative
caching mechanism is developed by Sharma et al. [48], where sensory data are cached in the sink node
and sensor nodes. A cache zone is formed as a region around a sensor node, where the storage of
surrounding sensor nodes can be used to build a larger cumulative cache. A cache discovery mechanism
is proposed for identifying required data items, and a cache replacement policy is developed for evicting
data items of less importance. This is an interesting work and inspired us to develop our technique.
Generally, this work tries to increase data availability nearer the sink and to reduce unnecessary energy

Sensors 2015, 15 15061

consumption. A query processing mechanism is not discussed specifically when multiple queries are
issued periodically and continuously.

To better support the cooperative caching in WSNs, sensor nodes, which can take the role of
coordinating and packet caching and forwarding, are essential. A metric of energy betweenness
centrality is proposed by Dimokas et al. [49] to evaluate the significance of sensor nodes and to
examine whether these sensor nodes can take the special role of cooperation concerning the caching
decisions. Consequently, a new energy-efficient cooperative caching protocol is developed. An
in-network distributed query processor called Corona is developed by Khoury et al. [32], which aims to
cluster sensor readings into a local storage buffer in sensor nodes. When the freshness of these sensory
data is within a certain threshold, they can be used for answering concurrent queries directly, rather
than being fetched from the network in real time. Therefore, sensor activation can be minimized. A
survey is presented by Kumar et al. [30] about cache-based policies in WSNs for reducing the network
traffic and bandwidth usage. Besides, cooperative caching has been used in other domains, like mobile
ad hoc networks, to increase data availability and reduce data access delays [50], and cooperative caching
policies have been applied in social wireless networks for minimizing electronic content provisioning
cost [51]. Generally, these techniques explore the routing of data packets in the network, and a single
query processing is of interest mostly. The strategy of caching sensory data in the intermediate nodes
is the main focus; whereas in this article, we propose a two-tiered cooperative caching mechanism for
reducing the energy consumption of query answering in the forthcoming time slots.

To establish efficient paths for routing sensory data to the sink node, a cache-based routing metrics
is proposed by Grilo et al. [29], where intermediate nodes in WSNs are used for caching packets
and transmitting them to the sink node. Note that in a heterogeneous Internet of Things, sensor
nodes may differ to some extent in terms of storage and computational capabilities. Hence, sensor
nodes with larger capabilities are good candidates for caching the packets. Therefore, cache utilization
is set as a novel metric applied in this technique, and routing paths should be selected considering
cache-rich intermediate nodes. Generally, this work is interesting and inspires caching packets at the
intermediate nodes and determining appropriate routing paths; whereas we explore a cooperative caching
mechanism at the sink node and the head nodes of grid cells, according to the popularity of sensory
data leveraging the recent query history. These two techniques can complement each other for better
facilitating the query processing and, thus, improving the energy efficiency. A caching platform is
presented by Léone et al. [52] for reducing the network communication cost. A gateway based on a
constrained application protocol (CoAP)-HTTP proxy is proposed, where cross-layer data are cached
in the proxy [53]. When a query is to be answered, the gateway will delegate for query answering.
Only when the requested sensory data are not fresh enough or missed in the cache, this query should be
transferred to the network for fetching data. This work is similar to what we have developed. However,
mainly a caching model is presented, while technical details about the caching strategy are not clear.

Besides, some methods study periodic query processing. In [17,24], the authors study the achievable
network capability of snapshot and continuous data collection for a probabilistic WSN model. Cell-based
path scheduling and zone-based pipeline scheduling algorithms are proposed for improving the
concurrency of snapshot and continuous data collection, respectively. This work inspired us to partition
the network region into square grid cells and to use grid cells as elementary units for caching sensory

Sensors 2015, 15 15062

data. Node localization is an important research problem, especially for large-scale WSNs [54,55]. The
network is divided into overlapped local networks, and the corresponding local maps are constructed
using a local semidefinite programming method. These local maps are merged into a global map, which
contains the exact position of the nodes of interest. It is argued that in certain WSN applications, query
requests come periodically with stringent delay constraints [10]. Therefore, a periodic aggregation query
scheduling is performed by the designed routing strategy along with packet scheduling protocols. The
quality of queries in WSNs is discussed by Brayner et al. [56], which aims to deliver a reasonable level
of data quality as expected, while ensuring the intelligent consumption of limited network resources.
Generally, these methods mainly explore the strategies of supporting (periodic) query processing in
WSNs, in order to consume less resources while prolonging the network lifetime. The sharing of sensory
data retrieved at a certain time slot and between concurrent queries and the reuse of sensory data gathered
by recent queries for answering the forthcoming queries are not discussed extensively.

