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Abstract: We present a novel approach to improve the estimation of systolic (SBP) and 

diastolic blood pressure (DBP) from oscillometric waveform data using variable 

characteristic ratios between SBP and DBP with mean arterial pressure (MAP). This was 

verified in 25 healthy subjects, aged 28 ± 5 years. The multiple linear regression (MLR) 

and support vector regression (SVR) models were used to examine the relationship between 

the SBP and the DBP ratio with ten features extracted from the oscillometric waveform 

envelope (OWE). An automatic algorithm based on relative changes in the cuff pressure 

and neighbouring oscillometric pulses was proposed to remove outlier points caused by 

movement artifacts. Substantial reduction in the mean and standard deviation of the blood 

pressure estimation errors were obtained upon artifact removal. Using the sequential 

forward floating selection (SFFS) approach, we were able to achieve a significant reduction 

in the mean and standard deviation of differences between the estimated SBP values and the 

reference scoring (MLR: mean ± SD = −0.3 ± 5.8 mmHg; SVR and −0.6 ± 5.4 mmHg) with 
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only two features, i.e., Ratio2 and Area3, as compared to the conventional maximum 

amplitude algorithm (MAA) method (mean ± SD = −1.6 ± 8.6 mmHg). Comparing the 

performance of both MLR and SVR models, our results showed that the MLR model was 

able to achieve comparable performance to that of the SVR model despite its simplicity. 

Keywords: oscillometric blood pressure estimation; multiple linear regression; support 

vector regression 

 

1. Introduction 

Blood pressure, commonly expressed in terms of systolic (maximum) and diastolic (minimum) 

pressures, offers important insights into cardiovascular health. High blood pressure (hypertension), 

which may lead to stroke and heart failure, has been rated as one of the most important causes of 

premature death by the World Health Organization [1]. On the other hand, excessively low  

blood pressure (hypotension) may indicate underlying diseases such as heart failure and adrenal 

insufficiency [2]. Thus, noninvasive measurement of blood pressure using either auscultatory or 

oscillometric methods are routinely performed [3]. 

The auscultatory measurement using the mercury sphygnomanometer, which estimates systolic 

(SBP) and diastolic blood pressure (DBP) using the Korotkoff sounds, has been widely accepted as the 

gold standard [4,5]. Despite its highly accurate and reliable blood pressure measurement, the auscultatory 

method is not commonly used for automated estimation of blood pressure [6] as it requires a trained 

professional. Furthermore the mercury sphygmomanometer is gradually being withdrawn from clinical 

use. The oscillometric method, on the other hand, has become increasingly popular in automated blood 

pressure measurement devices [6]. An electronic pressure sensor is used to observe the pressure 

oscillation in the cuff during its gradual deflation from above SBP to below DBP. The oscillation 

amplitude increases to its maximum value when the cuff pressure reaches the mean arterial pressure 

(MAP), and then gradually decreases with further deflation of the cuff pressure [7]. The upper envelope 

of the oscillometric waveform is known as the oscillometric waveform envelope (OWE). 

Conventionally, the SBP and DBP values are estimated from the OWE using the maximum 

amplitude algorithm (MAA) either with the slope-based or height-based method [8]. The main 

drawback of the slope-based method is that it defines SBP and DBP as the cuff pressure corresponding 

to the maximum slope of increasing and decreasing amplitude of the OWE, which are not well defined 

and thus constraints have to be applied to estimate SBP with an acceptable accuracy [8]. On the other 

hand, height-based method linearly relates the SBP and the DBP to the mean blood pressure using 

fixed empirically derived height (or characteristic) ratios [9]. 

The estimation of SBP and DBP using this experimentally-derived, quasi-empirical characteristic 

ratio is prone to error as it is subject to significant continuous variability over time [10–12]. 

Furthermore, the characteristic ratio has been reported to be sensitive to changes in physiological 

conditions, in particular the degree of arterial stiffness [12–14]. For instance, the fixed-ratio method 

overestimates SBP but underestimates DBP in individuals with stiffening of the brachial artery [12]. 

Despite these findings, very limited studies have assessed alternative methods to improve the accuracy 



Sensors 2015, 15 14144 

 

 

of SBP and DBP measurements. Feature-based Gaussian mixture regression approach [15] as well as 

neural network [16], Bayesian model [7], and a statistical learning technique based on logistic 

regression [17] were among the alternative methods. Five features, such as MAP, maximum amplitude, 

length of the maximum amplitude’s position, length of OWE and asymmetry ratio of the OWE were 

used to estimate SBP and DBP using the Gaussian mixture regression model [15]. 

In the present study, we evaluated the performance of ten features from the OWE, which included 

previously used features in addition to newly proposed features, in describing the systolic (SBPR) and 

diastolic blood pressure ratio (DBPR). Furthermore, we attempted to minimize the usage of multiple 

features by applying the sequential forward floating selection (SFFS) method and to identify the 

combination of features that result in the best performance. Two different models, using multiple linear 

regression (MLR) and support vector regression (SVR) methods were used to estimate SBP and DBP. 

