
Sensors 2015, 15, 13945-13965; doi:10.3390/s150613945
OPEN ACCESS

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

Guaranteeing Isochronous Control of Networked Motion
Control Systems Using Phase Offset Adjustment
Ikhwan Kim and Taehyoun Kim *

Department of Mechanical and Information Engineering, University of Seoul, 163 Seoulsiripdae-ro,
Dongdaemun-gu, Seoul 130-743, Korea; E-Mail: ihkim@uos.ac.kr

* Author to whom correspondence should be addressed; E-Mail: thkim@uos.ac.kr;
Tel.: +82-2-6490-2388; Fax: +82-2-6490-2384.

Academic Editor: Albert M. K. Cheng

Received: 22 April 2015 / Accepted: 5 June 2015 / Published: 12 June 2015

Abstract: Guaranteeing isochronous transfer of control commands is an essential function
for networked motion control systems. The adoption of real-time Ethernet (RTE)
technologies may be profitable in guaranteeing deterministic transfer of control messages.
However, unpredictable behavior of software in the motion controller often results in
unexpectedly large deviation in control message transmission intervals, and thus leads to
imprecise motion. This paper presents a simple and efficient heuristic to guarantee the
end-to-end isochronous control with very small jitter. The key idea of our approach is to
adjust the phase offset of control message transmission time in the motion controller by
investigating the behavior of motion control task. In realizing the idea, we performed a
pre-runtime analysis to determine a safe and reliable phase offset and applied the phase offset
to the runtime code of motion controller by customizing an open-source based integrated
development environment (IDE). We also constructed an EtherCAT-based motion control
system testbed and performed extensive experiments on the testbed to verify the effectiveness
of our approach. The experimental results show that our heuristic is highly effective even
for low-end embedded controller implemented in open-source software components under
various configurations of control period and the number of motor drives.

Keywords: networked motion control systems; isochronous control; phase offset
adjustment; EtherCAT; open source software

Sensors 2015, 15 13946

1. Introduction

Cyber Physical Systems (CPS) are physical and engineered systems whose operations are monitored,
coordinated, controlled and integrated by a computing and communication core [1]. Motion control
systems (MCS), one of typical CPS applications, have been widely used in various industrial
fields such as packaging, semiconductor manufacturing, and production machinery [2–4], and are
becoming important driving components for the next industrial revolution. A typical MCS consists
of computational units such as a motion controller and motor drives, and physical components such as
actuators and sensors, that are tightly coupled and collaborate with each other in synchronized manner.
In a recent decade, MCS are facing a steady but fundamental change, i.e., the introduction of real-time
Ethernet (RTE) as the communication core, replacing conventional fieldbuses [5].

Networked MCS have stringent real-time constraints. Two of the most important are the bounded
end-to-end actuation delay and its deviation. The end-to-end actuation delay refers to the time interval
from the dispatch of control commands at the controller to the corresponding actuation at a motor
drive. Actually, the maximum value of this delay limits the achievable minimum cycle time (MCT)
at the controller. In general, the shorter the end-to-end actuation delay is, the higher the precision of
single-axis motion becomes. As the term cycle implies, the transfer of actuation control message should
also be isochronous while keeping the jitters of successive control message delivery intervals as small
as possible. The deviation in the actuation delay is the time difference between the earliest and the
latest actuation at different motor drives in the same control cycle. Similarly, the smaller the actuation
deviation is, the higher the synchronicity of multi-axis coordinated motion becomes.

With an RTE communication network, previous works [6–8] show that careful message scheduling
and hardware-based frame switching can come up with the real-time constraints mentioned above at
the communication level. However, as pointed out in [9,10], such high precision and synchronicity
should be validated by a thorough analysis of the networked process delay, which includes the time
for in-controller processing, message delivery, and local handling by each motor drive. Although
the clock-driven synchronization method such as distributed clock (DC) in EtherCAT [11] can hide
the adverse effect on isochronous control caused by the deviation of the end-to-end actuation delay,
its performance also relies on the time-deterministic end-to-end message delivery. Employing hard
real-time commercial OS or dedicated hardware optimization may also be alternative solution for this
problem. However, it would be a high-cost, time-consuming and error-prone job for engineers who have
only limited domain-knowledge. Hence, in this paper, we propose a simple and efficient heuristic to
guarantee isochronous control message delivery for higher precision and synchronicity of networked
motion control in a systematic manner.