7. Conclusions

Wireless sensor networks, which act as important interfaces between physical environments and
computational systems, have been used extensively to support widespread application domains. Usually,
multiple attributes should be sensed in a network, and multiple-attribute sensory data are queried from
the network continuously and periodically for facilitating domain applications. Note that sensory data
may not change significantly within a certain time duration, and applications may tolerate a variation
of adopted sensory data with accurate ones to a certain extent. Consequently, sensory data gathered
at this moment can be shared for answering concurrent queries and may be reused for answering the
forthcoming queries. To remedy this issue, a two-tier cooperative caching mechanism is proposed in this
article. Specifically, the popularity of sensory data, which reflects the possibility of reusing these data
by the forthcoming queries, is calculated according to the queries issued in recent time slots. Sensory
data of a higher popularity are cached in the sink node, and these data can be used for query answering
directly. Sensory data of a lower popularity are cached in the head nodes of grid cells. This two-tier
cooperative caching strategy promotes the reuse of sensory data for answering the forthcoming queries
significantly. The results of experimental evaluation show that our technique is efficient in the reduction
of energy consumption for query answering, especially when the number of queries is relatively large.
Specifically, the energy consumption for the case when the sink node is lacking caching space is
around 40%∼66% more, as shown in Figure 5, than that for the case when the sink node is capable
of caching all sensory data requested by the queries, while the cache hit rate increases significantly, as
well (roughly from 70%–95%, as shown in Figures 8 and 9) for these two cases. Compared with our
previous technique [33], this two-tier cooperative caching strategy can reduce around 30% of the energy
consumption for answering the queries, as shown in Figure 11.

As to the future directions, we are adopting this cooperative caching mechanism to the scenario where
a wireless sensor network is shared by multiple applications. The challenge includes the sharing and
reusing of query results of these applications for answering forthcoming queries, in order to reduce the
energy consumption. Besides, sensory data pre-fetching from the network should be beneficial for the

Sensors 2015, 15 15063

decrease of energy consumption, especially when the forthcoming queries can be (partially) predicted
according to the queries in the past. A prediction model is under the construction.

Acknowledgments

This work was supported partially by the National Natural Science Foundation of China (Grant
Nos. 61379126 and 61401107), by the Scientific Research Foundation for Returned Scholars, Ministry
of Education of China, by the Guangdong University of Petrochemical Technology’s Internal Project
(Grant No. 2012RC106), by the Educational Commission of Guangdong Province, China (Grant No.
2013KJCX0131), and by the Fundamental Research Funds for the Central Universities.

Author Contributions

All authors were involved in conceiving the proposed ideas presented in this work. All authors were
responsible for writing this manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Lampoltshammer, T.J.; de Freitas, E.P.; Nowotny, T.; Plank, S.; da Costa, J.P.C.L.; Larsson, T.;
Heistracher, T. Use of Local Intelligence to Reduce Energy Consumption of Wireless Sensor Nodes
in Elderly Health Monitoring Systems. Sensors 2014, 14, 4932–4947.

2. Zheng, J.; Bhuiyan, M.Z.A.; Liang, S.; Xing, X.; Wang, G. Auction-based adaptive sensor
activation algorithm for target tracking in wireless sensor networks. Future Gener. Comput. Syst.
2014, 39, 88–99.

3. Saukh, O.; Sauter, R.; Marrón, P.J. Time-Bounded and Space-Bounded Sensing in Wireless Sensor
Networks. In Proceedings of the 4th IEEE International Conference on Distributed Computing in
Sensor Systems, Santorini Island, Greece, 11–14 June 2008; pp. 357–371.

4. Renner, C.; Unterschutz, S.; Turau, V.; Romer, K. Perpetual Data Collection with
Energy-Harvesting Sensor Networks. ACM Trans. Sens. Netw. 2014, 11, 12.

5. Guo, S.; Wang, C.; Yang, Y. Joint Mobile Data Gathering and Energy Provisioning in Wireless
Rechargeable Sensor Networks. IEEE Trans. Mob. Comput. 2014, 13, 2836–2852.