Carefully designed experiments were performed to obtain noise-free signals and signals containing noise 

induced by movement so as to evaluate the robustness of the algorithm to motion artifact, commonly 

occurring in an unsupervised environment. A pre-processing step was carried out to detect and 

eliminate data points corrupted by movement artifact. 

The paper is organized as follows: the methodology for this paper is explained in Section 2; the 

effect of noise detection (outlier removal) and performance of blood pressure estimation using 

conventional MAA, MLR and SVR models is presented in Section 3; result are discussed in Section 4 

followed by conclusion in Section 5. 

2. Experimental Section  

Figure 1 shows the sequence of events in blood pressure estimation. 

 

Figure 1. Block diagram of sequence of events in blood pressure estimation. 

2.1. Signal Acquisition 

The experimental data were obtained from 25 healthy subjects aged 28 ± 5 years (16 females). Four 

sets of measurements (two from each arm), which contain simultaneous ECG, cuff pressure and 

Korotkoff sound were acquired from each volunteer, resulting in a total of 100 measurements. Our data 

were acquired using an automated blood pressure measurement system with a cuff pressure recorder, a 

stethoscope with a built-in microphone to capture the auscultatory waveform, together with an ECG 

recorder. All the signals were acquired simultaneously using a data acquisition system with a sampling 

rate of 1 kHz. To acquire the oscillometric pulse, the cuff pressure was first increased to approximately 

180 mmHg, followed by deflation of the cuff pressure using a release valve, which reduced the pressure 

to approximately 40 mmHg in a linear fashion and with a rate of 2–3 mmHg/s. To investigate the 

robustness of the BP estimation algorithm, one of the two measurements on each arm was intentionally 

contaminated with movement artifact during cuff deflation. The movements were selected from the 

following options: (1) gently lift the ipsilateral arm, then return to a resting position; (2) spontaneously 
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move the ipsilateral arm right and left; (3) bend the ipsilateral arm and then return to a resting position; 

(4) tap the stethoscope bell three times with the contralateral hand; (5) squeeze and release the ipsilateral 

fingers; (6) lift and replace a book with the ipsilateral hand; (7) spontaneously shake the ipsilateral arm 

for a few seconds; and (8) suddenly remove the cuff. The recorded Korotkoff sound was used by two 

clinical experts as the basis for estimating the reference SBP and DBP as a reference system (RS). Out of 

the 100 signals, only 81 SBP and 84 DBP were available for this study due to a lack of reference reading 

in the remaining samples, in which the experts were unable to identify the SBP and DBP accurately due 

to the presence of a large amount of noise in the Korotkoff sound. Figure 2 shows the distribution of 

SBP, DBP and pulse pressure (PP) in the collected data. A more detailed description of the 

experimental protocol as well as equipment configuration are provided in [18]. 

 

(a) (b) (c) 

Figure 2. Distribution of (a) Systolic blood pressure (SBP); (b) Diastolic blood pressure 

(DBP); (c) Pulse pressure (PP). 

2.2. Pre-Processing 

The cuff pressure signal was detrended using a first-order band-pass Butterworth filter of 0.5–5 Hz, 

chosen based on the assumption of a maximum heart rate of 300 beats per minute [18] to transform the 

signal morphology into a pulsatile oscillometric waveform. A forward-backward filter was used to 

achieve a zero-phase response. Since the ECG signals were not affected by the movement of the 

subjects, the intervals between two consecutive R-peaks in the ECG waveforms were used to 

determine each cardiac cycle. Figure 3 illustrates an example of the cuff pressure signal, pulsatile 

oscillometric waveform and its corresponding OWE. The reference systolic blood pressure ratio (SBPR) 

and diastolic blood pressure ratio (DBPR) were extracted from the OWE and were defined as follows: ܴܵܲܤ = ܣܯܣܲܤܵ ܴܲܤܦ(1)  = ܣܯܣܲܤܦ  (2)
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where MA represents the maximum amplitude of the OWE corresponding to the location of the MAP, 

while SBPA and DBPA indicate the amplitudes of the OWE corresponding to the location of the SBP 

and the DBP respectively. 

 

Figure 3. An example of the deflating cuff pressure (CP) waveform, pulsatile oscillometric 

waveform (OMW), and oscillometric waveform envelope (OWE). MA: Amplitude of the 

OWE corresponding to the location of the mean arterial pressure (MAP); SBPA: 

Amplitude of the OWE corresponding to the location of the systolic blood pressure (SBP); 

DBPA: Amplitude of the OWE corresponding to the location of the diastolic blood 

pressure (DBP). 

 

Figure 4. Cubic spline curve fitted to the oscillometric waveform envelope (OWE) before 

and after removal of outlier pulses. 
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2.3. Detection and Removal of Outlier Points 

A cubic spline curve was used to fit the OWE [7]. In order to increase the accuracy of the SBP and 

DBP estimation, data points contaminated with motion artifact were treated as outliers and removed 

during the OWE curve fitting process. First, an automatic algorithm was used to detect these outlier 

points based on the suddenly increase of cuff pressure during deflation and the oscillometric pulses 

relative to their respective neighbour pulses. The peak, peak-to-peak, peak-to-bottom and bottom 

points of every oscillometric pulses were investigated. To be considered as clean data pulses, the 

absolute variations of the heights should not be more than 0.4 and the height of each of these points 

should lie within ±50% of their respective neighbour pulses based on modification of [19]. Besides 

that, a suddenly increasing pressure during cuff deflation will also be considered as artifact. Figure 4 

illustrates the effect of outlier removal on the fitted curve for the OWE. 

