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Abstract: Spectrum sensing technology plays an increasingly important role in cognitive
radio networks. Consequently, several spectrum sensing algorithms have been proposed in
the literature. In this paper, we present a new spectrum sensing algorithm “Differential
Characteristics-Based OFDM (DC-OFDM)” for detecting OFDM signal on account of
differential characteristics. We put the primary value on channel gain θ around zero to
detect the presence of primary user. Furthermore, utilizing the same method of differential
operation, we improve two traditional OFDM sensing algorithms (cyclic prefix and pilot
tones detecting algorithms), and propose a “Differential Characteristics-Based Cyclic Prefix
(DC-CP)” detector and a “Differential Characteristics-Based Pilot Tones (DC-PT)” detector,
respectively. DC-CP detector is based on auto-correlation vector to sense the spectrum,
while the DC-PT detector takes the frequency-domain cross-correlation of PT as the test
statistic to detect the primary user. Moreover, the distributions of the test statistics of the
three proposed methods have been derived. Simulation results illustrate that all of the three
proposed methods can achieve good performance under low signal to noise ratio (SNR) with
the presence of timing delay. Specifically, the DC-OFDM detector gets the best performance
among the presented detectors. Moreover, both of the DC-CP and DC-PT detector achieve
significant improvements compared with their corresponding original detectors.
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1. Introduction

Recently, with the rapid development of wireless communication applications, the problem of
spectrum scarcity has become more serious than ever before [1,2]. Therefore, how to tackle the conflict
between the spectrum scarcity and spectrum utilization has become a dramatically critical issue [3].
Cognitive radio (CR) which has the ability to detect and share the unutilized spectrum has been employed
as a promising solution to this problem [4–6]. In cognitive radio networks, one of the most challenging
and crucial works is spectrum sensing. In order to avoid interfering with the primary users, the spectrum
sensing algorithms should have the capacity to catch the presence of the primary users within a short
time especially under very low signal to noise ratio (SNR) regions [7].

A number of spectrum sensing algorithms have been presented and analyzed in the literature such as
matched filtering [8], energy detection [9], cyclostationary detection [10] and covariance detection [11],
etc. All of them have corresponding merits and demerits. For example, energy detection is one of the
most basic sensing methods, which does not need any prior information of the signal. However, it is too
sensitive to the noise variance, and the uncertainty in noise variance causes significant degradation of
the performance [12]. Although other sensing algorithms may be robust to the noise uncertainty, they
have to know the structure of the signal. For instance, matched filter detection needs the waveform of
the transmitted signal, and the cyclostationary detection requires the cyclic period of the primary users,
respectively. In addition, in [13] the authors offered the locally optimal detector to sense the interested
spectrum. This algorithm mainly discussed about detecting the signals modulated by BPSK, which could
get better performance than the energy detector. However, the effect of timing delay was not considered
in this paper.

Orthogonal frequency division multiplexing (OFDM), which is one of the most popular
communication schemes in the current communication system, is a good candidate for cognitive
radio data transmission for its capability of combating multi-path fading and mitigating intersymbol
interference (ISI) [14–16]. Therefore, it is fair to assume that the spectrum sensing algorithms should be
able to sense the existence of primary users under the OFDM scheme. Numbers of previous works on
OFDM spectrum sensing have been studied and reported in the literature by using the structure features
of OFDM signals [17,18]. In [19], the authors proposed optimal and sub-optimal Neyman-Pearson (NP)
spectrum sensing methods to detect the OFDM signals based on the feature of cyclic prefix and also
studied the generalized likelihood ratio test (GLRT) according to the second order statistic of the received
OFDM signals. However, the presented approaches did not deeply analyze the effect of channel and the
optimal algorithm was sensitive to the noise uncertainty. The pilot tones (PT) detection was discussed
in [7,20]. The detection performance of these algorithms has been improved, but the computational
complexity have increased as the cost. Besides, there have been a number of works studying the CP
detector [21,22]. Although the performance of these algorithms were improved, they were limited by the
length of CP and decreased with the presence of timing delay.
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Some literatures have proposed a number of algorithms to solve these problems presented above.
In [15], the authors provided an improved CP detector by constructing a likelihood ratio test (LRT)
based on the multivariate p.d.f.’s of a particular autocorrelation vector. The new detector can get an
accurate threshold without estimating timing delay. But performance of this detector is a little worse
than the optimal CP detector. Moreover, noise uncertainty is an important factor which could impact
the performance of the sensing algorithms [23,24]. Thus the spectrum sensing method should have
a certain extent robustness of noise uncertainly. Some new spectrum sensing algorithms are discussed
in [25], which are robust against noise variance uncertainty. However, the detection performance of these
algorithms is not good enough compared with other algorithms. In [17], specific detection algorithms
(feature match) are presented. Although these proposed sensing methods are robust to frequency
offset and noise power uncertainty, they could not perform perfect spectrum sensing for sensing errors.
Therefore, finding an effective sensing algorithm to perform accurate spectrum sensing is an argent work.

In this paper, three novel spectrum sensing algorithms based on derivative features are proposed to
detect OFDM signals. The first way is named “Differential Characteristics-Based Orthogonal Frequency
Division Multiple (DC-OFDM)” algorithm. It is a suboptimal OFDM signal detector considering the
effect of the channel fading and timing delay. The second approach is “Differential Characteristics-Based
Cyclic Prefix (DC-CP)” algorithm, which utilizes the property of CP to sense the spectrum. And the
auto-correlation vector instead of a single auto-correlation value is taken to catch the desired signals.
The third algorithm is “Differential Characteristics-Based Pilot Tones (DC-PT)” algorithm. It takes
advantage of frequency-domain cross-correlation based on pilot tones feature. The DC-CP and DC-PT
detectors could be seen as special applications of DC-OFDM detector. All of the proposed methods can
get the satisfied performance compared with other approaches. More specifically, the contributions of
this paper can be summarized as follows.

(1) A DC-OFDM spectrum sensing algorithm which takes the advantage of differential characteristics
is presented in this paper. Compared with other detectors, the DC-OFDM detector achieves better
detection performance.

(2) Considering the effect of timing delay (τ ), the expressions for the test statistics of DC-OFDM with
different τ are proposed (see Equations (17)–(19)). Furthermore, the DC-OFDM detector provides
a novel way by utilizing the differential characteristics to sense the OFDM signals.

(3) DC-CP detector is brought forward, which is derived from the traditional CP detector by employing
the differential operation. Compared to the traditional one, the performance of the DC-CP detector
is obviously better.

