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Abstract: Two different coarse alignment algorithms for Fiber Optic Gyro (FOG) Inertial 

Navigation System (INS) based on inertial reference frame are discussed in this paper. 

Both of them are based on gravity vector integration, therefore, the performance of these 

algorithms is determined by integration time. In previous works, integration time is 

selected by experience. In order to give a criterion for the selection process, and make  

the selection of the integration time more accurate, optimal parameter design of these 

algorithms for FOG INS is performed in this paper. The design process is accomplished 

based on the analysis of the error characteristics of these two coarse alignment algorithms. 

Moreover, this analysis and optimal parameter design allow us to make an adequate selection 

of the most accurate algorithm for FOG INS according to the actual operational conditions. 

The analysis and simulation results show that the parameter provided by this work is the 

optimal value, and indicate that in different operational conditions, the coarse alignment 

algorithms adopted for FOG INS are different in order to achieve better performance.  

Lastly, the experiment results validate the effectiveness of the proposed algorithm. 
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1. Introduction 

The Fiber Optic Gyro (FOG) Inertial Navigation System (INS) is a modern system that has removed 

most of the mechanical complexity of platform systems by having the sensors attached rigidly  

or “strapped down” to the body of the host vehicle [1]. It belongs to Strapdown Inertial Navigation 

System (SINS) and has been substituted for platform INS [1,2]. In the normal course of FOG INS 

operation, the system’s initial attitude needs to be determined [3,4], and the attitude determination is 

achieved by the alignment process. Normally, the alignment process is divided into two steps, i.e., 

coarse and fine alignment, with coarse alignment followed by fine alignment [5]. The purpose of 

coarse alignment is to provide a good initial attitude for the fine alignment process. In this way,  

the duration of the total alignment process can be made shorter [6]. 

For the coarse alignment there is no a priori knowledge of initial conditions [7]. Only the 

measurement information from accelerometers and FOG outputs can be used. This fact forces the 

development of a non-linear alignment algorithm, and analytic methods are generally used for coarse 

alignment. In the ground base, the attitude can be determined directly by the analytic coarse alignment 

method using the gravity and earth rotation vectors [8]. Normally, the accuracy of this method can 

meet the requirement of fine alignment under the disturbance of limited vibration. However, FOG INS 

is usually applied in complex and volatile environments, and then the system has to withstand random 

movements which may be violent, such as a ship’s pitch and roll [9]. The ground coarse alignment 

techniques, henceforth, can not be used, since the measurement of the earth rotation rate provided by  

FOG is disturbed by high rotational values (several orders of magnitude greater than the earth rotation 

rate) [10]. 

In order to resolve this problem, a new analytic coarse alignment method based on the inertial 

reference frame for FOG INS has been provided [11]. This method is developed based on the fact that 

the gravity expressed in inertial space defines a cone whose main axis is the rotational axis of the  

Earth. Many researchers have investigated this topic, mainly based on the structure of noncollinear  

vectors [9,12,13]. In Reference 9, the noncollinear vectors are constructed by a velocity vector that is 

determined by gravity vector integration. In Reference 12, the authors provided a construction method 

by which the noncollinear vectors are acquired by a position vector that is produced by velocity vector 

integration (obtained by gravity integration). All of them have a lack of rigorous selection of 

integration time, so the performance of the coarse alignment algorithms may not be optimal. 

In order to give a criterion for selecting the integration time, and make the selection more accurate, 

the optimal parameter design of coarse alignment algorithms for FOG INS is done in this paper. First,  

the analysis of these two algorithms is made, and it is focused on the quasi-stationary conditions. Then 

with the analysis of the error characteristics, the optimal parameter design of these two algorithms is 

derived. Finally, based on the analysis and optimal parameter design, the adequate selection of the 

most accurate algorithm for FOG INS according to the actual operational conditions is provided.  
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The remainder of this paper is organized as follows: the coordinate frames used in this paper are 

addressed in Section 2. In Section 3, the principle of the new analytic coarse alignment method for 

FOG INS is introduced. Then the algorithms produced by the two different constructions are presented 

in Section 4. In Section 5, the processes of the error analysis and optimal parameter design are 

performed. Finally, in Sections 6 and 7, simulation and experiment results verify the analysis made in 

Section 5, and Section 8 concludes this paper. 

2. Coordinate Frame Definitions 

The coordinate frames used in this paper are defined as follows: 

(1) The b  frame is the body coordinate frame. The bx  axis is parallel to the vehicle's lateral axis 

and points to the right. The by  axis is parallel to the vehicle's longitudinal axis and points to 

forward. The bz  axis is parallel to the vehicle's vertical axis and points upward. 

(2) The i  frame is the non-rotating inertial coordinate frame. It is formed by fixing the earth-fixed 

coordinate frame at the beginning of the coarse alignment. 
(3) The bi  frame is the body inertial coordinate frame. It is formed by fixing the b  frame at the 

beginning of the coarse alignment. 

(4) The n  frame is the navigation frame, used for navigation and attitude representation. In this 

work, we choose the local level geographic coordinate frame as the n  frame. 

3. Description of General Requirements 

The purpose of initial alignment for FOG INS is to determine the direction cosine matrix (DCM), 

which relates vectors in the body coordinate frame b  to the same vectors expressed in the navigation 

coordinate frame n . Analytically, the DCM could be described as follows using the product chain rule: 

( ) ( ) ( )b

b

in n i
b i i bt t t=C C C C  (1)

where ( )bi
b tC  is the transformation matrix that transforms vectors from frame b  to frame bi  and can be 

calculated using the FOG output as described in the next section, ( )n
iC t  is given as follows: 

0 0

0 0

0 0

sin ( ) cos ( ) 0

( ) sin cos ( ) sin sin ( ) cos

cos cos ( ) cos sin ( ) sin

ie ie
n
i ie ie

ie ie

t t t t

C t L t t L t t L

L t t L t t L

− ω − ω − 
 = − ω − − ω − 
 ω − ω − 

 (2)

where ieω  is the earth rate, L  represents the local latitude, and 0t  is the start time of the coarse alignment. 

Then the task of DCM determination is transformed into the determination of remainder matrix 
b

i
iC . 

This matrix can be directly computed using the knowledge of two noncollinear vectors in the  
two frames (inertial frame i  and body inertial frame bi ). Let a  and b  represent these two noncollinear 

vectors, and define their components in the inertial frame as: 

[ ]i T
x y za a a=a  (3)

[ ]i T
x y zb b b=b  (4)

The vectors a  and b  transform according to the following expressions: 
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b bi i i
i=a C a  (5)

b bi i i
i=b C b  (6)

If c  is defined as 

= ×c a b  (7)

We also have: 

b bi i i
i=c C c  (8)

From Equations (5), (6), and (8), 
b

i
iC  could be calculated by the following equation: 

1
( ) ( )

( ) ( )

( ) ( )

b

b

b

b

ii T T

ii i T T
i

ii T T

−
  
  = ⋅   
     

a a
C b b

c c
 (9)

Thus, by substituting the remainder matrix calculated by Equation (9) in Equation (1), the DCM can 

be uniquely determined. At this time, the problem of the alignment of FOG INS is basically that of 

determining the two noncollinear vectors a  and b . 