2.4. Feature Extraction 

In the present study, a total of 10 features were extracted from the OWE, as illustrated in Figure 5 

and defined in Table 1, in which six have been used in a previous study [15], whereas the remaining 

features were newly proposed in this study. These features can be classified into five different classes: 

(I) Amplitude; (II) Duration; (III) Area; (IV) Ratio; and (V) MAP estimated using the MAA approach. 

Table 1. Description of features extracted from the OWE. The * symbol in the references 

column refers to features proposed in this study Description/ Equation 

Feature Description/Equation References 

Amp1 Maximum Amplitude of OWE [15] 
Dur1 Duration for maximum amplitude (MA) to occur [15] 
Dur2 Duration of OWE [15] 
Area1 Area under OWE [15] 
Area2 Area under OWE before the MA’s position  * 
Area3 Area under OWE after the MA’s position * 
Ratio1 Duration for maximum amplitude to occur/Duration of OWE [15] 
Ratio2 Area under OWE before the MA’s position/Area under OWE * 
Ratio3 Area under OWE after the MA’s position/Area under the OWE * 
MAP MAP estimated using the MAA algorithm [15] 

Features from the amplitude class have been previously proposed by Lee et al. [15]. Amp1 was 

motivated by the theoretical analysis findings by Baker which demonstrates the dependence of MAA 

estimates on the arterial mechanical properties, blood pressure pulse shape and blood pulse pressure [9]. 

The second class of features was derived based on duration. Dur1 and Dur2 were motivated by their 

other study [20], which demonstrated an improvement in the SBP and DBP estimates using the new 

relationships between the mean cuff pressure and the pseudoenvelopes that relate the duration of the 

MA’s position and OWE. The third class of features was derived based on area measurements. The 

area under OWE (Area1) was proposed by Lee et al. [15] based on Baker et al.’s [9] findings, and this 

led us to propose two other relevant features, i.e., the area before (Area2) and after (Area3) the MA’s 

position. The third class of features were derived based on the morphology of the OWE, which 
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demonstrated the dependence of the SBP and DBP estimates on the shape of the OWE [9]. The ratio 

between the duration of the MA’s position to duration of OWE (Ratio1) was proposed by Lee et al. [15], 

while two other features were newly proposed in the present study based on the modification of Ratio1. 

Instead of relying on the position of the MA, Ratio2 and Ratio3 also took into consideration the height 

of the OWE curve by relating the area under the OWE before and after the MA’s position to the area 

under the OWE. The last feature, i.e., MAP, has also been previously proposed by Lee et al. [15], 

based on Moraes’ findings [21] which indicated a close correlation between SBPR and DBPR with the 

MAP values. 

 

Figure 5. Description of features extracted from the OWE. 

2.5. Blood Pressure Estimation Models 

Three different blood pressure estimation models were evaluated in the present study, including the 

conventional Maximum Amplitude Algorithm (MAA) method based on fixed characteristic ratios, and 

two newly proposed models were obtained using multiple linear regression (MLR) and support vector 

regression (SVR). 

2.5.1. Maximum Amplitude Algorithm (MAA) 

The conventional MAA method based on a fixed characteristic ratio were used to determine SBP and 

DBP. The fixed SBPR and DBPR were obtained as averages of the SBPR and DBPR derived from our RS. 

2.5.2. Multiple Linear Regression (MLR) Model 

MLR was used to model the relationship between the SBPR and DBPR with the features extracted 

from the OWE, and is defined as follows: ݕ = 	ܾ଴ + ܾଵݔଵ + ܾଶݔଶ + ⋯+ ܾ௡ݔ௡ + ε (3)
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where y denotes either SBPR or DBPR, x denotes the input features, b denotes the multiple regression 

coefficients, while ε is a sequence of unknown errors. Depending on the number of measurements, 

denoted by p, a matrix form containing information from each measurement will be defined as  

below [22]: ܻ = ܺβ + (4) ܧ

Y =
ۈۉ
ۋی...y୮	yଶ	yଵۇۈ

ۊۋ 	X =
ۈۉ
ۇۈۈ
xଵଵ Xxଵ୮xଶଵ	Xxଶ୮		. .	. .. .x୬ଵ . x୬୮ ۋی

ۊۋۋ 	β =
ۈۉ
ۋی...b୮	bଵbଶۇۈۈ

ۊۋۋ 	E = ۈۉ
ۋی...ε୮	εଵεଶۇۈ

(5) ۊۋ

The multiple regression coefficients, β, can then be obtained based on the minimum sum of squared 

errors by solving: ݕ = 	ܾ଴ + ܾଵݔଵ + ܾଶݔଶ + ⋯+ ܾ௡ݔ௡ + ε (6)β = (X୘X)ିଵX୘Y (7)