(4) Based on the differential characteristics, we propose a new PT detector through frequency-domain
cross-correlation, and also derive the test statistic of DC-PT detector.

(5) We derive the theoretical expressions of Pm and Pf of the three proposed detectors, which are
based on the probability distribution functions for the different test statistics under H0 and H1.
From these theoretical results, it is easy to get the corresponding thresholds for any given Pf .

(6) We perform extensive simulations to demonstrate the theoretical results and prove the
promising detectors.

The rest of the paper is now organized as follows. The system model of the OFDM signal is described
in Section “System Model and Hypothesis Test”. In Section “Algorithm of DC-OFDM Detection” and
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Section “DC-CP Detection and DC-PT Detection”, three new sensing algorithms based on derivative
features are separately discussed. The expressions of Pf and Pm for the proposed detectors are
derived in Section “Probabilities of Misdetection and False Alarm”. Then we provide simulation results
and compare the performance of our proposed methods with other algorithms in Section “Simulation
Results”. Finally, conclusions are given in the last Section “Conclusions”.

2. System Model and Hypothesis Test

In this section, we will briefly describe the structure of OFDM system at first. After that, we will
discuss the issue of hypothesis test. A simplified Block diagram of an OFDM system is shown in
Figure 1. For a generic OFDM transmitter, the mth block of data symbols Im(0), ..., Im(Nd − 1) are
mapped onto the subcarriers, whereNd is the data block size. And after the inverse fast Fourier transform
(IFFT), we will get the time-domain signals s̃m(0), ..., s̃m(Nd − 1), where

s̃m(n) =

√
Es
Nd

Nd/2−1∑
k=−Nd/2

Im(k)e
jπnk/Nd (1)

Data for transmission

Im(0),�,Im(Nd-1)
IFFT Add CP Channel

Statistic Test

xm n

Threshold

 

Make decision

( )
m
s n

Figure 1. The traditional OFDM spectrum sensing structure in a cognitive radio.

Es denotes the power of each transmitted symbol, and we assume the power is unit (Es = 1). Without
loss of generality, the IFFT block size is taken to beNd. Figure 2 illustrates the structure of the mth block
of an OFDM transmission, where Nc is the length of CP. As is shown, the CP is added by putting an
exact copy of s̃m(Nd −Nc), ..., s̃m(Nd − 1) at the front of the block. So, we get the transmitted OFDM
symbol {sm(n)}Nc+Nd−1n=0 .

The mth OFDM block,
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Figure 2. The traditional structure of the transmitted mth OFDM block.
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In practice, the transmitters and receivers are difficult to be synchronous. Therefore, let τ be the
synchronization mismatch, where 0 6 τ < Nc+Nd. After passing through fading channel, the received
signal of the mth block can be expressed as

xm(n) = hsm(n− τ) + em(n), n = 0, 1, . . . , Nc +Nd − 1 (2)

where m = 0, . . . ,M − 1 and M is the total number of received OFDM blocks; h is the channel gain;
em(n) is the complex additive white Gaussian noise (AWGN) with zero-mean and variance σ2

n, and the
SNR is defined as |h|2/σ2

n at the receiver.
Consider two binary hypotheses, H1 and H0, where H1 and H0 denote the presence and absence of a

primary user, respectively. For the spectrum sensing, the object is to decide whether the received signal
consists of primary user’s signal. Consequently, the two binary hypotheses can be written as:

H0 : xm(n) = em(n),

H1 : xm(n) = hsm(n− τ) + em(n) (3)

Let θ = |h|, it can be clearly seen from (3) if θ = 0, the received signal is only composed of noise.
Otherwise it consists the signal plus noise. So taking interesting of θ, Equation (3) can be rewritten as

H0 : θ = 0 and H1 : θ > 0 (4)

3. Algorithm of DC-OFDM Detection

In this section, we will propose a new detector (DC-OFDM detector) to sense to OFDM signals. The
new detector, based on the NP criterion, utilizes the merits of differential characteristics to sense the
interested spectrum.

Let x = [x0(0), x0(1), . . . , x0((Nc+Nd−1), . . . , xM(Nc+Nd−1)]T is the received vector signal and
M is the total number of received OFDM blocks. According to the NP criterion, the traditional detection
based on the LRT is:

T = log(
p(x|H1)

p(x|H0)
)

H0

≶
H1

γ (5)

where T is the test statistic; p(.) denotes the probability density function (p.d.f) and γ is the threshold.
According to Equation (4), detecting the absence and presence of the primary user can be alternated to
test θ = 0 against θ > 0, especially in the case of weak signal detection. Since θ around zero is our
primary concern, we can make the differential operation of θ to get the locally optimal solution when
θ = 0. Then the test statistic can be written as [26]:

T =
p(n)(x|θ)|θ=0

p(x|0)
(6)

where p(n)(x|θ) := dnp(x|θ)/dθn. Under H0, θ = 0, the received signal only contains the noise, so the
elements of x are independent. The p.d.f of p(x) can be expressed as

p(x|H0) =
M−1∏
m=0

Nc+Nd−1∏
i=0

p(xm(i)|H0)

=
1

(2πσ2
n)

M(Nc+Nd)

2

exp(−||x||
2

2σ2
n

) (7)
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On the other hand, the p.d.f p(x) under H1 can be expressed as

p(x|H1) =
1

(2π)
M(Nc+Nd)

2 |Bτ |
1
2

exp(−1

2
xHB−1τ x) (8)

where Bτ is the covariance matrix of x, and its structure dependents on timing delay τ . Then using
Equations (7) and (8), the DC-OFDM detector can be expressed as:

TDC−OFDM =
p(n)(x|θ)|θ=0

p(x|0)
H0

≶
H1

γDC−OFDM (9)

In order to get more specific expression of Equation (8) and prepare for the derivation processes, we
rewrite it according to the structure of Bτ . Moreover, since the value of τ decides the structure of Bτ ,
we tend to discuss τ to get the different test statistics.