In this paper, we first formulate the isochronous control property required by target motion control
systems. The property may not hold due to non-deterministic behavior of software in the motion
controller in spite of the determinism provided by the underlying real-time communication technologies.
To come up with the problem, we propose a simple and efficient phase offset adjustment heuristic to
provide deterministic end-to-end isochronous control. In realizing the proposed heuristic, we customized
an open-source, integrated development environment (IDE) to determine the proper phase offset in
pre-runtime and applied the phase offset value to the runtime code of the motion controller in a

Sensors 2015, 15 13947

systematic manner. By using a pre-runtime analysis, we eliminate possible interferences with real-time,
deterministic message transfer at runtime. On an EtherCAT-based motion control system test-bed, we
evaluated the jitters of the intervals between successive control frames observed at the motor drives for
varying number of motor drives and control cycle. The experimental results show that the proposed
heuristic can greatly reduce the deviation of intervals between successive control frame arrivals for
various system configurations, even for the low-performance embedded controller. It is noteworthy that
simultaneous actuation among different motor drives using clock-driven synchronization also relies on
deterministic control message arrival time at the drive. Hence, our heuristic can also be applied profitably
in determining the safe delay value of global clock event at each motor drive.

The rest of this paper is organized as follows. In Section 2, we review the background to networked
motion control systems and present related works. Section 3 formulates the problem addressed in this
paper and describes our heuristic to come up with the problem. We evaluate the effectiveness of the
proposed approach in Section 4. Finally, Section 5 concludes this paper.

2. Background and Related Works

2.1. Real-Time Requirements for Modern Motion Control System

In a modern MCS considered in this paper, a motion controller and a number of motor drives, which
are interconnected through industrial communication links, cooperate with each other in a synchronized
manner. Figure 1 illustrates an example of such a configuration, a 6 degrees-of-freedom (DOF) industrial
robot, of which components are interconnected through an EtherCAT network in line topology. In the
robot system, the motion controller periodically generates control messages containing the commands of
target position or velocity and transmits them to the motor drives. On receiving the control information,
each motor drive operates its control loop and actuates the corresponding axis. The motor drives are
also responsible for reporting status, i.e., current position and velocity, acquired from the associated
sensors. By using the feedback information from the motor drives, the motion controller computes
control command. In doing so, the operation of motor drives including actuation and sensing should
also be carefully coordinated or synchronized with others to make the tool point accurately follow the
desired motion trajectory. From the industrial robot example shown in Figure 1, we can derive real-time
constraints generally imposed by the modern MCS.

First, the motion system must complete its operation regarding control command computation and
data exchange between the controller and all the drives within a pre-defined cycle time for every control
cycle. Although the desired cycle time depends on the application requirements, it is known that the cycle
time less than 1 ms is needed for the general motion control applications [12]. For the accurate motion
conforming to the designated motion profile, it is also crucial to guarantee that successive actuation and
sensing operations performed by a motor drive should be performed at fixed intervals, i.e., isochronous.
Furthermore, the achievable MCT in the system should be as small as possible to achieve higher-level
of precision in the motion in many cases. As mentioned in Section 1, although the introduction of RTE
communication network has been greatly contributed to achieve short and deterministic message relay, a
holistic analysis and optimization of other processing overhead including in-controller processing delay

Sensors 2015, 15 13948

and drive-local delays should also be considered to guarantee bounded end-to-end control delay and
isochronous operations.

Forwarding path

Returning path

Processing

On the fly

Axis 1

Axis 2

Axis 3

Axis 4

Axis 5

Axis 6

Motion

Controller

Motor

Drive1

Motor

Drive2

Motor

Drive3

Motor

Drive4
Motor

Drive5

Motor

Drive6

(Master) (Slaves)

Motion

Trajectory

Figure 1. An example of EtherCAT-based motion system with 6-DOF robot application.