2.5.3. Linear v-Support Vector Regression (ν-SVR) Model 

Consider a set of training points, {(x1, y1), …, (xl, yl)}, where xi ∈ ܴ௡ is a feature vector while yi ∈ ܴଵ is 

the target output. The ν- SVR model searches for the best approximation of the actual output yi (i.e., 

SBPR and DBPR in the present study) based on the input features, xi, with an acceptable error 

tolerance of ɛ. Let xi be mapped into a feature space by a nonlinear function	φ(ݔ); the decision 

function becomes: ݕ = ,ݓ)݂ ܾ) = (ݔ)φ.ݓ + ܾ (8)

where w and b are parameters vectors of the SVR model. The parameter w vector determines the flatness 

of the approximation function, with lower w values giving smoother and less complicated 

approximation function [23,24]. The mapping function φ(ݔ)   transforms the data into a higher 

dimensional feature space to make it possible to perform the linear separation.  Parameter ν ∈ (0,1] is 

used to control the number of support vectors and training errors. The regression problem was 

formulated as the following convex optimization problem: ݓ݊݅ܯ, ܾ, ξ௜	, ξ௜	∗, ε	 	12 |ݓ்ݓ| + νε)ܥ + 1݈෍ (ξ௜ + ξ௜∗ ))௜ୀ௟௜ୀଵ  (9)

	݋ݐ	ݐ݆ܾܿ݁ݑܵ ቐ (௜ݔ)φ்ݓ) + ܾ) − ௜ݕ ≤ ε + ξ௜ݕ௜−(்ݓφ(ݔ௜) + ܾ) ≤ ε + ξ௜∗ξ௜ , ξ௜∗ ≥ 0, ݅ = 1,2, … , ݈, ߝ ≥ 0ቑ (10)

ξ௜	and ξ௜∗ specify the upper and lower training errors subjected to the error tolerance, ε, while C is a 

positive constant which determines the trade-off between the flatness and the amount up to which 

deviations larger than ε are tolerated [23,25]. In this study, the LIBSVM, a Matlab library for SVM [26] 

is used to generate the proposed features based regression model for the SVR algorithm. The linear 

function is employed as a SVR mapping function for parameter C is 14.49 and v is −1.89 for both SBP 
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and DBP models. These two parameters were selected with dynamic range from −20 to 20 and −20 to 0 

for C and v respectively. The parameter b was 0.9865 and 0.6554 for SBP and DBP models respectively. 

2.6. Evaluation of Results 

In the present study, two standard protocols commonly used for the evaluation of the accuracy of 

blood pressure estimation, i.e., the British Hypertension Association (BHS) and the American 

Association for the Advancement of Medical Instrumentation (AAMI) were applied.  BHS evaluates 

the performance of the blood pressure estimation based on the cumulative percentage of readings which 

fall within absolute differences of 5, 10 and 15 mmHg from the mercury standard. The mercury standard 

refers to the SBP and DBP values obtained by a trained person using the auscultatory method (i.e., using 

a stethoscope to listen to the Korotkoff sounds and a mercury sphygmomanometer to measure the 

pressure level in the cuff). To fulfil the BHS protocol, the tested device must achieve at least grade B, 

i.e., 50% of readings falling within 5 mmHg, 75% within 10 mmHg and 90% within 15 mmHg of the 

readings obtained from the gold standard method, as illustrated in Table 2. 

Table 2. Grading criteria according to the British Hypertension Society (BHS) protocol. 

Grades are derived based on the cumulative percentages of readings which fall within 

absolute differences of 5, 10 and 15 mmHg from the mercury standard. To achieve a 

particular grade, all three percentages must be equal to or greater than the tabulated  

values [27]. 

Grade ≤mmHg ≤10 mmHg ≤15 mmHg 

CumUlative percentage of reading (%) 

A 60 85 95 
B 50 75 90 
C 40 65 85 
D Worse than C 

Table 3. Upper limit on the standard deviation of paired differences for given values of the 

mean of the paired differences (adapted from [28]). 

Mean Difference Standard Deviation 

0 6.95 or less  
±0.5 6.93 or less 
±1.0 6.87 or less 
±1.5 6.78 or less 
±2.0 6.65 or less 
±2.5 6.47 or less 
±3.0 6.25 or less 
±3.5 5.97 or less 
±4.0 5.64 or less 
±4.5 5.24 or less 
±5.0 4.81 or less 
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On the other hand, to satisfy the AAMI standard, the mean difference between the measurements 

obtained from the tested device and from the gold standard method should lie within ±5 mmHg [28]. The 

upper limit on the standard deviation (SD) depends on the level of the mean difference, as listed in  

Table 3 [28]. 