3.1. Timing Delay Is Smaller Than the Length of CP

When τ ∈ [0, Nc], we get the expression of xHB−1τ x that

xHB−1τ x

=
M−1∑
m=0

Nc−τ−1∑
i=0

xm(i)
∗(

σ2
n + θ2

2θ2σ2
n + σ4

n

xm(i)−
θ2

2θ2σ2
n + σ4

n

xm(i+Nd))

+

Nc+Nd−τ−1∑
i=Nd

x0(i)
∗(

σ2
n + θ2

2θ2σ2
n + σ4

n

x0(i)−
θ2

2θ2σ2
n + σ4

n

x0(i−Nd))

+
M−2∑
m=0

Nc+Nd−1∑
i=Nc+Nd−τ

xm(i)
∗(

σ2
n + θ2

2θ2σ2
n + σ4

n

xm(i)−
θ2

2θ2σ2
n + σ4

n

xm(i+Nd))

+
M−1∑
m=1

[

Nc+Nd−τ−1∑
i=Nd−τ

xm(i)
∗(

σ2
n + θ2

2θ2σ2
n + σ4

n

xm(i)−
θ2

2θ2σ2
n + σ4

n

xm(i−Nd))

+

Nd−τ−1∑
Nc−τ

1

θ2 + σ2
n

|xm(i)|2] +
Nd−1∑
i=Nc−τ

1

θ2 + σ2
n

|x0(i)|2 +
Nc+Nd−1∑
i=Nc+Nd−τ

1

θ2 + σ2
n

|xM−1(i)|2 (10)

Furthermore, |Bτ | will also be obtained that

|Bτ | = σ2M(Nc+Nd)
n (1 +

θ2

σ2
n

)(M−1)(Nd−Nc)+2τ

× (1 + 2
θ2

σ2
n

)(M−1)(Nd−Nc)−τ (11)

so Equation (8) can be written as

p(x|θ) = 1

(2πσ2
n)

M(Nc+Nd)

2

A1exp(−
1

2
A2) (12)

where

A1 = (1 +
θ2

σ2
n

)
− (M−1)(Nd−Nc)+2τ

2

(1 + 2
θ2

σ2
n

)
− (M−1)(Nd−Nc)−τ

2
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A2 = xHB−1τ x

Therefore, the first derivative of p(x|θ) is

p(1)(x|θ) = 1

(2πσ2
n)
M(Nc+Nd)

2

[A
(1)
1 exp(−1

2
A2)

−1
2
A1exp(−1

2
A2)A

(1)
2 ] (13)

where A(1)
1 and A(1)

2 are the first derivative of A1 and A2. Since the expressions of A(1)
1 and A(1)

2 are too
complex, the details are shown in Equations (A1) and (B1) in Appendix, respectively.

As is illustrated in Equations (A1) and (B1),A(1)
1 andA(1)

2 at θ = 0 are equal to zero and so is p(1)(x|θ)
at θ = 0. Therefore, higher derivative have to be computed. The second derivative of p(x|θ) is

p(2)(x|θ) = 1

(2πσ2
n)

M(Nc+Nd)

2

A
(2)
1 exp(−1

2
A2)

−1
2
A

(1)
1 exp(−1

2
A2)A

(1)
2 − 1

2
A

(1)
1 exp(−1

2
A2)A

(1)
2

+1
4
A1exp(−1

2
A2)(A

(1)
2 )2 − 1

2
A1exp(−1

2
A2)A

(2)
2 ] (14)

For the A(2)
1 and A(2)

2 , we get them from A
(1)
1 and A(1)

2 . When θ = 0, A(2)
1 and A(2)

1 will be equal to

A
(2)
1 = − 1

σ2
n

(M − 1)(Nc +Nd) (15)

and

A
(2)
2 = − 2

σ4
n

[
M−1∑
m=0

Nc+N−d−1∑
i=0

|xm(i)|2 +
M−1∑
m=0

Nc−τ−1∑
i=0

xm(i)
∗xm(i+Nd)

+
M−2∑
m=0

Nc+Nd−1∑
i=Nc+Nd−τ

xm(i)
∗xm(i+Nd) +

M−1∑
m=1

Nc+Nd−τ−1∑
i=Nd−τ

xm(i)
∗xm(i−Nd)

+

Nc+Nd−τ−1∑
i=Nd

xM−1(i)
∗xM−1(i−Nd)] (16)

So, according to Equations (12), (14)–(16), we get the test statistic under τ ∈ [0, Nc] that

TDC−OFDM1 =
p(2)(x|θ = 0)

p(x|0)
= A

(2)
1 −

1

2
A

(2)
2

=
1

σ4
n

[
M−1∑
m=0

Nc+Nd−1∑
i=0

|xm(i)|2 +
M−1∑
m=0

Nc−τ−1∑
i=0

xm(i)
∗xm(i+Nd)

+
M−2∑
m=0

Nc+Nd−1∑
i=Nc+Nd−τ

xm(i)
∗xm(i+Nd) +

M−1∑
m=1

Nc+Nd−τ−1∑
i=Nd−τ

xm(i)
∗xm(i−Nd)

+

Nc+Nd−τ−1∑
i=Nd

xM−1(i)
∗xM−1(i−Nd)− σ2

n(M − 1)(Nc +Nd)]
H0

≶
H1

γDC−OFDM1 (17)

where γDC−OFDM1 is the threshold when τ ∈ [0, Nc].
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3.2. Timing Delay Is Equal to Other Values

When τ ∈ [Nc + 1, Nd − 1] and τ ∈ [Nd, Nc + Nd − 1], since the processes of derivation of the test
statistics are the same as described above, we will not give the details here due to lack of space. Then,
the test statistics TDC−OFDM2 and TDC−OFDM3 under τ ∈ [Nc+1, Nd−1] and τ ∈ [Nd, Nc+Nd−1] are

TDC−OFDM2 =
p(2)(x|θ = 0)

p(x|0)

=
1

σ4
n

[
M−1∑
m=0

Nc+Nd−1∑
i=0

|xm(i)|2 +
M−2∑
m=0

2Nc+Nd−τ−1∑
i=Nc+Nd−τ

xm(i)
∗xm(i+Nd)

+
M−1∑
m=1

Nc+Nd−τ−1∑
i=Nd−τ

xm(i)
∗xm(i−Nd)− σ2

n(M − 1)(Nc +Nd)]
H0

≶
H1

γDC−OFDM2 (18)

and

TDC−OFDM3 =
p(2)(x|θ = 0)

p(x|0)

=
1

σ4
n

[
M−1∑
m=0

Nc+Nd−1∑
i=0

|xm(i)|2 +
M−2∑
m=0

2Nc+Nd−τ−1∑
i=Nc+Nd−τ

xm(i)
∗xm(i+Nd)

+
M−1∑
m=0

Nc+Nd−1∑
i=Nc+2Nd−τ

xm(i)
∗xm(i−Nd) +

M−1∑
m=1

Nc+Nd−τ−1∑
i=0

xm(i)
∗xm(i−Nd)

+
Nc−1∑

i=Nc+Nd−τ

xM−1(i)
∗xM−1(i+Nd)− σ2

n(M − 1)(Nc +Nd)]
H0

≶
H1

γDC−OFDM3 (19)

where the γDC−OFDM2 and γDC−OFDM3 are the thresholds when τ ∈ [Nc + 1, Nd − 1] and τ ∈ [Nd,

Nc + Nd − 1], respectively. As mentioned above, we get test statistics of DC-OFDM detector under
different τ according to Equations (17)–(19). However, we can see from these equations that it is not
easy to get the closed-form expressions for the distribution of the test statistics, so we will discuss it in
the next section.