From Figure 1, it is easy to see that the gravity expressed in inertial space defines a cone whose 
main axis is the rotational axis of the Earth. So, the projections of gravity onto the frames i  and bi  at 

different times are noncollinear. Then the two noncollinear vectors used for 
b

i
iC  computation can be 

generated by the gravity vector. 

 

Figure 1. The moving trajectory of gravity in the inertial space. 
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4. Two Alignment Algorithms 

Two alignment algorithms are provided in this section, and the difference between them is the 
construction of vectors a  and b . Let us begin by providing the updated algorithm for ( )bi

b tC , it can be 

derived by: 

( ) ( )[ω ]b bi i b
b b ibt t= ×C C  (10)

where 0( )bi
b t =C I , [ω ]b

ib×  denotes that a skew-symmetric matrix function of ωb
ib , ωb

ib  is the angular 

rate of the b  frame with respect to the i  frame, which can be measured by FOG. 

The noncollinear vectors of the two alignment algorithms in frame i  are defined in Table 1. 

Table 1. Noncollinear vectors in inertial frame i . 

Alignment Algorithms 
Noncollinear Vectors 

ia  ib  

Algorithm 1 
1

0
1( ) ( )

kti i
k t

t t dt= −V g  
2

0
2( ) ( )

kti i
k t

t t dt= −V g  

Algorithm 2 
1

0
1( ) ( )

kti i
k t

t t dt= S V  
2

0
2( ) ( )

kti i
k t

t t dt= S V  

where 2kt  is the end-time of coarse alignment, and 0 1 2k kt t t< < , ( )i tg  corresponds to 

( ) [ ( )]i n T n
it t=g C g  (11)

where [ ]0 0
Tn g= −g  is the gravity vector expressed in the navigation frame. 

Since these vectors are constructed by ( )i tg , ia  and ib  are precisely known. On the other hand,  
bia  and bib  are generated by the measurements of accelerometers and FOG. Without linear motion,  

the actual specific force bf  can be expressed as: 

( ) ( ) ( )b b b i
it t t= − = −f g C g  (12)

Therefore, 

( ) ( )b bi ib i
b it t= −C f C g  (13)

Alternatively, considering Equations (5) and (6) and Table 1, bia  and bib  are denoted as (Table 2). 

Table 2. Noncollinear vectors in body inertial frame bi . 

Alignment Algorithms 
Noncollinear Vectors 

bia  bib  

Algorithm 1 
1

0
1( ) ( )

k
b b

ti i b
k bt

t t dt= V C f  
2

0
2( ) ( )

k
b b

ti i b
k bt

t t dt= V C f  

Algorithm 2 
1

0
1( ) ( )

k
b b

ti i
k t

t t dt= S V  
2

0
2( ) ( )

k
b b

ti i
k t

t t dt= S V  

Theoretically, the transformation matrices 
b

i
iC  obtained by these two algorithms are identical in the 

ideal situation. However, their error characteristics are not completely identical. 
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5. Error Analysis and Optimal Parameter Design 

In the preceding section, no error sources are taken into consideration, but as mentioned earlier,  

the body inertial frame components of a  and b  are derived by the measurements of accelerometers 

and FOG. Therefore, the effect of Inertial Measurement Unit (IMU) sensor errors and base motion 

should be taken into account. The analysis of error characteristics driven by IMU sensor errors and 
base motion is done in the following section. On the other hand, since the coarse alignment time 2kt  is 

generally fixed, and 1kt  is adjustable, the optimal ratio between median integration time 1 1 0k kt t tΔ = −  

and total integration time 2 2 0k kt t tΔ = −  exists and is derived with the help of error analysis. Also, based 

on the previous analysis, the adequate selection of the most accurate algorithm for FOG INS according 

to the actual operational conditions is provided. 
In practical implementation, the equation for 

b

i
iC  should be rewritten in the form: 

1ˆ ˆ
b

i
i

−=C G F  (14)

where 

( )

( )

( )

i T

i T

i T

 
 
 
  

a
G = b

c
 and 

ˆ( )

ˆˆ ( )

ˆ( )

b

b

b

i T

i T

i T

 
 
 
 
  

a

F = b
c

  

ˆ bia  and ˆ bib  represent computed noncollinear vectors, and are shown in Table 3. 

Table 3. Computed noncollinear vectors in body inertial frame bi . 

Alignment Algorithms 
Noncollinear Vectors 

ˆ bia  ˆ bib  

Algorithm 1 
1

0
1

ˆ ˆˆ ( ) ( )
k

b b
ti i b

k bt
t t dt= V C f  

2

0
2

ˆ ˆˆ ( ) ( )
k

b b
ti i b

k bt
t t dt= V C f  

Algorithm 2 
1

0
1

ˆ ˆ( ) ( )
k

b b
ti i

k t
t t dt= S V  

2

0
2

ˆ ˆ( ) ( )
k

b b
ti i

k t
t t dt= S V  

where ˆ ( )bi
b tC  is calculated by: 

ˆ ˆ ˆ( ) ( )[ω ]b bi i b
b b ibt t= ×C C  (15)

ω̂b
ib  denotes the measurement quantity measured by FOG, and can be expressed as: 

ω̂ ω εb b b
ib ib= +  (16)

where εb  is the FOG error. The other measurement quantity ˆ bf  can be represented as [14,15]: 

ˆ ( )[ ( ) ( ) ω ( ) ( )]b b b b

b

i i i ib b i b
i i iet t t t t= − + + × +f C C g v v ∇  (17)

Neglecting the second order small term, it can be simplified into: 

ˆ ( )[ ( ) ( )]b b

b

i ib b i b
i it t t= − + +f C C g v ∇  (18)

where ( )bi tv  is the external acceleration caused by linear motion, b∇  represents the accelerometer error. 
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5.1. Error Sources Analysis 

It is quite obvious from Tables 1 and 3 that the elements of G  are precisely known, but F̂  contains 

sensor errors and base motion which are uncertain. The error analysis in this section utilizes 

perturbation methods, then ˆ
b

i
iC  and F̂  can be expanded in series and arranged in the following forms: 

ˆ
b b b

i i i
i i i= + δC C C  (19)

ˆ + δF = F F  (20)

where 
b

i
iδC  is the error matrix between ˆ

b

i
iC  and 

b

i
iC  and the matrix δF  represents the departure of F̂  

from F . 