2.7. Analyses 

Two analyses were performed. In the first, we attempted to determine the effect of noise detection 

(outlier removal) on SBP and DBP estimation errors. In the second, we sought to establish the SBP and 

DBP estimation performance using conventional MAA, MLR and SVR models. The performance of the 

individual features will be evaluated followed by identification of the best combination of features for 

the two different types of blood pressure estimation models. We performed a comprehensive study on 

the performance of all possible combinations of two features on the blood pressure estimation 

methods, resulting in a total of 55 combinations. To search for the best combination of more than two 

indices, we applied SFFS starting from the best combination of two features provided by the 

exhaustive search. Our results revealed that adding a third feature did not provide an improvement in 

the results. A four-fold cross validation was applied during the implementation of all the blood 

pressure estimation methods. 

3. Results 

3.1. Effect of Noise Detection (Outlier Removal) on Systolic and Diastolic Blood Pressure  

Estimation Errors 

Figures 6 and 7 are the Bland-Altman plots demonstrating the performance of estimated SBP and 

DBP using the conventional MAA algorithm, with and without using the outlier removal algorithm 

before the OWE curve fitting process. On the other hand, cumulative percentage of blood pressure 

readings which fall within absolute differences of 5, 10 and 15 mmHg from RS (required for 

evaluation using the BHS standard) as well as mean ± SD difference between RS and conventional 

MAA algorithm (required for evaluation using the AAMI standard) were presented in Table 4. Based 

on the Bland–Altman plots for SBP (illustrated in Figure 6), the errors between the estimated pressure and 

the RS were large without outlier removal (up to 125 mmHg at low SBP), and substantially reduced upon 

elimination of the outlier points, with most data points lying within ±20 mmHg errors from the RS. 

Similar observations were found for the DBP (Figure 7). As shown in Table 4, the outlier removal 

method proposed in this study significantly improved the accuracy of the estimated pressures, with an 

improvement in BHS grades from D to B and A for SBP and DBP respectively. With regards to the 

AAMI standard, although a significant improvement was found in both mean and SD difference for 

SBP after outlier removal, the conventional MAA method failed to satisfy the AAMI standard (with  

a mean ± SD of −1.6 ± 8.6 mmHg, refer to Table 4).  

In terms of DBP, the mean ± SD difference improved from 0 ± 14.2 mmHg to 0.3 ± 6.7 mmHg upon 

outlier removal, which satisfied the passing criteria for the AAMI standard. 
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Figure 6. Bland–Altman plot of possible SBP between RS and conventional MAA 

algorithm (a) before and (b) after outlier removal. 

 

Figure 7. Bland–Altman plot of possible DBP between RS and conventional MAA 

algorithm (a) before and (b) after outlier removal. 

Table 4. Cumulative percentage of readings which fall within absolute differences of 5, 10 

and 15 mmHg from RS using the conventional MAA algorithm with the respective BHS 

grades, as well as mean ± SD and mean ± SD difference between RS and conventional 

MAA algorithm for blood pressure estimation before and after outlier removal. 

 Grade Cumulative Percentage of Reading (%) Mean ± SD 

(mmHg) 

Mean ± SD of 

Differences (mmHg)  Absolute Difference: RS–MAA ≤5 ≤10 ≤15 

Before outlier removal 

SBP D 30 61 74 101 ± 29 4.5 ± 28.6 

DBP D 43 61 79 63 ± 12 0.0 ± 14.2 

After outlier removal 

SBP B 55 84 90 107 ± 13 −1.6 ± 8.6 

DBP A 70 89 95 62 ± 9 0.3 ± 6.7 

SBP, systolic blood pressure (range: 70–133 mmHg); DBP, diastolic blood pressure (range: 42–88 mmHg). 
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3.2. Systolic and Diastolic Blood Pressure Estimation Performance Using Conventional MAA, MLR 

and SVR Models 

Tables 5 and 6 showed the performance of each of the ten features extracted from the OWE in SBP 

and DBP estimation using the MLR and SVR models respectively. With regards to SBP, most features 

achieved a Grade B performance with both models according to the BHS standard, except for Area3 

which obtained a Grade C performance using the MLR model. Individually, MAP as well as Ratio2 

and Ratio3 derived based on the morphology of the OWE outperformed other features using both MLR 

and SVR models, as they provided lower mean and SD of differences between RS and estimated SBP 

values. In terms of DBP, most features achieved a Grade A performance according to the BHS 

protocol, except for Dur2 (Grade B using both MLR and SVR models), Dur1 and Ratio3 (both 

achieving Grade B with the SVR model). Based on the AAMI standard, comparable performances 

were observed among all ten features using both MLR and SVM models, with most features passing 

the AAMI standard marginally. Using the SFFS approach, we identified Ratio2 and Area3 to be the 

best combination of two features. 

Table 5. Comparison among features extracted from the OWE envelope in blood pressure 

estimation performance using the MLR model. 