Second, for the higher accuracy of coordinated motion, each drive must perform actuation and sensing
being accurately synchronized with other drives. A common approach to cope with the requirement is
to use a global clock across the networked control system. Assuming that the local clocks at different
drives are properly synchronized to a global reference clock, an actuation and sensing task in drives
can be invoked by the autonomous interrupt that is generated synchronous to the global clock. Thus, the
actuation deviation among different drives can be bounded to negligibly small value. Generally, the clock
events are generated with a predefined shift time from the beginning of the control cycle. However, it is
often regarded trivial or even ignored that, to properly handle the fresh commands from the controller,
the clock events must occur after the control packets from the controller have been received. For this
reason, it is very important to estimate the end-to-end delay observed at the drives to determine a safe
clock event shift time. From a practical viewpoint, the deviation of the end-to-end delay of control
command transmission primarily depends on the fluctuation in controller processing delay because other
delay factors in link-level communication latency and drive-local operations are rather deterministic as
presented in previous works [8–10]. Hence, this paper focuses on guaranteeing isochronous control by
keeping the jitters of successive control message transfer as small as possible at the controller level.

2.2. EtherCAT Synchronization Methods

Among the RTE networks, we adopt EtherCAT [13] as the communication core of our target system
due to its desirable features such as deterministic communication delay, high-speed message relaying,
efficient synchronization feature based on global clock, flexible topology, and cost-effectiveness [5]. In a
typical motion control system configuration as shown in Figure 1, the master, i.e., the motion controller,

Sensors 2015, 15 13949

periodically generates and transmits motion control commands in the form of EtherCAT frame to the
slaves, i.e., motor drives. Along the forwarding path, every slave in an EtherCAT network relays control
frames between the input and output ports on-the-fly using a dedicated switching hardware. Once an
EtherCAT frame arrives at the end of the network, it returns to the controller along the returning path
updating the contents acquired from the associated sensors on-the-fly.

EtherCAT also provides two kinds of synchronization events, i.e., frame events and clock events, for
the coordinated operations of multiple slaves [9]. As shown in Figure 2, a local slave task, which is
responsible for actuation or sensing, can be synchronized with these events. The frame-driven control
process may often experience relatively large deviation due to the variation in in-controller processing
time. When a slave task requires a higher-degree of cycle precision with low deviation, a globally
synchronized clock should be used. The slave task may take actions based on the autonomous interrupt
that is generated with the global clock, referred as the Distributed Clock (DC), and therefore, the
deviation of control process can be reduced by up to a few nanoseconds [11].

Shift time

Ether.

Frame

Global

clock

Slave task

Frame event

Slave task

Clock event

Slave task

Frame event

Slave task

Frame event

Cycle time

Slave task

Clock event

Slave task

Clock event

Synchronous

with Frame event

jitter:(us)

Synchronous

with DC event

jitter:(ns)

Frame jitter

due to master

implementation

Cycle time Cycle time

Ether.

Frame

Global

clock

Ether.

Frame

Global

clock

Figure 2. Two synchronization modes in the EtherCAT slave.

2.3. Related Works

Jitter compensation to avoid performance degradation and instability of control systems has already
been studied in traditional real-time control literature. Marti et al. categorized three types of jitters in
a control loop, which consists of sampling, control computation and actuation, and proposed a control
parameter adjustment to compensate for those jitters [14]. Buttazo and Cervin presented three different
approaches for reducing the jitter in control systems and evaluated their performances by simulation [15].
These researches have limitations in that they only considered a single, self-contained control system,
which is far from modern control system architecture with distributed control nodes connected through
communication links, and the efficiency of proposed methodologies has just been proved by simulation.

One of the major performance indicator for networked control systems has been the achievable MCT.
Early works in [6–8] formulated the network-level delay components of EtherCAT network to find an
MCT according to the control frame size. However, from practical viewpoints, a holistic end-to-end
delay and jitter model considering other factors such as in-controller delay and drive-internal operations
is required to find a viable MCT. Recent studies to guarantee deterministic operation of motion controller
have been presented in two folds. Studies in [16,17] proposed highly customized solutions for the

Sensors 2015, 15 13950

applications which require very short cycle time, i.e., under 1 ms. With the customized hardware and the
use of commercial real-time OS, they optimized the operation of EtherCAT protocol stack and presented
the achievable MCT under 100 µs including controller internal delay. On the other hand, with the
increasing use of open source software (OSS), there are approaches to adopt OSS solutions in realizing
real-time motion control systems [9,18–20]. In common, they constructed a real-time motion controller
with real-time Linux and open source EtherCAT protocol stack on top of commercial-off-the-shelf
(COTS) hardware. The performance evaluation results of them show that OSS-based control systems
can also provide very short control cycle with small jitter.