The DC-OFDM detector is a suboptimal detector to sense the OFDM signal by taking advantage of
differential operations to get the locally optimal solution. Moreover, it provides us a new way to improve
the traditional detectors based on employing differential operations. In the next section, we will give the
examples of applying the merits of differential characteristics to improve the traditional CP detector and
PT detector.

4. DC-CP Detection and DC-PT Detection

In this section, we will discuss new CP detector and PT detector based on the advantages of structure
of OFDM signal by using the auto-correlation of CP and PT. Through the differential operation, the
performance of traditional CP detector and PT detector will be improved. Here we also take interest of
testing θ = 0 against θ > 0. Moreover, the computation complexity of the proposed algorithms will be
analyzed and compared with other approaches.
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4.1. DC-CP Sensing Algorithm

Considering the unique feature of the CP, we propose the following measure of auto-correlation, and
apply the signal model in Equation (2):

Ri =
M−1∑
m=0

x∗m(i)xm(i+Nd)

=
M−1∑
m=0

(hsm(i− τ) + em(i))
∗(hsm(i− τ +Nd) + em(i+Nd)) (20)

where ∗ stands for the complex conjugate operation, ii = 0, . . . , Nc+Nd− 1, and θ = |h|. According to
the central limit theorem, if the M is large enough, Ri could approximate to a complex Gaussian random
variable. So according to Equation (20), the mean of Ri can be computed as

µi = E[Ri|θ] =Mθ2E[s∗m(i− τ)sm(i− τ +Nd)] (21)

Let C = [1, 2, . . . , Nc], so when i− τ ∈ C, we get

E[s∗m(i− τ)sm(i− τ +Nd)] = Es = 1 (22)

Let us define the indicator function

1C(k) :=

{
1, if k ∈ C
0, if k /∈ C

(23)

then applying Equations (22) and (23), we can rewrite Equation (21) as

µi = θ2M1C(i− τ) (24)

Now, the variance of Ri can be computed as

σ2
i = θ412

C(i− τ)M +M(θ2 + σ2
n)

2 (25)

In this paper we intend to employ {Ri}Nc+Nd−1i=0 , rather than a single Ri, so we define the vector:

R = [R0, R1, . . . , RNc+Nd−1] (26)

To simplify the derivation of the joint distribution, we assume that all the Ri in Equation (26) are
independent. We can define the following test statistic based on the Equation (6):

TDC−CP =
p(n)(R|θ)|θ=0

p(R|0)
(27)

where p(R|θ) is p.d.f of R and

p(R|θ) =
Nc+Nd−1∏

i=0

p(Ri|θ) (28)
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Ri is Gaussian distribution, so

p(Ri|θ) =
1√
2π
D1exp(D2) (29)

where

D1 = (θ412
C(i− τ)M +M(θ2 + σ2

n)
2)−

1
2 (30)

and

D2 = −
|Ri − θ2M1C(i− τ)|2

2(θ412
C(i− τ)M +M(θ2 + σ2

n)
2)

(31)

The first derivative of p(R|θ) is

p(1)(R|θ) =
Nc+Nd−1∑

i=0

p(1)(Ri|θ)
Nc+Nd−1∏

j=0
j 6=i

p(Rj|θ) (32)

and

p(1)(Ri|θ) =
1√
2π

(
D

(1)
1 exp(D2) +D1exp(D2)D

(1)
2

)
(33)

where D(1)
1 and D(1)

2 are the first derivative of D1 and D2, and the specific expressions are shown in
section Appendix. When θ = 0, D

(1)
1 and D(1)

2 are both equal to zero. So p(1)(R|θ) = 0 at θ = 0.
Therefore, we have to compute higher derivatives.

The second derivative of p(R|θ) is

p(2)(R|θ) =
Nc+Nd−1∑

i=0

[p(2)(Ri|θ)
Nc+Nd−1∏

j=0
j 6=i

p(Rj|θ)]

+

Nc+Nd−1∑
i=0

[p(1)(Ri|θ)
Nc+Nd−1∑

j=0
j 6=i

(
p(1)(Rj|θ)

Nc+Nd−1∏
k=0
k 6=i
k 6=j

p(Rk|θ)
)
] (34)

and

p(2)(Ri|θ) =
1√
2π

(
D

(2)
1 exp(D2) +D

(1)
1 exp(D2)D

(1)
2

+D
(1)
1 exp(D2)D

(1)
2 +D1exp(D2)(D

(1)
2 )2 +D1exp(D2)D

(2)
2

)
(35)

The expressions of D(2)
1 and D(2)

2 are also given in Appendix. So when θ = 0, we get that

D
(2)
1 (θ = 0) =

−2Mσ2
n

(Mσ4
n)

3
2

(36)

and

D
(2)
2 (θ = 0) =

2Re(Ri)M1C(i− τ)
Mσ4

n

+
2Mσ2

n|Ri|2

(Mσ4
n)

2
(37)
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then Equation (27) could be written as

TDC−CP =
p(2)(R|θ)|θ=0

p(R|0)

=

Nc+Nd−1∑
i=0

[
2Re(Ri)1C(i− τ)

σ4
n

+
2|Ri|2

Mσ6
n

− 2

σ2
n

]
H0

≶
H1

γDC−CP (38)

4.2. DC-PT Sensing Algorithm

DC-PT detector is another typical example of employing differential operation to improve the
traditional detectors. Since the specific derivation process of the DC-PT algorithm is similar to DC-CP
algorithm, we will briefly introduce the DC-PT sensing algorithm.