Consequently, we have: 
1

b

i
i

−δ = δC G F  (21)

Equation (21) shows that the error of 
b

i
iC  is caused by the departure of F̂  from F . By comparing 

Tables 2 and 3, we find that the matrix δF  results from the departure of ˆ bix  from bix  ( ,=x a b ). This 

means that we can study the error sources by analyzing the departure of ˆ bix  from bix . Consider 

Equation (18) and the following equation: 

ˆ ( ) ( ) ( )b b bi i i
b b bt t t= + δC C C  (22)

where ( )bi
b tδC  is the error matrix caused by the FOG error. ˆ ˆ( )bi b

b tC f  can be expressed as: 

ˆ ˆ( ) ( ) [ ( ) ( ) ( ) ( ) ( )]b b b b b b

b

i i i i i ib i b b i
b i b b i it t t t t t t= − + + − δC f C g v C C C C g∇  (23)

where products of error quantities have been neglected. Then the departure of ˆ bix  from bix  ( ,=x a b ) 

can be obtained and described as follows (for the two alignment algorithms): 

0

ˆ ( ) ( ) [ ( ) ( ) ( ) ( ) ( )]
x

b b b b b
ti i i i ib b i

x x b b it
t t t t t t t dt− = + − δ V V v C C C g∇  (24)

0 0

ˆ ( ) ( ) [ ( ) ( ) ( ) ( ) ( )]
x

b b b b b
t ti i i i ib b i

x x b b it t
t t d dt− = τ + τ − δ τ τ τ τ  S S v C C C g∇  (25)

where 1 2x k kt t or t= . Obviously, this departure is mainly caused by b∇ , bi
bδC , and biv . It means that 

sensor errors b∇ , εb , and base motion biv  are the major error sources of the error matrix 
b

i
iδC . 

5.2. The Effect of Sensor Errors 

First, the effect of sensor errors is analyzed. In our analysis, we assume that the accelerometer errors 

are basically bias errors and the FOG errors are basically constant drifts. It is well known that the 

steady-state alignment errors are affected by the sensor errors. In general, the relationships between 

alignment errors and sensor errors are often expressed in the navigation frame because only the 

analysis of alignment errors in the navigation frame is meaningful, since the final results of alignment 

need to be expressed in the navigation frame. For many alignment approaches (for instance, 

gyrocompass alignment and optimum alignment), the relationships can be written as [16–19]: 
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E N gφ = −∇  (26)

N E gφ = ∇  (27)

cos tanU E EL L gφ = −ε Ω + ∇  (28)

where Eφ  is the east alignment error, Nφ  is the north alignment error, Uφ  is the up alignment error, 

E∇  represents the east accelerometer error, N∇  represents the north accelerometer error, and Eε  

represents the east FOG error. By utilizing the perturbation method, the correlation between ( )n
b tδC  

and 
b

i
iδC  in this paper can be described as: 

( ) ( ) ( ) ( ) ( ) ( ) ( )b b b

b b b

i i in n i n i n i
b i i b i i b i i bt t t t t t tδ = δ + δ + δC C C C C C C C C C  (29)

where ( )n
b tδC  is the error matrix related to Eφ , Nφ , and Uφ , and ( )n

i tδC  denotes the error matrix of 

( )n
i tC . Since the local latitude L  and time t  are known, ( )n

i tδC  is equal to zero. On the other hand, 

the error source of Equation (15) is only the FOG error, and the total alignment time is short, so the 
error matrix ( )bi

b tδC  in Equation (29) is small and can be ignored. It should be noted that the error 

matrix ( )bi
b tδC  in Equations (24) and (25) could not be neglected because the magnitude of the product 

between matrix ( )bi
b tδC  and gravity vector ( ) ( )b i

i t tC g  is considerable. 

Considering the previously analysis, Equation (29) is simplified into: 

( ) ( ) ( )b

b

in n i
b i i bt t tδ = δC C C C  (30)

Evidently, ( )n
b tδC  and 

b

i
iδC  are equivalent and transformational, and then the effect of sensor errors 

on matrix 
b

i
iδC  can be transformed into the influence of sensor errors on matrix ( )n

b tδC . In this paper, 

the relationships between alignment errors and sensor errors in the navigation frame for the two 

alignment algorithms are provided and can be expressed as Equations (26) and (27), and then the effect 

of sensor errors is uncorrelated with the integration time. This conclusion can be drawn from 

Simulation A, since the effect of sensor errors is deterministic. Both of these two alignment algorithms 

have the same accuracy under the condition of existing internal sensor errors, and it is verified in 

Simulation A. 

5.3. Base Motion Effect and Optimal Parameter Design 

Secondly, the effect of base motion is analyzed, and the optimal ratio between 1ktΔ  and 2ktΔ  is 

provided. In general, base motion typically falls into two categories. One is the angular motion, and the 

other is the linear motion. Fortunately, these two alignment algorithms are not influenced by angular 

motion; this conclusion can be drawn from Equations (24) and (25), and is verified in simulation B. 
Then the remaining problem is the analysis of the effect of linear motion on matrix 

b

i
iδC , and this 

problem is resolved by utilizing the property of matrix norm. 
Under the disturbance of linear motion, the departure of ˆ bix  from bix  ( ,=x a b ) can be simplified 

into (for the two alignment algorithms): 

0
ˆ ( ) ( ) ( ) ( )b b b bi i i i

x x xt t t t− = −V V v v  (31)
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0 0 0
ˆ ( ) ( ) ( ) ( ) ( )( )b b b b bi i i i i

x x x xt t t t t t t− = − − −S S p p v  (32)

where 
0

0( ) ( ) ( )
x

b b b
ti i i

x t
t t t dt− = p p v , and it represents the position variation caused by linear motion biv  

during 0 xt t t< < . From Equations (31) and (32), we find that the velocity variation is the influence 

factor for Algorithm 1, but for Algorithm 2, both the position variation and initial velocity are the 

influence factors. 

Coarse alignment is generally performed under quasi-stationary conditions, and they are characterized 

as having bounded position and attitude movement such as produced by wind gusts, passengers, and 

sea waves. The velocity and position variations are bounded, and both of them have same order of 

magnitude. Unfortunately, for Algorithm 2, the error caused by initial velocity is proportional to time, 

and this error is bigger than velocity and position variations in general. First, in order to simplify the 

analysis, the initial velocity is assumed to be compensated for Algorithm 2. After that, the effect of 

initial velocity is taken into consideration. 

According to Equation (21), we have: 

1 1

b

i
i FF FF

− −δ = δ ≤ ⋅ δC G F G F  (33)

where 
F

⋅  represents the Frobenious norm, 

2 2

1 2 2
2

2

1 i i

F i

−
+ +

=
a b

G
c

 (34)

the detailed derivation of 1

F

−G  can be seen in Appendix A. It is important to notice that the norm of 
1−G  determines the influence of linear motion on error matrix 

b

i
iδC . Evidently, the large norm of 1−G  

leads to amplification of the linear motion influence; in contrast, the small norm of 1−G  leads to 
reducing the effect of linear motion on error matrix 

b

i
iδC . Now we consider the two alignment 

algorithms provided in Section 4, and show how to get the specific expression for matrix norm 1

F

−G  

in the following. 