6. Shi, L.; Han, J.; Han, D.; Ding, X.; Wei, Z. The dynamic routing algorithm for renewable wireless
sensor networks with wireless power transfer. Comput. Netw. 2014, 74, 34–52.

7. Rault, T.; Bouabdallah, A.; Challal, Y. Energy efficiency in wireless sensor networks: A top-down
survey. Comput. Netw. 2014, 67, 104–122.

8. Dai, H.; Chen, G.; Wang, C.; Wang, S.; Wu, X.; Wu, F. Quality of Energy Provisioning for Wireless
Power Transfer. IEEE Trans. Parallel Distrib. Syst. 2015, 26, 527–537.

9. Yun, Y.; Xia, Y. Maximizing the Lifetime of Wireless Sensor Networks with Mobile Sink in
Delay-Tolerant Applications. IEEE Trans. Mob. Comput. 2010, 9, 1308–1318.

Sensors 2015, 15 15064

10. Xu, X.; Li, X.Y.; Wan, P.J.; Tang, S. Efficient Scheduling for Periodic Aggregation Queries in
Multihop Sensor Networks. IEEE/ACM Trans. Netw. 2012, 20, 690–698.

11. Degirmenci, G.; Kharoufeh, J.P.; Prokopyev, O.A. Maximizing the Lifetime of Query-Based
Wireless Sensor Networks. ACM Trans. Sens. Netw. 2014, 10, 56.

12. Gao, H.; Fang, X.; Li, J.; Li, Y. Data Collection in Multi-Application Sharing Wireless Sensor
Networks. IEEE Trans. Parallel Distrib. Syst. 2015, 26, 403–412.

13. Wang, Y.C. A Two-Phase Dispatch Heuristic to Schedule the Movement of Multi-Attribute Mobile
Sensors in a Hybrid Wireless Sensor Network. IEEE Trans. Mob. Comput. 2013, 13, 709–722.

14. Zhang, Y.; Yang, W.; Han, D.; Kim, Y.I. An Integrated Environment Monitoring System for
Underground Coal Mines Wireless Sensor Network Subsystem with Multi-Parameter Monitoring.
Sensors 2014, 14, 13149–13170.

15. Erdelj, M.; Loscrì, V.; Natalizio, E.; Razafindralambo, T. Multiple point of interest discovery and
coverage with mobile wireless sensors. Ad Hoc Netw. 2013, 11, 2288–2300.

16. Pan, M.S.; Liu, P.L.; Lin, Y.P. Event data collection in ZigBee tree-based wireless sensor networks.
Comput. Netw. 2014, 73, 142–153.

17. Ji, S.; Beyah, R.; Cai, Z. Snapshot and Continuous Data Collection in Probabilistic Wireless Sensor
Networks. IEEE Trans. Mob. Comput. 2014, 13, 626–637.

18. Can, Z.; Demirbas, M. A survey on in-network querying and tracking services for wireless sensor
networks. Ad Hoc Netw. 2013, 11, 596–610.

19. Sarkar, R.; Gao, J. Differential Forms for Target Tracking and Aggregate Queries in Distributed
Networks. IEEE/ACM Trans. Netw. 2013, 21, 1159–1172.

20. Xie, R.; Jia, X. Transmission-Efficient Clustering Method for Wireless Sensor Networks Using
Compressive Sensing. IEEE Trans. Parallel Distrib. Syst. 2014, 25, 806–815.

21. Villas, L.A.; Boukerche, A.; de Oliveira, H.A.; de Araujo, R.B.; Loureiro, A.A. A spatial
correlation aware algorithm to perform efficient data collection in wireless sensor networks. Ad Hoc
Netw. 2014, 12, 69–85.

22. Zhang, X.; Dong, L.; Peng, H.; Chen, H.; Zhao, S.; Li, C. Collusion-Aware Privacy-Preserving
Range Query in Tiered Wireless Sensor Networks. Sensors 2014, 14, 23905–23932.

23. Umer, M.; Tanin, E.; Kulik, L. Opportunistic sampling-based query processing in wireless sensor
networks. Geoinformatica 2013, 17, 567–597.

24. Ji, S.; He, J.S.; Uluagac, A.S.; Beyah, R.; Li, Y. Cell-Based Snapshot and Continuous Data
Collection in Wireless Sensor Networks. ACM Trans. Sens. Netw. 2013, 9, 47.

25. Xu, X.; Li, X.Y.; Song, M. Distributed Scheduling for Real-Time Data Collection in Wireless
Sensor Networks. In Proceedings of the IEEE Global Communications Conference, Budapest,
Hungary, 25–26 June 2013; pp. 426–431.