Recent studies have also begun to address a holistic end-to-end delay model of entire motion control
system considering in-controller delay or drive-local operations [9,10,21]. Kim et al. considered the
internal operation of motor drives, but they have considered the message release interval of controller
as constant value [10]. Sung et al. measured the in-controller processing delay in order to carry out the
end-to-end delay analysis where EtherCAT synchronization methods are used [9]. Lee et al. proposed a
simulation framework to find an optimal phase of distributed nodes with respect to the end-to-end delay
and the actuation jitters [21]. However, these works lack any consideration of actual workload [9,21] or
do not consider the message release jitter caused by the motion controller [9,10,21].

3. Phase Offset Adjustment for Isochronous Control: A Tool-based Heuristic Approach

3.1. System Model and Problem Statement

In this paper, we consider an MCS which consists of a motion controller and N (≥1) homogenous
motor drives interconnected through EtherCAT communication link in line topology. Generally, a control
loop on the controller is assumed to be a periodic activity, of which parts consisting of sampling,
computation, and actuation. The control loop can be implemented as a single task or a set of subtasks
where each subtask performs one or more parts of a control loop [14]. For simplicity, this paper assumes
a single task implementation where the task performs the parts sequentially. We also assume that the
control task is an application task with the highest priority among the application-level tasks. Therefore,
the execution of the control task can be delayed or preempted only by kernel-level system maintenance
services and I/O interrupt handling. Since we assumed homogenous motor drives, the delay caused by
the drive-local operations for each drive can also be assumed to be identical.

As mentioned above, the control task, called τ , performs periodically a control sequence, which
consists of retrieve, computation and publish operations. Note that the terms retrieve and publish are
used instead of sampling and actuation, respectively, to emphasize that the operations are performed for
motor drives distributed over the industrial communication link. In the retrieve phase, the control task
reads the status information including current position and velocity reported by the motor drives during
the previous control cycle. Using the information acquired in the retrieve phase, the control task checks
if the motors are being moved properly according to the planned motion trajectory and, if not, generates
correction commands in the computation phase. Finally, in the publish phase, the controller transmits
motion commands to the motor drives. Figure 3 depicts the timing parameters deal with in our model.

Sensors 2015, 15 13951

Retrieve
Computation

Publish

Ji > 0
Ji+1 < 0

ri−1 ri ri+1

Ri−1 Ri Ri+1

M con
iM con

i−1 M con
i+1

Tcycle

Controller

time

time

time

time

Drive(1)

Drive(k)

Drive(N)

Dcomm(k)

M
drv(k)
i−1 M

drv(k)
i M

drv(k)
i+1

Figure 3. System model.

We now consider the timing properties of the control task τ . The control task is released periodically at
fixed intervals, called Tcycle, and the i-th instance of τ is denoted by τi. In traditional real-time literature,
the task instances are assumed to be released strictly on time, and thus the release time of τi is defined
as ri = (i− 1) · Tcycle. However, task instances may often experience arbitrary release jitter, denoted by
Ji, due to timer resolution and interfering kernel-level operations. Then, the actual release time of τi is
given by ∀i ≥ 1, ri = ri−1 + Tcycle + Ji, where r0 = 0 and J0 = 0. As shown in Figure 3, the release
jitter Ji can be other than 0, which means that the task instance was released earlier, Ji < 0, or later ,
Ji > 0, than the designated release time. The response time of τi, Ri is the difference of its finishing time
and its release time. The control task τ completes its execution when the publish phase is finished. Then,
if we denote the finishing time of τi as M con

i , M con
i is given by:

M con
0 = r0 +R0 = R0, (r0 = 0, J0 = 0)

M con
1 = r1 +R1 = (r0 + Tcycle + J1) +R1 = (Tcycle + J1) +R1

M con
2 = r2 +R2 = (r1 + Tcycle + J2) +R2 = (2 · Tcycle + J1 + J2) +R2

· · · · · ·

M con
i = ri +Ri = i · Tcycle +

i∑
n=1

Jn +Ri (1)