5.3.1. Algorithm 1 

Let us begin by substituting 1( )i
ktV  and 2( )i

ktV  into Equation (34), then the norm of matrix 1−G  

can be rewritten as: 

2 2

1 21 2 2
2

1 2 2

1 ( ) ( )

( ) ( )

i i
k k

V F i i
k k

t t

t t

−
+ +

=
×

V V
G

V V
 (35)

In Equation (35), 
2

1 2
( )i

ktV  and 
2

2 2
( )i

ktV  can be derived from Equation (B4) in Appendix B, and 

expressed as: 

2 2
1 12

( ) ( )i
k kt t g= ΔV  (36)
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2 2
2 22

( ) ( )i
k kt t g= ΔV  (37)

But the norm of 1 2( ) ( )i i
k kt t×V V  is difficult to obtain directly. This problem is resolved in a 

practical manner by using the definition of the cross-product. According to its definition, we have: 

1 2 1 22 2 2
( ) ( ) ( ) ( ) sini i i i

k k k kt t t t× = ⋅ ΘV V V V  (38)

where Θ  is the angle between 1( )i
ktV  and 2( )i

ktV , and the angular direction is defined by the right 

hand rule that curls the fingers of the right hand from 1( )i
ktV  into 2( )i

ktV . Since the coarse alignment 

is generally accomplished within a short time (only few minutes), we assume that the vectors 0( )i t−g , 

1( )i
ktV , and 2( )i

ktV  lie in the same plane. Then Θ  can be obtained by: 

2 1( ) ( )V k V kt tΘ = θ − θ  (39)

where 1( )V ktθ  is the angle between 0( )i t−g  and 2( )i
ktV , 2( )V ktθ  is the angle between 0( )i t−g  and 

1( )i
ktV . 1( )V ktθ  and 2( )V ktθ  can be drawn from Equation (C4) in Appendix C, and expressed as: 

1 1( ) cos 2V k k iet t Lθ = Δ ω  (40)

2 2( ) cos 2V k k iet t Lθ = Δ ω  (41)

Thus, Equation (35) transforms into: 

2 2
1 1 2

2 2 2 2
1 2 2 1

1 ( ) ( )

( ) ( ) ( ) ( cos 2)
k k

V F
k k k k ie

t g t g

t g t g t t L
− + Δ + Δ=

Δ Δ Δ − Δ ω
G  (42)

It is obvious from Equation (42) that the norm of 1−G  for Algorithm 1 is obtained and determined 
by parameters 1ktΔ , 2ktΔ , and L . In other words, the influence of linear motion on error matrix 

b

i
iδC   

for Algorithm 1 is determined by parameters 1ktΔ , 2ktΔ , and L . During the previous derivation,  

the assumption that the three vectors 0( )i t−g , 1( )i
ktV , and 2( )i

ktV  lie in the same plane was made in 

order to simplify the derivation of Θ . Now, for the purpose of validating this assumption, simulations 

are conducted, and the results are shown in Table 4. The simulation conditions are set as: t0 = 0 s,  

tk1 = 50 s, tk2 = 120 s, and the linear velocity caused by the base motion is equal to zero. 

Table 4. The difference between calculated Θ  and actual Θ . 

Latitude L  
Angle Θ  Error 

Actual Value Calculated Value Absolute Error Relative Error 

0° 0.1462° 0.1462° 0.0000° 0.00% 
30° 0.1266° 0.1266° 0.0000° 0.00% 
45° 0.1034° 0.1034° 0.0000° 0.00% 

Simulation results show that for a short period of time, the difference between calculated Θ  and 

actual Θ  is negligible. Therefore, the previous assumption is correct. 
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5.3.2. Algorithm 2 

Similar derivations to those of the last section lead us to get the norm of 1−G  for Algorithm 2.  

In this section, 
2

1 2
( )i

ktS  and 
2

2 2
( )i

ktS  need to be provided, and the assumption that the vectors 

0( )i t−g , 1( )i
ktS , and 2( )i

ktS  lie in the same plane also should be made. Firstly, 
2

1 2
( )i

ktS  and 

2

2 2
( )i

ktS  are derived from Equation (D3) in Appendix D, and expressed as: 

2 2 2
1 12

( ) ( 2)i
k kt t g= ΔS  (43)

2 2 2
2 22

( ) ( 2)i
k kt t g= ΔS  (44)

Secondly, based on the previous assumption, the angle ϒ  between 1( )i
ktS  and 2( )i

ktS  is  

obtained as: 

2 1( ) ( )S k S kt tϒ = θ − θ  (45)

where 1( )S ktθ  is the angle between 0( )i t−g  and 2( )i
ktS , 2( )S ktθ  is the angle between 0( )i t−g  and 

1( )i
ktS . 1( )S ktθ  and 2( )S ktθ  can be deduced from Equation (E4) in Appendix E, and described as: 

1 1( ) cos 2 2 2S k k iet t L Lθ = Δ ω  (46)

2 2( ) cos 2 2 2S k k iet t L Lθ = Δ ω  (47)

Finally, we have: 

2 2 2 2
1 1 2

2 2 2 2 2 2
1 2 2 1

1 ( 2) ( 2)

( 2) ( 2) ( ) ( cos 2 2)
k k

S F
k k k k ie

t g t g

t g t g t t L
− + Δ + Δ=

Δ Δ Δ − Δ ω
G  (48)

Obviously, the specific expression for the norm of 1−G  can be acquired from Equation (48), and it is 
also determined by parameters 1ktΔ , 2ktΔ , and L . Therefore, the influence of linear motion on error 

matrix 
b

i
iδC  for Algorithm 2 is determined by parameters 1ktΔ , 2ktΔ , and L , too. In order to validate 

the assumption made in this section, simulations are performed, and the results are shown in Table 5.  

The simulation conditions are set as: t0 = 0 s, tk1 = 50 s, tk2 = 120 s, the linear velocity caused by the 

base motion is equal to zero. 

Table 5. The difference between calculated ϒ  and actual ϒ . 

Latitude L  
Angle ϒ  Error 

Actual Value Calculated Value Absolute Error Relative Error 

0°  0.0975°  0.1034°  0.0059°  6.05%  
30°  0.0844°  0.0895°  0.0051°  6.04%  
45°  0.0689°  0.0731°  0.0042°  6.10%  

Obviously, although the calculated value is not equal to the actual value, the difference between 

them is small. This means that the assumption made in this section is correct as well. 
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5.3.3. Optimal Parameter Design 

From Equations (42) and (48), we find that both of the matrix norms for the two algorithms are 
determined by parameters 1ktΔ , 2ktΔ , and L . In operational situations, total integration time 2ktΔ  is 

generally fixed, and the local latitude L  is related to the position of the vehicle on which the FOG INS 
is mounted. Then, however, only parameter 1ktΔ  is adjustable. Considering 2 2

1 2( ) ( ) 1k kt g t gΔ + Δ >> , 
2 2 2 2
1 2( 2) ( 2) 1k kt g t gΔ + Δ >> , and by definition, 

2 1k kt t TΔ = λΔ =  (49)

where λ  is the ratio between 1ktΔ  and 2ktΔ , 1λ > , and T  represents the duration time of coarse 

alignment. Equations (42) and (48) can be rewritten as: 

2 2
1

2 2

2 (1 )

cos ( 1)V F
iegT L

− λ + λ= ⋅
ω λ −

G  (50)

2 4
1

3 2

4 2 (1 )

cos ( 1)S F
iegT L

− λ + λ= ⋅
ω λ −

G  (51)

Evidently, the matrix norms for the two algorithms are determined by parameter λ , and the optimal 

parameters for the two algorithms are achieved by minimizing the following functions, respectively: 

2 2

2

(1 )
( )

( 1)
f

λ + λλ =
λ −

 (52)

2 4

2

(1 )
( )

( 1)
g

λ + λλ =
λ −

 (53)

Then the determination of optimal parameters is transformed into the solution of the minimum 
problem. The differential equations for ( )f λ  and ( )g λ  are provided as follows: 

2 3 2

2 2 3

( 1) ( 2 1)
( )

(1 ) ( 1)
f

λ − λ λ − λ −λ = ⋅
λ + λ λ −

  (54)

2 5 4

2 4 3

( 1) (2 3 1)
( )

(1 ) ( 1)
g

λ − λ λ − λ −λ = ⋅
λ + λ λ −

  (55)

It is obvious from Equations (54) and (55) that ( ) 0f λ >  and ( ) 0g λ >  in the condition 5λ > . 