For an OFDM system, in order to achieve the satisfied estimating results, PTs are usually employed.
In this paper, we only consider the circular configuration that the pilot subcarrier indexes cyclically
changes to avoid lengthiness. To utilize PT to sense the signal, we first need to compute FFT at the
receiver to convert the signals from time-domain to frequency domain, and then compute the correlation
of pilot symbols. The received signal after removing CP and FFT process can be expressed as

ỹm(n) =
1√
N

Nd−1∑
l=0

√
1

Nd

Nd−1∑
k=0

HkIm(k)e
j2πlk/Nde−j2πln/Nd +

1√
N

Nd−1∑
l=0

em(n)e
−j2πln/Nd

= HnIm(n) +Wm(n) (39)

where Hn = he−j2πn/Nd is the channel gain of subcarrier n. Wm(n) is frequency-domain noise with
zero mean and σ2

n variance. We assume that there are Np PT in each block with the same amplitude, and
the pilots are the same every several blocks but different among one block. So two OFDM blocks with
block index difference kt have the same PT arrangement, where k = 1, 2, . . . , and t = m− u(1 ≤ m ≤
M, 1 ≤ u ≤ M) stands for the block index difference. Employing the feature of PT, this detector of
OFDM signal can be written as [21]:

Gt =
∑
Nt

Np−1∑
n=0

ỹm(n)ỹu(n)
∗ (40)

where Nt is the number of block pairs (m,u) with the same PT order. The p.d.f of Gt under H0 and H1

can be computed as:

Gt|H0 ∼ CN(0, NtNpσ
4
n),

Gt|H1 ∼ CN(NtNpθ
2, NtNpσ

4
n + 2NtNpθ

2σ2
n) (41)

where θ = |h|. Thus we pupose the DC-PT test statistic based on the Equation (6):

TDC−PT =
p(n)(Gt|θ)|θ=0

p(Gt|0)
(42)

where p(Gt|) is the p.d.f of Gt . Based on Equation (41), using mathematica and some algebra, the test
statistic of DC-PT detector can be expressed as
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TDC−PT =
p(2)(Gt|θ)|θ=0

p(Gt|0)

=
2Re(Gt)

σ4
n

+
2|Gt|2

NlNpσ6
n

− 2

σ2
n

H0

≶
H1

γDC−PT (43)

5. Probabilities of Misdetection and False Alarm

In the previous sections, we have derived the test statistics of the three proposed methods. In this
section, we will apply some reasonable assumptions and approximations to get specific expressions for
the probabilities of misdetection and false alarm of the proposed sensing approaches.

5.1. Pm and Pf of DC-OFDM Detector

As is discussed in Section “Algorithm of DC-OFDM Detection”, the test statistic of DC-OFDM
detector depends on the time delay τ . So, it would be valuable to discuss the detector under different τ .
For the reason that the structures of test statistics for different τ are similar, we just give the details when
τ ∈ [Nc + 1, Nd − 1]. For other situations, we will directly provide the results.

When τ ∈ [Nc + 1, Nd − 1], the test statistic is shown in Equation (18), which mainly contains four
parts. So Equation (18) can be rewritten as

TDC−OFDM2 =
p(2)(x|θ = 0)

p(x|0)

=
1

σ4
n

[I1 + I2 + I3 − σ2
n(M − 1)(Nc +Nd)] (44)

where

I1 =
M−1∑
m=0

Nc+Nd−1∑
i=0

|xm(i)|2

I2 =
M−2∑
m=0

2Nc+Nd−τ−1∑
i=Nc+Nd−τ

xm(i)
∗xm(i+Nd)

I3 =
M−1∑
m=1

Nc+Nd−τ−1∑
i=Nd−τ

xm(i)
∗xm(i−Nd)

For an OFDM system, a small communication time will result in a great number of transmitted
samples. So according to the central limit theory, TDC−OFDM2 is approximate to complex Gaussian
distribution, under both H0 and H1:

TDC−OFDM2|H0 ∼ CN(µT,0, σ
2
T,0)

TDC−OFDM2|H1 ∼ CN(µT,1, σ
2
T,1) (45)

Now we need to compute both the means and variances of TDC−OFDM .The mean of TDC−OFDM is

µT = E[
1

σ4
n

(I1 + I2 + I3 − σ2
n(M − 1)(Nc +Nd))]

=
1

σ4
n

[µI1 + µI2 + µI2 − σ2
n(M − 1)(Nc +Nd)] (46)



Sensors 2015, 15 13978

where µIi is the mean of Ii, i = 1, 2, 3. The details of µIi are given in the Appendix. The results are
listed as

µT,0 =
1

σ2
n

(Nc +Nd)

µT,1 =
1

σ4
n

[
(
(3M − 2)Nc +MNd

)
σ2
s + (Nc +Nd)σ

2
n] (47)

The variance of TDC−OFDM2 can be computed as

σ2
T = D[

1

σ4
n

(I1 + I2 + I3 − σ2
n(M − 1)(Nc +Nd))]

=
1

σ8
n

[σ2
I1
+ σ2

I2
+ σ2

I3
+ 2(COV(I1I2) + COV(I1I3) + COV(I2I3))] (48)

where σ2
Ii

is the variance of Ii, i = 1, 2, 3; COV(IiIj) stands for the covariance of Ii and Ij . Again,
the derivation processes are shown in the Appendix. Thus, the variances of TDC−OFDM2 under H0 and
H1 are:

σ2
T,0 =

1

σ4
n

((3M − 2)Nc +MNd)

σ2
T,1 =

1

σ8
n

[
(
(3M − 1)Nc +MNd

)
(σ2

s + σ2
n)

2 + 8MNc(σ
2
s + σ2

n)σ
2
s ] (49)

Therefore, the probabilities of false alarm and misdetection can be easily expressed as

Pf = Q(
γTDC−OFDM2

− µT,0√
σ2
T,0

) = Q
(γTDC−OFDM2

− 1
σ2
n
(Nc +Nd)√

1
σ4
n
((3M − 2)Nc +MNd)

)
Pm = 1−Q(

γTDC−OFDM2
− µT,1√

σ2
T,1

)

= 1−Q
( γTDC−OFDM2

− 1
σ4
n
[
(
(3M − 2)Nc +MNd

)
σ2
s + (Nc +Nd)σ

2
n]√

1
σ8
n
[
(
(3M − 1)Nc +MNd

)
(σ2

s + σ2
n)

2 + 8MNc(σ2
s + σ2

n)σ
2
s ]

)
(50)

Generally speaking, we will calculate the Pm for a fixed Pf to test the performance the spectrum
sensing method. Thus the threshold according to the Equation (50) is

γTDC−OFDM2
=
√
σ2
T,1Q

−1(Pf ) +
1

σ2
n

(Nc +Nd) (51)

Employing the same method, it is easy to get the Pf and Pm when τ ∈ [0, Nc] and τ ∈ [Nd, Nc +