Feature  
Grade Cumulative Percentage of Reading (%) Mean ± SD 

(mmHg) 

Mean ± SD of 

Differences (mmHg) Absolute Difference: RS–MLR ≤5 ≤10 ≤15 

Amp1 
SBP B 53 84 93 105±17 −1.2 ± 14.2 

DBP A 70 92 95 63 ± 9 0.5 ± 6.1 

Dur1 
SBP B 58 86 95 105 ± 13 −0.7 ± 10.6 

DBP A 69 89 95 63 ± 10 0.6 ± 6.6 

Dur2 
SBP B 54 79 91 105 ± 16 −1.1 ± 14.3 

DBP B 63 87 94 63 ± 9 0.4 ± 6.8 

Area1 
SBP B 50 84 93 105 ± 17 −1.3 ± 14 

DBP A 70 89 95 63 ± 9 0.2 ± 6.2 

Area2 
SBP B 61 86 94 105 ± 15 −0.4 ± 10.2 

DBP A 71 92 95 63 ± 9 0.4 ± 6.2 

Area3 
SBP C 50 79 86 104 ± 18 −1.9 ± 16.9 

DBP A 73 89 95 63 ± 9 0.1 ± 6.3 

Ratio1 
SBP B 55 80 93 106 ± 10 0.1 ± 8.0 

DBP A 73 89 95 63 ± 9 0.3 ± 6.5 

Ratio2 
SBP B 55 85 96 106 ± 10 0.5 ± 7.0 

DBP A 68 89 96 63 ± 9 0.1 ± 6.6 

Ratio3 
SBP B 55 85 96 106 ± 10 0.5 ± 7.0 

DBP A 68 89 96 63 ± 9 0.1 ± 6.6 

MAP 
SBP B 55 89 98 106 ± 10 0.3 ± 6.6 

DBP A 71 89 95 63 ± 9 0.1 ± 6.6 

SBP, systolic blood pressure (range: 70–133 mmHg); DBP, diastolic blood pressure (range: 42–88 mmHg). 

As compared to the conventional MAA method using a fixed characteristic ratio (Table 7), the 

variable characteristic ratio method using both MLR and SVR models applied on the best combination 

of features significantly reduced the mean and SD of differences between the estimated SBP and that 

obtained from RS.  
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Table 6. Comparison among features extracted from the OWE envelope in blood pressure 

estimation performance using the SVR model. 

Feature  
Grade Cumulative Percentage of Reading (%) Mean ± SD 

(mmHg) 

Mean ± SD of 

Differences (mmHg) Absolute Difference: RS–SVR ≤5 ≤10 ≤15 

Amp1 
SBP B 60 86 94 105 ± 18 −1.2 ± 15.4 

DBP A 70 93 95 63 ± 9 0.4 ± 6.4 

Dur1 
SBP B 60 88 94 104 ± 13 −1.7 ± 9.7 

DBP B 65 89 94 64 ± 9 0.8 ± 6.4 

Dur2 
SBP B 55 83 91 104 ± 15 −1.8 ± 13 

DBP B 69 89 94 63 ± 9 0.7 ± 6.6 

Area1 
SBP B 58 87 93 104 ± 16 −1.5 ± 15 

DBP A 70 90 95 63 ± 9 0.2 ± 6.2 

Area2 
SBP B 64 89 94 106 ± 14 −0.1 ± 9 

DBP A 69 89 96 63 ± 9 −0.2 ± 6.4 

Area3 
SBP B 53 81 91 104 ± 16 −1.5 ± 14 

DBP A 70 91 95 63 ± 9 0.6 ± 6.5 

Ratio1 
SBP B 58 84 94 106 ± 10 0.3 ± 7.6 

DBP A 68 89 95 64 ± 9 1.0 ± 6.6 

Ratio2 
SBP B 59 89 98 107 ± 10 1.0 ± 6.3 

DBP A 70 90 95 63 ± 9 0.6 ± 6.6 

Ratio3 
SBP B 58 88 98 107 ± 11 1.1 ± 6.4 

DBP B 58 85 95 64 ± 9 1.4 ± 7.2 

MAP 
SBP B 58 85 95 106 ± 10 0.2 ± 6.8 

DBP A 70 89 95 63 ± 9 0.5 ± 6.7 

SBP, systolic blood pressure (range: 70–133 mmHg); DBP, diastolic blood pressure (range: 42–88 mmHg). 

Table 7. Comparison among conventional MAA method, MLR and SVR models in blood 

pressure (SBP and DBP) estimation performance using the best combination of features. 

 
Grade Cumulative Percentage of Reading (%) Mean ± SD 

(mmHg) 

Mean ± SD of 

Differences (mmHg) Absolute Difference with RS ≤5 ≤10 ≤15 

Conventional MAA method (using fixed characteristic ratio) 

SBP B 55 84 90 107 ± 13 −1.6 ± 8.6 

DBP A 70 89 95 62 ± 9 0.3 ± 6.7 

MLR model (using the best combination of features) 

SBP A 63 91 98 106 ± 11 −0.3 ± 5.8 

DBP A 71 89 95 63 ± 9 −0.2 ± 6.4 

SVR model (using the best combination of features) 

SBP A 66 94 98 107 ± 12 −0.6 ± 5.4 

DBP A 68 90 95 62 ± 9 0.4 ± 6.3 

Method comparison (MLR- SVR) 

SBP A 98 100 100  −0.3 ± 1.6 

DBP A 100 100 100  0.6 ± 1.0 

SBP, systolic blood pressure (range: 70–133 mmHg); DBP, diastolic blood pressure (range: 42–88 mmHg). 