For the holistic approach to the problem in this paper, we now consider the timing properties observed
at the motor drives. Let Mdrv(k)

i is the time when the i-th control message arrives at the k-th motor drive
where k (1 ≤ k ≤ N) means that the drive is k-th nearest from the controller. Then, we can express
M

drv(k)
i as:

M
drv(k)
i = M con

i +Dcomm(k) (2)

where M con
i and Dcomm(k) refer to the time when i-th motion message is released at the controller

and the message communication delay to k-th drive, respectively. Dcomm(k) is computed by

Sensors 2015, 15 13952

Dcomm(k) = Dlink + k · (Drelay + Dprop). As suggested in [8], the link transmission delay Dlink can
be easily computed when the size of message payload and the link capacity are known a priori. Again,
Drelay and Dprop refer to the message frame relaying delay at each motor drive and the cable propagation
delay between consecutive drives, respectively. According to previous works [8,9], the sum of Drelay

and Dprop can be treated as a small constant, e.g., 1 µs, thanks to the on-the-fly frame relay feature of
EtherCAT. Therefore, Dcomm(k) is also treated as constant value for a fixed k in this paper.

To guarantee isochronous actuation, it is required that the time differences between two consecutive
motion message arrivals observed at the k-th motor drive should be equal to Tcycle as expressed in
Equation (3).

M
drv(k)
i+1 −M

drv(k)
i = Tcycle (3)

Since we treat Dcomm(k) as constant, Equation (3) is reduced to:

(M con
i+1 −M con

i) = Tcycle (4)

From Equations (1) and (4), it follows that the condition to guarantee isochronous control is
alternatively given by:

∀i ≥ 1, Ji + (Ri −Ri−1) = 0 (5)

3.2. Proposed Heuristic

As mentioned above, the task release jitter Ji and the differences of response time of consecutive
task instances (Ri − Ri−1) should be zero to guarantee isochronous control. However, it is very
difficult to keep these values zero in practice even when we use commercial hard real-time OS and
highly customized hardware. Instead, we aim to keep the condition expressed in Equation (4) be
approximately met, that is, to keep the maximum variation between two consecutive message release
time, (M con

i+1 −M con
i), as small as possible.

Strictly speaking, M con
i should be the time when network interface controller (NIC) of the motion

controller starts to transmit the control command packet, which can hardly be controlled. Instead, we
can define M con

i as the time when the i-th command packet is copied to the FIFO buffer in the NIC.
However, it requires cumbersome porting job when the underlying OS and/or NIC hardware is changed.
Hence, for higher portability of our heuristic implementation, we propose to control the starts times of
the publish phase in the control task instances. Note that, hereinafter, M con

i refers to the start time of the
publish phase in τi unless otherwise specified. It follows that the computation of M con

i is rewritten as:

M con
i = i · Tcycle +

i∑
n=1

Jn +Rcomp
i (6)

where Rcomp
i represents, for the i-th task instance, the time difference of its computation phase finishing

time and its release time.
In a straightforward implementation of the control task, the publish phase starts to execute right after

the completion of the computation phase. However, in our heuristic, the publish phase of task instances

Sensors 2015, 15 13953

is forced to be executed with a proper offset from their designated release time. Suppose that a proper
offset Φp is known a priori, the first task instance τ0 starts its publish phase with the phase offset Φp

from its release time, and the publish phases of successive task instances start with a fixed interval Tcycle.
Then, the adjusted start time of publish phase M con′

i is give by:

∀i ≥ 1,M con′

i = i · Tcycle +M con′

0 (7)

where M con′
0 = r0 + Φp.

We now explain the way how to determine the proper phase offset Φp. In determining the phase offset,
we should consider the following constraints:

• (1) For all the control cycles, the condition (M con′
i > M con

i) should be met in order not for the
controller to try to transmit out-of-date control command because the computation phase may not
be completed at the time the controller begins to transmit the control command. The phase offset
value Φp satisfying this constraint becomes the lower bound of Φp, denoted by Φ−

p .
• (2) Any two consecutive control cycles should not overlap with each other. If this constraint is

violated, the next control cycle should wait for the arrival of fresh feedback information from the
drives. Such a situation may occur when the adjusted phase offset becomes too large. Then, the
phase offset value Φp satisfying this constraint is the upper bound of Φp, denoted by Φ+

p .
• (3) For safety, the condition (Φ−

p < Φ+
p) must be satisfied. Otherwise, it means that there may not

be enough time for all the required operations to complete in a control cycle.