Nd − 1]. The results are listed as

Pf = Q
(γTDC−OFDM1

− 1

σ2n
(Nc+Nd)√

1

σ4n
((3M−2)Nc+MNd)

)
Pm = 1−Q

(γTDC−OFDM1
− 1

σ4n
[
(
(3M−2)Nc+MNd

)
σ2
s+(Nc+Nd)σ

2
n]√

1

σ8n
[
(
(3M−1)Nc+MNd

)
(σ2
s+σ

2
n)

2+8MNc(σ2
s+σ

2
n)σ

2
s ]

)
, τ ∈ [0, Nc]

γTDC−OFDM1
=
√
σ2
T,1Q

−1(Pf ) +
1
σ2
n
(Nc +Nd)

(52)
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Pf = Q
(γTDC−OFDM3

− 1

σ2n
(Nc+Nd)√

1

σ4n
((3M−2)Nc+MNd)

)
Pm = 1−Q

(γTDC−OFDM3
− 1

σ4n
[
(
(3M−2)Nc+MNd

)
σ2
s+(Nc+Nd)σ

2
n]√

1

σ8n
[
(
(3M−1)Nc+MNd

)
(σ2
s+σ

2
n)

2+8MNc(σ2
s+σ

2
n)σ

2
s ]

)
, τ ∈ [Nd, Nc +Nd − 1]

γTDC−OFDM3
=
√
σ2
T,1Q

−1(Pf ) +
1
σ2
n
(Nc +Nd)

(53)

5.2. Pm and Pf of DC-PT Detector

In order to get the cumulative distribution function of DC-PT detector, we need to rewrite
Equation (43) in an equivalent format as

T
′

DC−PT = (Re(Gt) +
NtNpσ

2
n

2
)2 + (Im(Gt))

2
H0

≶
H1

γ
′

DC−PT (54)

where Im(.) takes the imaginary part, and the corresponding threshold γ
′
DC−PT = NtNpσ6

nγDC−PT
2

+

NtNpσ
4
n +

N2
t N

2
pσ

4
nγDC−PT
4

. For Gt is complex Gaussian distribution, it is easy to know a = Re(Gt) +
NtNpσ2

n

2
∼ N(µa, σ

2
a), b = Im(Gt) ∼ N(µb, σ

2
b ). µa, µb, σ

2
a and σ2

b are the means and variances of a
and b, respectively. And σ2

a = σ2
b =

1
2
σ2
Gt

. Since the a and b are Gaussian-distributed random variables,
so (a)2/(σ2

Gt
/2) and (b)2/(σ2

Gt
/2) are followed noncentral chi-square distribution with one degree of

freedom. Moreover, the non-centrality parameters are λa = 2µ2
a/σ

2
Gt
, λb = 2µ2

b/σ
2
Gt

, respectively.
As is well known, the sum of independent chi-square distributed random variables z1, z2, . . . , zN

still obeys noncentral chi-square distribution. The non-centrality parameter and the degrees of freedom
are
∑N

i=1 λi and
∑N

i=1 ki, where λi and ki are the non-centrality parameter and the degree of freedom
of zi. As the result, T ′DC−PT/(σ

2
Gt
/2) = (a2 + b2)/(σ2

Gt
/2) is noncentral chi-square distributed with

non-centrality parameter λ = λa + λb and two degrees of freedom.
According to Equation (41), under H0, the Gt has variance NtNpσ

4
n with zero mean, which indicates

that µa = NtNpσ2
n

2
, µb = 0. On the other hand, under H1, µa = NtNpθ2+NtNpσ2

n

2
, µb = 0. Applying these

results, the non-centrality parameter λ under H0 and H1 can be expressed as

λDC−PT,0 =
NtNp

2
,

λDC−PT,1 =
NtNp(2θ

2 + σ2
n)

2

2(σ4
n + 2θ2σ2

n)
(55)

Based on the conclusions above, the Pf , Pm and the threshold of DC-PT detector can be written as

Pf = 1− F (γ′DC−PT/(σ2
Gt,0/2); 2, λDC−PT,0)

Pm = F (γ
′

DC−PT/(σ
2
Gt,1/2); 2, λDC−PT,1)

γ
′

DC−PT =
σ2
Gt,0

2
F−1(1− Pf ; 2, λDC−PT,0) (56)

where F (.) is the cumulative distribution function of non-central chi-square distributed random variable;
σ2
Gt,0

and σ2
Gt,1

are the variances of Gt under H0 and H1, respectively.
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5.3. Pm and Pf of DC-CP Detector

On the basis of the definitions and conclusions in the previous section, the Pm and Pf of DC-CP
detector can be achieved by employing the similar approach. According to Equation (38) the test statistic
of DC-CP detector can be rewritten as

T
′
DC−CP =

Nc+Nd−1∑
i=0

(Re(Ri) +
1C(i− τ)Mσ2

n

2
)2 + (Im(Ri))

2

=

Nc+Nd−1∑
i=0

α2
i + β2

i

H0

≶
H1

γ
′

DC−CP (57)

where γ′DC−CP = Mσ6
nγDC−CP

2
+
∑Nc+Nd−1

i=0 (1C(i−τ)2M+4
2σ2
n

); αi = Re(Ri) +
1C(i−τ)Mσ2

n

2
and βi = Im(Ri),

so T
′
DC−CP contains Nc + Nd pairs of α2 and β2. Since Ri is complex Gaussian random variable,

αi ∼ N(µαi , σ
2
i /2), βi ∼ N(µβi , σ

2
i /2), where σ2

i is the variance of Ri. It is easy to proof that the α and
β are independent, and the distribution of α2

i /(σ
2
i /2) and β2

i /(σ
2
i /2) are noncentral chi-square distributed

with one degree of freedom and non-centrality parameters are λαi = 2µ2
αi
/σ2

i , λβi = 2µ2
βi
/σ2

i .
In Figures 3 and 4, the correlation coefficients of αi, αj and βi, βj are shown. We can see that both of

the correlation coefficients (ραiαj and ρβiβj ) are nearly to zero when i 6= j. Thus, αi, αj and βi, βj can be
approximated as uncorrelated random variables, respectively. In order to get the specific expression for
the distribution of the T ′DC−CP , we assume that both the αi, αj and βi, βj are independent when i 6= j.
Note that although not theoretically correct, simulations have shown that this assumption has indeed very
little effect on the true result and greatly simplified the derivation process. Therefore, the test statistic of
DC-CP detector can be rewritten as