Meanwhile, only a slight reduction in SD was observed for DBP. Based on the BHS standard, both 

MLR and SVR models, as well as the conventional MAA method could achieve a Grade A 

performance for SBP and DBP estimation. Generally, comparable performance was obtained for both 

MLR and SVR models, with up to 98% (95%) of data lying within ±15 mmHg from RS for SBP 
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(DBP) estimation. In addition, both models satisfied the performance criteria set by the AAMI 

standard, with SVR model achieving a slightly lower SD of difference with RS but at a slightly higher 

mean difference value.  

As illustrated in Figures 8 and 9, their estimated values for SBP (DBP) data used in the present 

study were very similar. Figure 10 shows the difference of SBP and DBP estimated between MLR and 

SVR, all the values lied within the range of ±5 mmHg (with the exceptions of only 2 values for SBP). 

At higher SBP values, SVR model appeared to provide larger values as compared to that estimated 

using the MLR model while an opposite trend was observed in the middle range of SBP. 

 

Figure 8. Bland–Altman plot of possible SBP between RS and (a) MLR model; (b) SVR 

model using the best combination of features. 

 

Figure 9. Bland–Altman plot of possible DBP between RS and (a) MLR model; (b) SVR 

model using the best combination of features. 
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Figure 10. Bland–Altman plot of possible (a) SBP and (b) DBP between MLR and SVR 

models using the best combination of features. 

4. Discussion 

Accurate oscillometric blood pressure estimation in an unsupervised environment is challenging in the 

presence of interference, notably movement artifact which interrupts the air flow in the deflating cuff. 

While several studies have attempted to detect noise in the blood pressure signals using additional 

sensing devices such as acceleration and capacitive sensors [29], as well as morphological comparison 

with good-quality reference pulses [30], none of these studies have investigated the effect of the detected 

noise on the extraction of accurate blood pressure values from the contaminated signals. In the present 

study, we integrated an artifact removal block (Figure 1) in our SBP and DBP estimation algorithm 

which was based solely on the oscillometric signal without using additional sensors or reference 

signals. Our results demonstrated that the mean and standard deviation of the blood pressure estimation 

errors between the MAA algorithm and the RS substantially decreased upon artifact removal  

(Figures 6 and 7, Table 4), which strongly advocates the importance of the artifact removal component 

proposed in the present study. Furthermore, the MAA algorithm has been well recognized to be 

susceptible to additive noise as it is derived based on the amplitude of the pulse [31]. The spline 

interpolation method, commonly used to smooth the envelope of the OMW for eliminating the erroneous 

peak values generated by artifact, was shown in this study to be ineffective in reducing the interference 

caused by movement artifact [32]. 

We further demonstrated from our analysis results (Tables 5 and 6) that the usage of variable 

characteristic ratio derived based on several features extracted from the OWE improved the blood 

pressure estimation accuracy over the conventional MAA method using fixed characteristic ratios (SBP: 

mean ± SD = −1.6 ± 8.6 mmHg; DBP: mean ± SD = 0.3 ± 6.7 mmHg). Due to the large uncertainties in 

the characteristic ratios reported in the literature [7,12,33], we used averages of the SBPR and DBPR 

ratios derived from our reference SBP and DBP measurements based on the expert readings. When 

evaluated individually (Tables 5 and 6), the MAP feature proposed by Lee et al. [15] as well as the two 

newly proposed features in the present study, i.e., Ratio2 and Ratio3, outperformed other features in 

providing accurate SBP estimates (MAP: mean ± SD = 0.3 ± 6.6 mmHg for MLR and 0.2 ± 6.8 mmHg 
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for SVR; Ratio2: mean ± SD = 0.5 ± 7.0 mmHg for MLR and 1.0 ± 6.3 mmHg for SVR; Ratio3:  

mean ± SD = 0.5±7.0 mmHg for MLR and 1.1 ± 6.4 mmHg for SVR). The Ratio2 and Ratio3 features 

were derived based on the morphology of the OWE, which has been reported to reflect the stiffness 

characteristics of the vessel [13]. Consistent with previously published findings, the degree of arterial 

stiffness and thus pulse pressure as well as the shape of the OWE has the largest influence on the SBP 

and DBP errors determined based on the conventional MAA method [12], leading to errors as high as 

15%–20% [34] or 58 mmHg [12]. To the contrary, the Ratio1 feature proposed by Lee et al. [15], 

which also described the shape of the OWE, was found to be inferior in our study as compared to 

Ratio2 and Ratio3. The main difference between these features were that while Ratio1 was derived 

based on length of the oscillometric waveform, Ratio2 and Ratio3 described asymmetry in the 

waveform based on area of the OWE, thus took into consideration both amplitude and length of the 

waveform. Compared to length, measurements based on area of the OWE, e.g., Ratio2 and Ratio3 are 

more robust to noise interference as well as errors associated with difficulties in determining the 

starting and ending points of the cuff pressure oscillations. The Dur2, Amp1 and Area1 features 

proposed by Lee et al. [15] demonstrated poor performance in SBP estimates individually when 

applied on data set used in the present study. 