Since it is very difficult to determine Φ−
p satisfying Constraint (1) theoretically for randomly

distributed Ji and Rcomp
i , we estimate Φ−

p with the Ji and Rcomp
i values obtained empirically through

a pre-runtime analysis. In determining Φ+
p satisfying Constraint (2), a certain amount of time should

be reserved between the control message release time and the release time of next control period. The
reserved time amounts to the time taken to deliver the control commands to all the drives and convey
the feedback information from the drives under the worst-case release jitter scenario. The worst-case
release jitter scenario means that the next task instance is released earlier with maximum task release
jitter max(|J−

i |). Let Drtt denote the round-trip time taken for the communication, then we can compute
Drtt by Drtt = (2N − 1) ·Drelay + 2N ·Dprop +Dlink. In summary, the safe bound of phase offset Φp

satisfying the constraints above is expressed as:

Φp = [Φ−
p ,Φ

+
p] = [max(Ji +Rcomp

i), Tcycle − (Drtt +max(|J−
i |))], i ≥ 1 (8)

where max(|J−
i |) represents the maximum release jitter for the task instance among the task instances

released earlier than the designated release time. Figure 4 outlines the discussion in this section.

Sensors 2015, 15 13954

... ...

...

...

Distribution of Distribution of

Controller

Drive(1)

Drive(2)

Drive(N)

r0

ri−1 ri ri+1(i− 1)·Tcycle

i·Tcyclei·Tcycle

i·Tcycle

(i+ 1)·Tcycle(i+ 1)·Tcycle

(i+ 1)·Tcycle

J
−

i−1 J
+

i J
−

i+1

Ri−1

Ri

Ri+1

Ji +Ri J
−

i

max(Ji +Ri)

Tcycle − (Drtt +max(|J−

i |))

Φ−

p Φ+
p

M con
i−1

M con
i M con

i+1

time

time

time

time

TcycleTcycle

Tcycle

Drtt

(a)

Delay time for

each task instance

r0 r1 r2 r3 ri

M
con′

0 M
con′

1
M

con′

2
M

con′

3
M

con′

i

time

TcycleTcycleTcycleTcycle

Φp

(b)

Figure 4. Our proposed heuristic. (a) Determine phase offset Φp for the publish phase;
(b) Execution of motion control task with phase offset Φp.

3.3. Implementation of Our Heuristic

As described earlier, our goal is to minimize actuation jitters observed at the motor drives by keeping
the time intervals of successive control message transfer by the controller at fixed intervals. For this
purpose, we devised a heuristic to delay control message transfer time, i.e., message publish time, based
on the estimation of the worst-case start time of the publish phase. In realizing our heuristic, we aim
to avoid modifying kernel-level code or using customized hardware in order to save engineering efforts
of engineers who have domain-knowledge only. Hence, we used a pre-runtime analysis integrated with
an open-source IDE for motion applications, called Beremiz [20], to estimate the safe phase offset of
the publish phase, Φp. The runtime executable image generated by Beremiz is composed of motion
application codes, OS-dependent task management stubs, and EtherCAT communication codes.

In order to obtain the information for determining the phase offset Φp during the pre-run cycles,
we first modified the task main body generation part for the pre-run mode to insert time measurement

Sensors 2015, 15 13955

code using timer API supported by target OS, e.g., rt_timer_read API in Xenomai. Figure 5 depicts
the execution flow of our pre-runtime analysis. In the pre-run cycles, the motion runtime code executes
for the time intervals, which is configurable by users, and the information such as release jitter Ji and
response time of computation phase Rcomp

i is collected. Then, the collected information is analyzed
and displayed by the pre-runtime analyzer. As shown in Figure 6, the analyzer suggests the range of
safe phase offset values computed by Equation (8). Note that the phase offset value represented as the
percentile ratio normalized with respect to the control cycle, denoted by δp, i.e., Φp = δp · Tcycle. In
addition, finally, once the user choose the phase offset value, the offset is applied to the final runtime
code for the control task. Listing 1 describes the pseudo code for the control task body generated by the
Beremiz IDE.