26. Li, G.; Guo, L.; Gao, X.; Liao, M. Bloom filter based processing algorithms for the
multi-dimensional event query in wireless sensor networks. J. Netw. Comput. Appl. 2014,
37, 323–333.

27. Kimand, D.; Uma, R.; Abay, B.H.; Wu, W.; Wang, W.; Tokuta, A.O. Minimum Latency Multiple
Data MULE Trajectory Planning in Wireless Sensor Networks. IEEE Trans. Mob. Comput. 2014,
13, 838–851.

Sensors 2015, 15 15065

28. Hariharan, S.; Bisdikian, C.; Kaplan, L.M.; Pham, T. Efficient Solutions Framework for Optimal
Multitask Resource Assignments for Data Fusion in Wireless Sensor Networks. ACM Trans.
Sens. Netw. 2014, 10, 48.

29. Grilo, A.M.; Heidrich, M. Routing metrics for cache-based reliable transport in wireless sensor
networks. EURASIP J. Wirel. Commun. Netw. 2013, 139.

30. Kumar, H.; Rai, M.K. Caching in Wireless Sensor Networks: A Survey. Int. J. Eng.
Trends Technol. 2014, 10, 549–553.

31. Mahajan, P.C. A New Approach for Scheduling Periodic Aggregation Queries in Wireless Sensor
Network with Aggregation Delay. Int. J. Adv. Res. Comput. Commun. Eng. 2013, 2, 1712–1717.

32. Khoury, R.; Dawborn, T.; Gafurov, B.; Pink, G.; Tse, E.; Tse, Q.; Almi’Ani, K.; Gaber, M.;
Rhm, U.; Scholz, B. Corona: Energy-Efficient Multi-query Processing in Wireless Sensor
Networks. In Proceedings of the15th International Conference on Database Systems for Advanced
Applications, Database Systems for Advanced Applications 15th International Conference,
DASFAA 2010, Tsukuba, Japan, 1–4 April 2010; pp. 416–419.

33. Zhou, Z.; Zhao, D.; Shu, L.; Chao, H.C. Efficient Multi-Attribute Query Processing in
Heterogeneous Wireless Sensor Networks. J. Internet Technol. 2014, 15, 699–712.

34. Heinzelman, W.R.; Chandrakasan, A.; Balakrishnan, H. Energy-Efficient Communication Protocol
for Wireless Microsensor Networks. In Proceedings of the 33rd Annual Hawaii International
Conference on System Sciences, Maui, HI ,USA, 4–7 January 2000; pp. 1–10.

35. Lachowski, R.; Pellenz, M.E.; Penna, M.C.; Jamhour, E.; Souza, R.D. An Efficient Distributed
Algorithm for Constructing Spanning Trees in Wireless Sensor Networks. Sensors 2015, 15,
769–791.

36. Shan, M.; Chen, G.; Luo, D.; Zhu, X.; Wu, X. Building Maximum Lifetime Shortest Path Data
Aggregation Trees in Wireless Sensor Networks. ACM Trans. Sens. Netw. 2014, 11, 11.

37. Zobel, J.; Moffat, A.; Ramamohanarao, K. Inverted files versus signature files for text indexing.
ACM Trans. Datab. Syst. 1998, 23, 453–490.

38. Marx, D.; Razgon, I. Constant Ratio Fixed-Parameter Approximation of the Edge Multicut
Problem. In Proceedings of the 17th Annual European Symposium on Algorithms, Copenhagen,
Denmark, 7–9 September 2009; pp. 647–658.

39. Heinzelman, W.B.; Chandrakasan, A.P.; Balakrishnan, H. An Application-Specific Protocol
Architecture for Wireless Microsensor Networks. IEEE Trans. Wirel. Commun. 2002, 1, 660–670.

40. Forster, A.; Forster, A.; L.Murphy, A. Optimal Cluster Sizes for Wireless Sensor Networks: An
Experimental Analysis. In Proceedings of the 1st International Conference on Ad Hoc Networks,
Niagara Falls, ON, Canada, 16–18 October 2010; pp. 49–63.

41. Zhu, J.; Lung, C.H.; Srivastava, V. A hybrid clustering technique using quantitative and qualitative
data for wireless sensor networks. Ad Hoc Netw. 2015, 25, 38–53.