Using the SFFS approach, we were able to achieve a significant reduction in the mean and standard 

deviation of differences between the estimated SBP values and the RS (MLR: mean ± SD =  

−0.3 ± 5.8 mmHg; SVR: mean ± SD = −0.6 ± 5.4 mmHg) with only two features, i.e., Ratio2 and Area3 

(Table 7), as compared to the conventional MAA method (mean ± SD = −1.6 ± 8.6 mmHg). To the 

contrary, negligible improvement was achieved for DBP estimation. Our results were comparable with 

that reported by Lee et al. [15], which utilized three features, i.e., Area1, Ratio1 and MAP selected based 

on t-test evaluation on their clean dataset. While t-test evaluates the significance of features 

independently (filter-based method), the SFFS method takes into account interaction among features 

(wrapper-based method). The advantages of wrapper-based methods include taking into account 

feature dependencies [35], and they typically perform better in prediction accuracy when compared 

with filter-based methods [35]. 

Despite its simplicity, our results showed that the MLR model was able to achieve comparable 

performance with that obtained from the SVR model (Table 7, Figures 8–10), which requires 

optimization of the model parameters through repeated training. The MLR model was able to estimate 

the best fitting surface of a suitable function that relates the independent and dependent variables [36]. 

On the other hand, Gaussian mixture regression [15] as well as Bayesian model [7], applied on a 

combination of five features, have also been recently proposed by Lee et al. [16] and evaluated on 

experimental data acquired from 85 healthy subjects. As compared to these methods, our MLR and 

SVR models do not need careful formulation of prior distributions of the data. In addition, the same 

research group has also presented a feature-based neural network approach for the estimation of blood 

pressure [16], which used features extracted from the OWE (consisting of the amplitudes, spreads, and 

centres of the modelled Gaussian functions) as inputs to the neural network. Although the proposed 

approach was shown to achieve lower values of mean and standard deviation of error in the 

estimations (SBP: mean ± SD = 6.76 ± 8.89 mmHg; DBP: mean ± SD = 5.98 ± 7.90 mmHg) as 

compared to the conventional MAA method, their results did not meet the AAMI standard. This was 

probably because their oscillometric measurements were taken at different time points with that 
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acquired by the nurse, which served as RS. As suggested by Soueidan et al. [10], natural blood 

pressure variability often exceeds the maximum allowable error set by the AAMI standard (i.e.,  

±5 mmHg), thus it is advisable to acquire simultaneous recordings of both oscillometric signal and RS 

for accurate comparison, as that performed in the present study.  

Using a different approach based on a Fourier series representation of the oscillometric waveform, 

Barbe et al. [37] introduced a Hammerstein-Windkessel model which captures the low frequency 

oscillations of the cardiovascular system. The systolic and diastolic pressures were derived from the 

mean arterial pressure using an intuitive estimator α, which was calculated based on the envelope of 

the modeled oscillometric waveform. The α parameter, which reflects the symmetry of the 

oscillometric waveform, is similar to one of the best performing feature in the present study, i.e., 

Ratio3. In a more recent study, they [17] further extended their work to include a statistical learning 

technique based on ordinal logistic regression for the calibration of oscillometric blood pressure 

monitors. By applying a linear regression to map the shape of the oscillometric signal to the blood 

pressure to avoid complex nonlinear models, the method could only estimate the correct blood pressure 

range but not the specific value of the blood pressure. 

One limitation of the present work is that the experimental measurements were obtained from 

healthy subjects and the measurements were conducted in a laboratory environment. Ongoing studies 

are carried out to record signals directly from unsupervised environments in different cohorts of 

subjects to assess the robustness of our algorithms in a wider range of subjects. 

5. Conclusions 

In this study, we proposed a novel approach in estimating SBP and DBP using variable 

characteristic ratios derived from features extracted from the OWE, on data corrupted with movement 

artifact. An automatic algorithm based on changes in the oscillometric pulses relative to their respective 

neighbour pulses was proposed to remove outlier points before the curve fitting process. Substantial 

reduction in the mean and standard deviation of the blood pressure estimation errors between the MAA 

algorithm and the RS were obtained upon artifact removal. Comparing all ten features extracted from 

the OWE, the MAP feature as well as the two newly proposed features, i.e., Ratio2 and Ratio3, showed 

superior performance in providing accurate SBP estimates. Using SFFS, we were able to achieve a 

significant reduction in the mean and standard deviation of differences between the estimated SBP 

values and the RS (MLR: mean ± SD = −0.3 ± 5.8 mmHg; SVR and −0.6 ± 5.4 mmHg) with only two 

features, i.e., Ratio2 and Area3, as compared to the conventional MAA method (mean ± SD =  

−1.6 ± 8.6 mmHg). To the contrary, negligible improvement was achieved for DBP estimation. 

Comparing both MLR and SVR models, our results showed that the MLR model was able to achieve 

comparable performance with that obtained from the SVR model despite its simplicity. 
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