T
′′
DC−CP =

Nc+Nd−1∑
i=0

α2
i + β2

i

σ2
i /2

H0

≶
H1

γ
′′

DC−CP (58)

where T ′′DC−CP obeys noncentral chi-square distribution that the degree of freedom is 2(Nc + Nd) and
the non-centrality parameter is λDC−CP =

∑Nc+Nd−1
i=0 λαi + λβi . Thus, under H0 and H1, the λDC−CP

can be written as

λDC−CP,0 =
M
∑Nc+Nd−1

i=0 1C(i− τ)
2

,

λDC−CP,1 =

∑Nc+Nd−1
i=0 2M12

C(i− τ)(θ2 + σ2
n/2)

2

θ41C(i− τ) + (θ2 + σ2
n)

2
(59)

Therefore, the Pf , Pm and the threshold of DC-CP algorithm can be computed as

Pf = 1− F (γ′′DC−CP ; 2, λDC−CP,0)
Pm = F (γ

′′

DC−CP ; 2, λDC−CP,1)

γ
′′

DC−CP = F−1(1− Pf ; 2, λDC−CP,0) (60)
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Figure 3. The correlation coefficient ραiαj when i = 20.
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Figure 4. The correlation coefficient ρβiβj when i = 10.

Based on the conclusions mentioned above, the main spectrum sensing processes of the three
algorithms can be summarized as follows.

(1) Compute the real parts and image parts of Ri and Gt as stated in Equations (20) and (40) using the
received samples, respectively.

(2) Compute the test statistics of different methods with the priori knowledge. For the DC-OFDM
detector, the TDC−OFDM is calculated according to Equations (17)–(19) for different τ .
For the DC-PT detector and DC-CP detector, it can be computed based on Equations (54) and
(58), respectively.

(3) Compute the thresholds of the three algorithms for a given Pf . Specifically, for different τ ,
γDC−OFDM can be got by applying Equations (51)–(53). According to Equations (56) and (60),
thresholds of DC-PT and DC-CP can be calculated.

(4) Compare the test statistics of the proposed algorithms with their corresponding thresholds. If
the test statistic is larger than the threshold, the primary user is present. Otherwise, the primary
user is absent.
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5.4. Computational Complexity Analysis

In this part, we compare our proposed algorithms with the traditional CP detector and PT detector
in terms of computational complexity. We use the number of complex multiplications to measure the
detectors’ complexity.

For DC-OFDM detector, when τ ∈ [0, Nc], O(3MNc + MNd − 2τ) complexity multiplications
are required. So, when τ = Nc, the minimum number of complexity multiplications is O((3M − 2)Nc +MNd);
When τ ∈ [Nc+1, Nd−1], according to Equation (18), DC-OFDM detector costsO((3M−2)Nc+MNd)

complexity multiplications; When τ ∈ [Nd, NC+Nd−1], as is shown in Equation (19),O((3M−2)Nc+

MNd+2(τ−Nd)) times of complexity multiplication are needed to sense the spectrum. Thus, if τ = Nd,
the complexity multiplications can be minimized to O((3M − 2)Nc +MNd). Based on the analysis
above, the minimal computational complexity of DC-OFDM detector is O((3M − 2)Nc +MNd).

Moreover, according to Equations (54) and (58), the computational complexity of the DC-CP and
DC-PT detectors are mainly caused by computing Ri and Gt. Thus, computational complexity for the
DC-CP based method and DC-PT based method areO(M(Nc+Nd)) andO(MNdlog(Nd)+M

2Np/2t
2),

respectively. Furthermore, the CP detector in [19] and PT detector in [21] require O(M(Nc + Nd))

and O(MNdlog(Nd) +M2Np/2t
2) complexity multiplications. Note that DC-CP detector and DC-PT

detector do not cost additional complexity multiplications compared with original CP detector and PT
detector. Table 1 shows the computational complexity of different algorithms.

Table 1. Computational complexity comparison.

Method Computational Complexity

DC-OFDM detector O((3M − 2)Nc +MNd)

CP detector O(M(Nc +Nd))

DC-CP detector O(M(Nc +Nd))

PT detector O(MNdlog(Nd) +M2Np/2t
2)

DC-PT detector O(MNdlog(Nd) +M2Np/2t
2)

6. Simulation Results

In this section, some numerical results of the proposed schemes are given for sensing OFDM signals
over frequency selective fading channel, and the performance of the algorithms is indicated as the
probability of missed-detection (Pm) via 106 Monte Carlo simulations. During the simulation processes,
we fix the probability of false alarm Pf = 0.05 to get the thresholds and Pm. The OFDM block size is
chosen as Nd = 32 and the CP is set to Nc = Nd/4, the PT length is Np = 10. The total number of
the received OFDM blocks is M = 30. Moreover, the performance of these presented detectors with
different parameters could also be shown.

Figure 5 compares the performance of proposed algorithms with the algorithms in [19,21]. We
assume τ = 15, so we take Equation (44) as the test statistic of DC-OFDM detector. It is apparent
that the DC-OFDM detector achieves significant performance that it outperforms the other detectors.
More specifically, the Pm of DC-OFDM detector is just equal to 0.00195 when SNR = −9, while the
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Pm of other detectors are quite high. On the other hand, the results show that both the DC-CP and
DC-PT algorithms outperform the original methods by utilizing the differential operation to get the
locally optimal solution to detect the signals.
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Figure 5. Pm performance comparison of proposed methods against other methods.
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Figure 6. Pm performance of different detectors with different numbers (M ) of received
OFDM blocks under SNR = −12 dB.

Figure 6 is the performance comparison between different detectors with different numbers of the
OFDM blocks (which is denoted as M ), where Nd = 32, Nc = Nd/4, Np = 10, SNR = −9 dB and
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Pf = 0.05. It is clear that the Pm of CP detector and DC-CP detector decrease slightly by growing M ,
whereas it reduces faster for DC-OFDM detector, PT detector and DC-PT detector, respectively. Since
large M costs longer sensing time, it is better to select a proper number of M to achieve a satisfied
tradeoff between the sensing performance and detection time.
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Figure 7. Pm performance of DC-CP detection against traditional CP detection with
Nc/Nd = 1/2, 1/4, 1/8.
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Figure 8. ROC curves for different algorithms at SNR = −12 dB.

The impact of the CP ratio is illustrated in Figure 7. In order to get the effect of CP ratio, the Nc are
set asNc = 1/2Nd, 1/4Nd, and 1/8Nd, respectively. Nd = 32,M = 10 and Pf = 0.05. As is shown, the
Pm of both approaches decrease when the CP radio rises. Notably, the performance of DC-CP detector
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with different CP ratios expands faster than CP detector. In other words, with higher CP ratio, the DC-CP
could achieve better outcome. In other words, our method can make better utilize of CP.