Therefore, the minimum will appear on the interval (1, 5). The graphs of functions ( )f λ  and ( )g λ  are 

drawn by Matlab, and shown in Figure 2. 

It can be seen from Figure 2 that each of the functions has only one extreme point, and the extreme 

point is the minimum. Then by solving equations ( ) 0f λ =  and ( ) 0g λ = , the optimal parameters for 

the two algorithms are obtained as: 

2.20Voλ =  (56)

1.58Soλ =  (57)
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The substitution of Equations (56) and (57) into Equations (50) and (51), the optimal norms of 1−G , 

can be acquired as: 

1
2

8.86

cosVo F
iegT L

− ≈
ω

G  (58)

1
2

4.68 8.86

cosSo F
ieT gT L

− ≈ ⋅
ω

G  (59)

 

Figure 2. The graphs of functions ( )f λ  and ( )g λ . 

It is quite obvious that 1
So F

−G  is smaller than 1
Vo F

−G  due to 4.68T >> , and this means that the 

performance of Algorithm 2 is better than that of Algorithm 1 under the disturbance of bounded errors. 

In order to validate the two optimal parameters provided by Equations (56) and (57), simulations are 

performed in Simulation C. 

Alternately, if the error caused by initial velocity is uncompensated, the performance of Algorithm 2 

will be worse than that of Algorithm 1, and a rough and direct explanation for this result is given in  

the following. 

Considering the departure of ˆ bib  from bib  for Algorithm 2, the error caused by initial velocity can 

be expressed as: 

0 2 0 0( )( ) ( )b bi i
kt t t t T− =v v  (60)

Ignoring the departure of ˆ bia  from bia , and then drawing T from δF , we have: 

1
2 2

4.68 8.86 8.86
4.68

cos cosSo F
ie ie

T
T gT L gT L

− ≈ ⋅ ⋅ = ⋅
ω ω

G  (61)

Equation (61) reflects the influence of initial velocity on error matrix 
b

i
iδC  for Algorithm 2. Since 

the magnitude of initial velocity is close to that of velocity variation, and the value of Equation (61) is 

bigger than that of Equation (56), we can draw the conclusion that the performance of Algorithm 2 is 

worse than that of Algorithm 1 while the error produced by initial velocity is uncompensated. This 

conclusion is verified in simulation D. 
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Summarizing, Equations (58), (59) and (61) allow us to make the adequate selection of the most 

accurate algorithm for coarse alignment according to the actual operational conditions. Algorithm 1 is 

suitable for Marine FOG INS, since the FOG INS is usually disturbed by sea waves and the initial 

velocity caused by waves is unknown. On the other hand, Algorithm 2 is appropriate for Vehicular 

FOG INS, because the FOG INS can generally keep stationary at the beginning of the coarse alignment 

in this operational condition, and then the initial velocity is equal to zero. 

6. Simulation and Results 

6.1. Simulation A 

To test the effect of sensor errors on the two coarse alignment algorithms, simulations in the 

stationary base were conducted. In the simulations, an IMU with the following specification is used: 

FOG error: 0.01°/h and accelerometer error: 10−4 g. The heading, pitch, and roll obey the uniform 
distribution on the intervals [0, 2 ]π , [ 4, 4]− π π  and [ 4, 4]− π π , respectively. The local latitude L  is 

set as 45.7796° . The two coarse alignment algorithms are performed simultaneously, and last 120 s. 
The parameter values of 1kt  and 2kt  are set to 50 s and 120 s, respectively. The simulation for the 

coarse alignment runs six times. In order to show the relationships between the sensor errors and 

misalignments more explicitly, the direction of the body frame is set to be coincident with that of the 

navigation frame in the sixth time simulation, i.e., heading 0° , pitch 0° , and roll 0° . The heading, 

pitch, and roll at the end of the coarse alignments are shown in Tables 6–8. 

Table 6. Alignment results of the six simulations (heading). 

 1 2 3 4 5 6 

Actual 326.0851°  45.7153°  328.8153°  227.6493°  35.1145°  0°  
Algorithm 1 326.1650°  45.7289°  328.8670°  227.6254°  35.0806°  0.0488°  
Algorithm 2 326.1650°  45.7289°  328.8670°  227.6254°  35.0807°  0.0489°  

Table 7. Alignment results of the six simulations (pitch). 

 1 2 3 4 5 6 

Actual 19.0352− °  4.2193°  41.1756°  41.8400°  30.8148− °  0°  
Algorithm 1 19.9291− °  4.2250°  41.1832°  41.8477°  30.8081− °  0.0057°  
Algorithm 2 19.9291− °  4.2250°  41.1832°  41.8477°  30.8081− °  0.0057°  

Table 8. Alignment results of the six simulations (roll). 

 1 2 3 4 5 6 

Actual 42.3534°  41.1450°  1.3162− °  27.0252°  32.2302− °  0°  
Algorithm 1 42.3448°  41.1369°  1.3237− °  27.0149°  32.2323− °  0.0057− °  
Algorithm 2 42.3448°  41.1369°  1.3237− °  27.0149°  32.2323− °  0.0057− °  

From the alignment results shown in Tables 6–8, we can find that little difference exists between 

Algorithms 1 and 2. It is mainly caused by the calculation error, and can be ignored. That means both 

of these two coarse alignment algorithms have the same accuracy under the condition of existing 

internal sensor errors. In the sixth time simulation, since the direction of the body frame is set to be 
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coincident with that of the navigation frame, the form of the DCM calculated by the two coarse 

alignment algorithms can be unified as: 

1
ˆ 1

1

U N
n
b U E

N E

φ −φ 
 = −φ φ 
 φ −φ 

C  

Then the relationships between attitude and misalignments can be expressed as: 

arctan( 1)U UHeading = −φ ≈ −φ  

arcsin( )E EPitch = −φ ≈ −φ  

arctan( 1)N NRoll = −φ ≈ −φ  

Therefore, from Tables 6–8, the misalignments of these two alignment algorithms in the sixth time 

simulation can be obtained as: 

0.0057Eφ ≈ − ° ; 0.0057Nφ ≈ ° ; 0.0489Uφ ≈ − °  

This result is coincident with Equations (26)–(28), and to some extent, the conclusion that the 

relationships between alignment errors and sensor errors in the navigation frame can be expressed as  

Equations (26)–(28) is obtained. In order to validate this conclusion more adequately, six additional 

simulations were conducted, and the simulation conditions were set as: 

Heading 0° , pitch 0° , and roll 0°  

FOG error: 0.01n h× ° , accelerometer error: 410n g−×  

where (1,2, ,6)n∈   represents the index of the simulations. The results are shown in Figure 3. 