42. Zhou, Z.; Zhao, D.; Xu, X.; Du, C.; Sun, H. Periodic Query Optimization Leveraging
Popularity-Based Caching in Wireless Sensor Networks for Industrial IoT Applications.
Mob. Netw. Appl. 2014, doi:10.1007/s11036-014-0545-4.

43. Wu, M.; Tan, L.; Xiong, N. A Structure Fidelity Approach for Big Data Collection in Wireless
Sensor Networks. Sensors 2015, 15, 248–273.

Sensors 2015, 15 15066

44. Zhu, C.; Leung, V.C.M.; Yang, L.T.; Shu, L. Collaborative Location-based Sleep Scheduling for
Wireless Sensor Networks Integrated with Mobile Cloud Computing. IEEE Trans. Comput. 2014,
doi:10.1109/TC.2014.2349524.

45. Bagchi, A.; Pinotti, C.; Galhotra, S.; Mangla, T. Optimal Radius for Connectivity in Duty-Cycled
Wireless Sensor Networks. ACM Trans. Sens. Netw. 2014, 11, 36.

46. Carrano, R.C.; Passos, D.; Magalhaes, L.C.S.; Albuquerque, C.V.N. Survey and Taxonomy of
Duty Cycling Mechanisms in Wireless Sensor Networks. IEEE Commun. Surv. Tutor. 2014,
16, 181–194.

47. Chauhan, N.; Awasthi, L.K.; Chand, N. Cluster Based Efficient Caching Technique for Wireless
Sensor Networks. In Proceedings of the International Conference on Latest Computational
Technologies, Dubrovnik, Croatia, 4–7 September 2012; pp. 85–89.

48. Sharma, T.; Joshi, R.; Misra, M. Dual Radio Based Cooperative Caching for Wireless Sensor
Networks. In Proceedings of the16th IEEE International Conference on Networks, Orlando, FL,
USA, 19–22 October 2008; pp. 1–7.

49. Dimokas, N.; Katsaros, D. Detecting Energy-Efficient Central Nodes for Cooperative Caching in
Wireless Sensor Networks. In Proceedings of the IEEE 27th International Conference on Advanced
Information Networking and Applications, Barcelona, Spain, 25–28 March 2013; pp. 484–491.

50. Abbani, N.; Artail, H. Protecting data flow anonymity in mobile ad hoc networks that employ
cooperative caching. Ad Hoc Netw. 2015, 26, 69–87.

51. Taghizadeh, M.; Micinski, K.; Ofria, C.; Torng, E.; Biswas, S. Distributed Cooperative Caching in
Social Wireless Networks. IEEE Trans. Mob. Comput. 2013, 12, 1037–1053.

52. Leone, R.; Medagliani, P.; Leguay, J. Optimizing QoS in Wireless Sensors Networks using
a Caching Platform. In Proceedings of the 2nd International Conference on Sensor Networks,
Barcelona, Spain, 19–21 February 2013; pp. 23–32.

53. Ludovici, A.; Calveras, A. A Proxy Design to Leverage the Interconnection of CoAP Wireless
Sensor Networks with Web Applications. Sensors 2015, 15, 1217–1244.

54. Li, S.; Wang, X.; Zhao, S.; Wang, J.; Li, L. Local Semidefinite Programming-Based Node
Localization System for Wireless Sensor Network Applications. IEEE Syst. J. 2014, 8, 879–888.

55. Naraghi-Pour, M.; Rojas, G.C. A Novel Algorithm for Distributed Localization in Wireless Sensor
Networks. ACM Trans. Sens. Netw. 2014, 11, Article No. 1.

56. Brayner, A.; Coelho, A.L.; Marinho, K.; Holanda, R.; Castro, W. On query processing in wireless
sensor networks using classes of quality of queries. Inf. Fusion 2014, 15, 44–55.

c© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

	Introduction
	Preliminary: Energy Model
	Index Tree Construction and Network Caching Model
	Index Tree Construction
	Two-Tier Cooperative Caching Model

	Query Processing with Cache Mechanism
	Sensory Data Synchronization for INs and Corresponding Sensor Nodes
	Popularity-Based Sensory Data Replacement Mechanism in the SN
	Query Processing with Two-Tier Cooperative Caching Mechanism

	Implementation and Evaluation
	Environmental Settings
	Experimental Evaluation
	Comparison with Relevant Techniques

	Related Work and Comparison
	Conclusions