The ROC curves for different algorithms at SNR = −12 dB are shown in Figure 8 by taking the
same parameters in Figure 5. Simulation results show that the probability of detection Pd of DC-OFDM
detector approaches to 1 when Pf is small, while other algorithms can achieve satisfied Pd only when Pf
is relatively higher. Besides, the proposed approaches have the better performance compared with the
traditional ones.

Noise uncertainty is an important factor which would affect the performance of the detector. In
this paper, we assume that the accurate noise power σ2

n is obtained, while it is hard to be achieved
in the practical application. Thus, it is necessary to discuss the influence of noise uncertainty for our
proposed detectors.

Figure 9 is the performance of different detectors with noise uncertainty. The Pf is set to 0.05, and
noise uncertainty is equal to 1dB. We can see that with the increase of noise uncertainty, all of the
detectors’ results degrade correspondingly. Although noise uncertainty would cause some performance
degradations, Pm of our proposed detectors are still in the satisfied range. Take the DC-PT detector as
an example, when noise uncertainty is 1dB, it is still better than the original PT detector with no noise
uncertainty. Moreover, when SNR = −9 dB, the Pm of DC-OFDM detector with 1dB noise uncertainty
is only 0.01783 which is quite smaller than other detectors. So when the noise uncertainty is small, the
proposed detectors are effective to complete the spectrum sensing.
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Figure 9. Pm performance of proposed detectors with noise uncertainty.

The similar conclusions can be derived according to the ROC curves with different noise uncertainty
shown in Figure 10 when SNR =−10 dB. It is apparent that the noise uncertainty could impact the Pd of
all detectors. However, the decreasing of Pd is not huge when noise uncertainty is small, and all of the
proposed detectors can achieve the good detection performance. For instance, when noise uncertainty is
1 dB, the DC-CP detector is markedly better than the CP detector with no noise uncertainty. Therefore,
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based on Figures 9 and 10 we can make the conclusion that although the proposed detectors do not have
a very strong ability to resist noise uncertainty, they could still get the novel sensing performance when
the accurate or relatively accurate noise power could be obtained.

Finally, the Pf performance when Pd = 0.99 and Pd = 0.9 are indicated in Figures 11 and 12,
respectively. Obviously, the DC-OFDM detector has the lowest Pf to obtain a required Pd among the
five detectors. Moreover, when Pd is fixed, with the SNR gradually improving, the Pf of all the detectors
decrease dramatically. Remarkably our proposed detectors are always smaller than the corresponding
original detectors. For example, as is shown in Figure 12, when Pd = 0.9 and SNR = −15 dB, the Pf
of DC-PT detector is just 0.6075, but the PT detector’s is up to 0.692. Therefore, considering the Pf
performance, our proposed detectors have great advantages compared with other detectors.
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Figure 10. ROC curves for different detectors with different noise at SNR = −10 dB.
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7. Conclusions

In this paper, three new spectrum sensing algorithms for OFDM signals are investigated under low
SNR environment with the presence of a timing delay. We have proposed a DC-OFDM detection
algorithm based on the differential characteristics for sensing the OFDM signals with the knowledge
of noise power. The numerical comparisons show that the DC-OFDM detector can achieve the best
detection performance among all the detectors considered in this paper. In addition, it provides a new
way to improve the existing sensing approaches. The DC-CP detector and the DC-PT detector are two
typical examples of taking differential operation to enhance the system performance. In particular, the
DC-CP detector is based on the second order statistics of the OFDM signals, and the DC-PT detector is
based on PT through frequency-domain cross-correlation. The simulation results indicate that the DC-CP
detector outperforms the traditional CP detector, and it can make better utilize of the CP. Moreover, the
DC-PT detector achieves a great improvement compared with PT detector. In this paper, we just analyze
two traditional OFDM detectors (CP detector and PT detector), while there are many other detectors of
sensing the OFDM signals that can employ differential operation to improve the system performance.
This is a topic for our future research.
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Appendix

A. The Expression of A(1)
1

According to the expression of A1, the first derivative of it can be shown as:

A
(1)
1 = −(M − 1)(Nd −Nc) + 2τ

2
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σ2
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B. The Expression of A(1)
2

Based on the definition of A2, the first derivative of A2 can be written as:
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C. The Expression of D(1)
1

Equation (30) is the expression of D1, thus D(1)
1 can be expressed as:
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D. The Expression of D(1)
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E. Appendix: The Expressions of D(2)
1 and D

(2)
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According to Equations (C1) and (D1), the second derivative of D1 and D2 are
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F. The Means, Variances and the Covariance of Ii

According to the definition of I1, under H0, the received signal only contains noise. Thus the mean
of I1 can be written as

µI1 = E[
M−1∑
m=0

Nc+Nd−1∑
i=0

|em(i)|2] =M(Nc +Nd)σ
2
n (F1)
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For the variance of I1, it can be computed as
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As is shown in Equation (F3), it contains two parts. For the first part, it is equal to
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Thus, the variance of I1 under H0 is
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Under H1, the mean of I1 is
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and the variance of I1 is σ2
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Therefore, the mean and variance of I1 is
H0 : µI1 =M(Nc +Nd)σ

2
n

σ2I1 =M(Nc +Nd)σ
4
n
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2 + σ2n)
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2 + σ2n)

2
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For the means and variances of I2 and I3, since the derivation processes are the same as I1, so we
directly give the expressions of them.
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Next, the covariance of I1, I2 and I3 will be given. According to the definition of covariance,
COV(I1I2) can be written as COV(I1I2) = E[I1I∗2 ] − E[I1]E[I2]. Here, E[I1] and E[I2] can be got
by using Equations (F8) and (F9). And under H0, the E[I1I∗2 ] can be computed as

E[I1I∗2 ] = E[
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As the result, COV(I1I2) = 0. It is easy to proof that COV(I1I3) = 0 and COV(I2I3) = 0 by using
the same method.

On the other hand, under H1, the E[I1I∗2 ] is
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Let
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and

Qn =
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Then Equation (F12) can be written as
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Thus, using Equations (F8), (F9) and (F13), COV(I1I2) is equal to 2(M − 1)Nc(θ
2 + σ2

n)θ
2. In a

similar way, we can get that COV(I1I3) = 2(M − 1)Nc(θ
2 + σ2

n)θ
2 and COV(I2I3) = 0.
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