 

Figure 3. Alignment results of the six simulations. 

It can be seen from Figure 3 that the pitch, roll, and heading are proportional to the magnitudes of 

the sensor errors. According to the previous analysis, this phenomenon means that the misalignments 

of these two alignment algorithms are proportional to the magnitudes of the sensor errors. This result 
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corresponds to the relationships represented by Equations (26)–(28), and meanwhile, the results shown 

in Figure 3 illustrate that both of these two coarse alignment algorithms have the same accuracy under 

the condition of existing internal sensor errors. 

6.2. Simulation B 

To test the effect of angular motion on the two coarse alignment algorithms, simulations under the 

condition of angular motion were conducted. In angular movement, the actual heading, pitch, and roll 

are controlled as: 

30 5 sin(2 7 )HHeading t= ° + ° π + θ  

7 sin(2 5 )PPitch t= ° π + θ  

10 sin(2 6 )RRoll t= ° π + θ  

where Hθ , Pθ , and Rθ  obey the uniform distribution on the intervals [0, 2 ]π . The simulation for the 

coarse alignment runs six times, and their results are shown in Tables 9–11. 

Table 9. Alignment results of the six simulations (heading). 

 1 2 3 4 5 6 

Actual 25.1507°  33.0046°  32.9933°  25.3219°  3.3252°  28.0762°  
Algorithm 1 25.1507°  33.0047°  32.9932°  25.3218°  25.5643°  28.0762°  
Algorithm 2 25.1507°  33.0046°  32.9933°  25.3219°  25.5643°  28.0762°  

Table 10. Alignment results of the six simulations (pitch). 

 1 2 3 4 5 6 

Actual 0.4499°  4.7596°  6.6447− °  6.1165− °  3.2114°  5.9771°  
Algorithm 1 0.4499°  4.7596°  6.6447− °  6.1165− °  3.2114°  5.9771°  
Algorithm 2 0.4499°  4.7596°  6.6447− °  6.1165− °  3.2114°  5.9771°  

Table 11. Alignment results of the six simulations (roll). 

 1 2 3 4 5 6 
Actual 3.3527°  0.1028° 6.3304− ° 5.1047− ° 3.3252°  8.5160°  

Algorithm 1 3.3527°  0.1028° 6.3304− ° 5.1047− ° 3.3252°  8.5160°  
Algorithm 2 3.3527°  0.1028° 6.3304− ° 5.1047− ° 3.3252°  8.5160°  

Obviously, neglecting the little difference between the alignment results and actual values, the 

attitudes calculated by the two coarse alignment algorithms are the same as the actual one. In other 

words, these two alignment algorithms are not influenced by angular motion. Thus, the conclusion 

provided in Section 5.3 is verified. 

6.3. Simulation C 

To test the optimal parameters derived in Section 5.3.3, 50 simulations were performed based on the 

data of the 120 s test for each of the coarse alignment algorithms. Three different parameters were 
tested in each simulation, and the parameters were set as: 1.20,  1.58,  2.20λ = . For Algorithm 1,  
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in order to test the parameters, random velocity variation was introduced into the calculation, and it 

was modeled as a zero-mean white Gaussian noise of standard deviation 0.02 m/s. Similarly, for 

Algorithm 2, random position variation was introduced into the calculation, and it was modeled as a 

zero-mean white Gaussian noise of standard deviation 0.1 m. The simulation results of Algorithm 1 are 

shown in Figure 4, and their statistics are summarized in Table 12. The results of Algorithm 2 are 

presented in Figure 5, and their statistics are summarized in Table 13. 

 

Figure 4. Attitude errors of the 50 simulations for Algorithm 1. 

Table 12. Statistics for Algorithm 1. 

Attitude 
Error [deg] 

λ = 1.20 λ = 1.58 λ = 2.20 
Mean STD Mean STD Mean STD 

Heading 0.7577  2.7876  0.4008  1.5451 0.3342  1.3773 
Pitch 0.0024−  0.0089  0.0014−  0.0051 0.0012−  0.0045  
Roll 0.0008  0.0099  0.0004  0.0056  0.0004  0.0049  

 

Figure 5. Attitude errors of the 50 simulations for Algorithm 2. 
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Table 13. Statistics for Algorithm 2. 

Attitude 
Error [deg] 

λ = 1.20 λ = 1.58 λ = 2.20 

Mean STD Mean STD Mean STD 

Heading 0.0867  0.4489  0.0578  0.3278  0.0666  0.4157  
Pitch 0.0004−  0.0019  0.0002−  0.0014  0.0003−  0.0017  
Roll 0.0001−  0.0018  0.0001−  0.0013  0.0002−  0.0016  

Figure 4 and Table 12 clearly indicate that the performance of Algorithm 1 is determined by the 

parameter selection. From the simulation results, we can find that 2.20λ =  is the adequate selection of 

the three parameters. Additionally, the tendency of the performance variation to be produced by the 

parameter variation corresponds to the results of Figure 2. To some extent, the results represented by 

Figure 4 and Table 12 validate the optimal parameter of Algorithm 1. 

Similarly, it can be seen from Figure 5 and Table 13 that the performance of Algorithm 2 is 

determined by the parameter selection as well. 1.58λ =  is the adequate selection of the three 

parameters, and supports that the trend of the performance variation is produced by the parameter 

variation,, corresponding to the results of Figure 2. The results represented by Figure 5 and Table 13 

partly validate the optimal parameter of Algorithm 2. By comparing the simulation results of 

Algorithms 1 and 2, we can draw the conclusion that the performance of Algorithm 2 is better than that 

of Algorithm 1 under the disturbance of bounded errors. 

6.4. Simulation D 

To test the effect of initial velocity on Algorithm 2, simulations under the condition of linear motion 

were conducted. The simulation for the coarse alignment ran eight times. In linear movement,  

the velocities are taken as: 

0.02cos(2 7 ) m sb
xv t= π + ϑ  

0.03cos(2 6 ) m sb
yv t= π + ϑ  

0.3cos(2 8 ) m sb
zv t= π + ϑ  

where b
xv , b

yv , and b
zv  represent the components of Earth referenced by velocity v  resolved in the body 

frame b , ϑ  is set to 4nπ , and n  denotes the index of the simulations, (0,1, ,7)n∈  . The simulation 

results are provided in Figures 6–8. 

In each simulation, exclusive of Algorithm 2 where the initial velocity is uncompensated,  

the simulation in which the initial velocity is compensated was conducted as well. It is obvious from 

Figures 6–8 that the performance of Algorithm 2 is worse than that of Algorithm 1, as the error caused 

by initial velocity is uncompensated. On the other hand, when the error is compensated, the accuracy 

of Algorithm 2 is higher than that of Algorithm 1. In Figures 6–8, the tendency of the red triangle 

variation to correspond to the magnitude of initial velocity is shown, and it illustrates that the error 

caused by initial velocity is the major error of Algorithm 2. 
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Figure 6. Heading error of the eight simulations. 

 

Figure 7. Pitch error of the eight simulations. 

 

Figure 8. Roll error of the eight simulations. 
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7. Experiment and Results 

In order to demonstrate the effectiveness of the proposed algorithm, in this section, a lab experiment 

and a sea experiment were conducted. The lab experiment was implemented in the lab to verify the 

performance of the proposed algorithm under the stationary base, as the experimental condition was 

relatively ideal. The data from the sea experiment was used to validate the performance of the 

proposed algorithm under the base motion. 

7.1. Lab Experiment 

To test the performance of the proposed algorithm under the stationary base, a lab experiment was 

conducted. We fixed the FOG INS (FOG bias stability <0.01 °/h, accelerometer bias stability  

<5 × 10−5 g) on the SGT-3 three-axis turntable to implement the alignment experiments. The lab 

experiment scene can be seen in Figure 9. Eight experiments were implemented. In the experiments, 

the turntable’s middle and internal gimbal axes lay within the horizontal plane, and the external gimbal 

axis pointed to upward. The external gimbal angle was set as: (   1)  
4

n
π− × , where (1,2, ,8)n∈   

represents the index of the experiments. Algorithm 1 ( 2.20λ = , optimal value; 2.40λ = , regular  

value [9]), Algorithm 2 ( 1.58λ = , optimal value), and fine alignment (gyrocompass alignment 

method) were performed in each experiment. 

 

Figure 9. The lab experiment scene. 

In each experiment, the coarse alignment algorithms lasted 120 s, and the fine alignment lasted  

20 min, and the results of the fine alignment were used as a reference. The statistics of the heading, 

pitch, and roll errors are summarized in Table 14. From Table 14, it is clear that the pitch and roll 

errors of the coarse alignment algorithms are less than 0.0011°  (1 σ ), and the heading error of the 

coarse alignment algorithms are less than 0.0038°  (1 σ ). These errors are basically caused by the 

sensor noise and turntable control error. Since the heading, pitch, and roll errors are small, the results 

of the coarse alignment algorithms and fine alignment could be considered equivalent. 



Sensors 2015, 15 15026 

 

 

Table 14. Statistics for the results of the lab experiment. 

Attitude 
Error [deg] 

Algorithm 1 
( 2.20λ = ) 

Algorithm 1 
( 2.40λ = ) 

Algorithm 2 
( 1.58λ = ) 

Mean STD Mean STD Mean STD 

Heading 0.0015  0.0017  0.0018  0.0016  0.0017  0.0021 
Pitch 0.0005−  0.0005  0.0005−  0.0004  0.0004−  0.0004  
Roll 0.0004  0.0003  0.0003  0.0006  0.0004  0.0007  

7.2. Sea Experiment 

To test the performance of the proposed algorithm under the base motion, a sea experiment was 

conducted in the South Sea of China. In the experiment, the ship was under the mooring condition.  

A FOG INS was used for the experiment, the attitude reference was given by the Photonic Inertial 

Navigation System (PHINS) from the company iXBlue. The velocity and attitude of the ship shown in 

Figure 10 are provided by the PHINS. Fifty experiments were implemented. In the experiments, the 
start time of coarse alignment was set as: (   1)  0.1n − ×  h, where (1,2, ,50)n∈   represents the index 

of the experiments. Algorithm 1 ( 2.20λ = , optimal value; 2.40λ = , regular value [9]), and Algorithm 2 

( 1.58λ = , optimal value) were performed in each experiment. 

(a) (b) 

Figure 10. (a) The velocity of the vehicle; (b) the attitude of the vehicle. 

In each experiment, the coarse alignment algorithms lasted 120 s. The statistics of the heading, 

pitch, and roll errors are summarized in Table 15. Owing to the existence of the installation errors 

between the FOG INS and PHINS, the mean of the fifty experiments could only be used to estimate 

the installation errors. The performance of the coarse alignment algorithms is reflected by the STD. 

From Table 15, we can find that the performance of Algorithm 1 ( 2.20λ = , optimal value) is the best, 

and the performance of Algorithm 2 ( 1.58λ = , optimal value) is the worst. This result demonstrate the 

analysis made in this paper. 
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Table 15. Statistics for the results of the sea experiment. 

Attitude 
Error [deg] 

Algorithm 1  
(λ = 2.20) 

Algorithm 1  
(λ = 2.40) 

Algorithm 2  
(λ = 1.58) 

Mean STD Mean STD Mean STD 

Heading 0.0752  0.1321 0.0729  0.1431 0.0807  0.1699  
Pitch 0.3089  0.0013  0.3089  0.0013  0.3086  0.0015  
Roll 0.1162−  0.0008  0.1162−  0.0008  0.1162−  0.0009  

8. Conclusions 

In this paper, two coarse alignment algorithms based on the inertial reference frame are introduced 

and analyzed. Particularly, the analysis of the effect of sensor errors and base motion on coarse 

alignment is made. Based on the analysis made in this paper, the following meaningful conclusions 

have been acquired: 

• Both of these two coarse alignment algorithms have the same accuracy under the condition of 

existing internal sensor errors. 

• In the stationary base, the misalignments of the algorithms are identical to those obtained with 

fine alignment methods. 
• The optimal ratio between 1ktΔ  and 2ktΔ  exists. For Algorithm 1, it is equal to 2.20, but for 

Algorithm 2, it is equivalent to 1.58. 

• Under the disturbance of linear motion, the performance of Algorithm 2 will be better than that 

of Algorithm 1 if the error caused by initial velocity is compensated. Otherwise, the accuracy of 

Algorithm 2 will be worse than that of Algorithm 1. 

Simulation results have validated the above conclusions. Based on the above conclusions,  

we also conclude that: 

• Algorithm 1 is suitable for Marine FOG INS; 

• Algorithm 2 is appropriate to be used for Vehicular FOG INS. 

Moreover, the results of the lab and sea experiments demonstrate the effectiveness of the  

proposed algorithms. 
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Appendix 

A. The Derivation of 1

F

−G  

It is well known that the inverse matrix 1−G  can be expressed by the following equation: 

1
∗

− = GG
G

 (A1)

where ∗G  is the adjoint matrix of matrix G , G  represents the determinant of matrix G . 

From Equations (3), (4) and (7), the elements of matrix ∗G  can be obtained as: 

11 ( ) ( )y x y y x z z x x zg b a b a b b a b a b∗ = − − −  12 ( ) ( )z z x x z y x y y xg a a b a b a a b a b∗ = − − −  

13 y z z yg a b a b∗ = −  

21 ( ) ( )z y z z y x x y y xg b a b a b b a b a b∗ = − − −  22 ( ) ( )x x y y x z y z z yg a a b a b a a b a b∗ = − − −  

23 z x x zg a b a b∗ = −  

31 ( ) ( )x z x x z y y z z yg b a b a b b a b a b∗ = − − −  32 ( ) ( )y y z z y x z x x zg a a b a b a a b a b∗ = − − −  

33 x y y xg a b a b∗ = −  

Hence, 
3 32 2

1 1

2 2 2 2 2

, , , ,

2 2 2

2 2 2

( )

(1 ) [( ) ( ) ( ) ]

(1 )

ijF
i j

i i x y y x y z z y z x x z
i x y z i x y z

i i i

g

a b a b a b a b a b a b a b

∗ ∗

= =

= =

=

= + + ⋅ − + − + −

= + + ⋅



 

G

a b c

 (A2)

where 
2

⋅  denotes the vector norm. On the other hand, 
2G  can be expressed as: 

2 2 2 2 2

4

2

[( ) ( ) ( ) ]x y y x y z z y z x x z

i

a b a b a b a b a b a b= − + − + −

=

G

c
 (A3)

Consequently, 

2 2 2

1 2 2
2 2

2

1 i i

F

F i

∗
−

+ +
= =

G a b
G

G c
 (A4)
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B. The Derivation of 
2

2
( )i tV  

After the alignment process gets start, the gravity vector in the inertial frame can be expressed  

as follows: 

0

0

cos cos ( )

( ) cos sin ( )

sin

ie
i

ie

g L t t

t g L t t

g L

− ω − 
 = − ω − 
 − 

g  (B1)

The velocity of strapdown INS in the inertial frame is defined as: 

0

cos sin

( ) ( ) cos (1 cos )

sin

ie ie
ti i

ie iet

g L t

t t dt g L t

tg L

ω Δ ω 
 = − = − ω Δ ω 
 Δ 

V g  (B2)

where 0t t tΔ = − . Then, 

2 2 2 2

2

2 2

2 2 2

( ) ( cos sin ) ( cos (1 cos ) ) ( sin )

( cos ) 2(1 cos ) ( sin )

( cos ) 4sin ( 2) ( sin )

i
ie ie ie ie

ie ie

ie ie

t g L t g L t tg L

g L t tg L

g L t tg L

= ω Δ ω + − ω Δ ω + Δ

= ω ⋅ − ω Δ + Δ

= ω ⋅ ω Δ + Δ

V

 (B3)

Let us simplify at this point by using the first-order approximation for the sine function in  

Equation (B3), namely 

sin( 2) 2ie iet tω Δ ≈ ω Δ  

Therefore, we have: 

2 2 2 2

2
( ) ( cos ) ( sin ) ( )i t tg L tg L tg≈ Δ + Δ = ΔV  (B4)

C. The Angle ( )V tθ  between Vectors 0( )i t−g  and ( )i tV  

The connection between cosine function of ( )V tθ  and vectors 0( )i t−g , ( )i tV  is described as: 

0

0

( ) ( )
cos ( )

( ) ( )

i i

V i i

t t
t

t t

− ⋅θ =
−

g V
g V

 (C1)

From Equations (B1) and (B2), we have: 
2 2

0

2 2 2

( ) ( ) ( cos ) sin ( sin )

2( cos ) sin( 2)(1 2sin ( 4)) ( sin )

i i
ie ie

ie ie ie

t t g L t g L t

g L t t g L t

− ⋅ = ω Δ ω + Δ

= ω Δ − ω Δ ω + Δ

g V
 (C2)

Substituting Equations (B1), (B4) and (C2) into Equation (C1), and by considering the 
approximation sin( 2) 2ie iet tω Δ ≈ ω Δ , cos ( )V tθ  becomes: 

2 2 2cos ( ) 1 2cos sin ( 4) 1 2sin ( cos 4)

cos( cos 2)
V ie ie

ie

t L t t L

t L

θ ≈ − ω Δ ≈ − Δ ω
= Δ ω

 (C3)
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Therefore, ( )V tθ  can be obtained as: 

( ) cos 2V iet t Lθ = Δ ω  (C4)

D. The Derivation of 
2

2
( )i tS  

The position of strapdown INS in the inertial frame is defined as follows: 

0

2

2

2

cos (1 cos )

( ) ( ) cos ( sin )

sin 2

ie ie
ti i

ie ie iet

g L t

t t dt g L t t

t g L

 − ω Δ ω
 = = ω Δ − ω Δ ω 
 Δ 

S V  (D1)

Hence, we would have: 
2 2 2

2

2 2 2 2

2 2 2 2

2 2 2

( ) ( cos (1 cos ) )

( cos ( sin ) ) ( sin 2)

( cos ) [4sin ( 2) ( )

4 sin( 2)(1 2sin ( 4))] ( sin 2)

i
ie ie

ie ie ie

ie ie ie

ie ie ie

t g L t

g L t t t g L

g L t t

t t t t g L

= − ω Δ ω +

ω Δ − ω Δ ω + Δ

= ω ⋅ ω Δ + ω Δ −

ω Δ ω Δ − ω Δ + Δ

S

 (D2)

Take the following approximation into consideration: 

sin( 2) 2ie iet tω Δ ≈ ω Δ  

sin( 4) 4ie iet tω Δ ≈ ω Δ  

Finally, we can obtain: 
2 2 2 2 2

2

2 2 2 2

2 2 2 2 2 2

( ) ( cos ) [4( 2) ( )

2( ) (1 2( 4) )] ( sin 2)

( cos 2) ( sin 2) ( 2)

i
ie ie ie

ie ie

t g L t t

t t t g L

t g L t g L t g

≈ ω ⋅ ω Δ + ω Δ −

ω Δ − ω Δ + Δ

= Δ + Δ = Δ

S

 (D3)

E. The Angle ( )S tθ  between Vectors 0( )i t−g  and ( )i tS  

The cosine function of ( )S tθ  can be represented as: 

0

0

( ) ( )
cos ( )

( ) ( )

i i

S i i

t t
t

t t

− ⋅θ =
−

g S
g S

 (E1)

From Equations (B1) and (D1), we can obtain: 
2 2

0

2 2 2 2

( ) ( ) ( cos ) (1 cos ) ( sin ) 2

8( cos ) sin ( 4)(1 sin ( 4)) ( sin ) 2

i i
ie ie

ie ie ie

t t g L t tg L

g L t t tg L

− ⋅ = ω − ω Δ + Δ

= ω ω Δ − ω Δ + Δ

g S
 (E2)

Hence, by taking the approximation sin( 4) 4ie iet tω Δ ≈ ω Δ  into consideration, cos ( )S tθ  is  

given by: 

2 2 2cos ( ) 1 (cos ) sin ( 4) 1 2sin ( cos 4 2)

cos( cos 2 2)

S ie ie

ie

t L t t L

t L

θ ≈ − ω Δ ≈ − Δ ω

= Δ ω
 (E3)
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Finally, we could have: 

( ) cos 2 2S iet t Lθ = Δ ω  (E4)
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