User

Prerun

Mode

Deploy

Mode

Runtime

Code Stub

Build

Motion

App.

Motion

Controller

Motor

Drive 0

Pre-runtime

Executable

Runtime

Executable

I/O

Exchange

Motor

Drive 1

Motor

Drive N

Task

Information

Collect

Pre-runtime

Analyzer

Transfer

task info. log file

Set

Phase

Offset

Set

Measurement

Time

Interval

Display

Phase Offset Range

Motion App +

 Measurement Codes

Motion App +

 Phase Offset

(Ji, R
comp
i)

(Φ−

p ,Φ
+
p)

(δ)

δ)

Figure 5. Execution flow of pre-runtime analysis.

Figure 6. User interface of pre-runtime analyzer.

Sensors 2015, 15 13956

Listing 1. Pseudo code of control task with proposed heuristic.

while (!PLC_shutdown)

retrieving sensed values;

computing motion command;

if first_iter:

/* Delay transmission time at first task instance */

time2transmit = first_release_time + δ * TSK_PERIOD;

else
/* Next transmission time is determined by

sum of previous transmission time and task period */

time2transmit += TSK_PERIOD;

endif

now = get current system time;

/* Waiting for the time to transmit */

while (now < time2transmit)

now = get current system time;

endwhile
time2transmit = now;

publishing motion command;

wait until next task activation;

endwhile

4. Performance Evaluation

In this section, we present experimental results to verify the effectiveness of our proposed heuristic.
We performed a series of experiments in terms of the frame inter-arrival times observed at motor drives,
T

drv(k)
i = M

drv(k)
i − M

drv(k)
i−1 , for various configurations, i.e., different types of controller, the control

period Tcycle, and the number of motor drives N . A safe and reliable phase offset factor δp was obtained
by pre-runtime analysis on a testbed.

4.1. Experimental Setup

The performance evaluation was conducted on an EtherCAT-based MCS testbed which is
compromised of a motion controller, multiple homogeneous motor drives, and external measurement
equipments as shown in Figure 7a. For the comparison of different implementations of motion controller,
we used three different types of motion controller: a high-end industrial PC (IPC), a low-end embedded
single board computer (SBC) board, and a commercial EtherCAT master controller. The IPC and
embedded SBC were constructed solely from the open-source components such as Xenomai real-time
patch for Linux [22] and IgH EtherCAT master stack [23]. Table 1 summarizes the details of our testbed.
As the test motion application, we used a point-to-point (PTP) movement application in which each

Sensors 2015, 15 13957

motor drive repeats to move from base position to target position and vice versa. Figure 7b depicts the
state transition of the test application.

(a)

Ready MC_POWERON MC_SETPOSITION
Start Base

 Position

MC_MOVEFORWARD

MC_MOVEBACKWARD

MC_ERROR

MC_RESET

Target

 Position

Target

Position

Base

Position

Error

Error

Error

Error

(b)

Figure 7. Experimental setup. (a) Motion control system testbed; (b) State transition of PTP
motion application.

Table 1. Specifications of testbed.

Hardware Description Software Description

Intel i7-620M 2.66 GHz (Single Core enabled.)
Industrial PC 2 GB DDR3 Memory, 128 GB SSD

Realtek RTL 8139D 100 Mbps Ethernet Operating Systems Linux 3.8.13, Xenomai 2.6.3
TI AM3358 ARM Cortex-A8 1 GHz Automation Software Beremiz 1.1,

Embedded SBC 512 MB DDR3 Memory, 2 GB eMMC IgH EtherCAT Master 1.5.2
TI cpsw 100 Mbps Ethernet

Cortex-A8 1 GHz Operating Systems MS Windows Embedded Compact 7
Commercial EPC 1 GB DDR3 Memory, 512 MB microSD Automation Software TwinCAT 2 NC PTP runtime

100 Mbps Ethernet

EtherCAT Drives TI AM 3359 ICE board 8 E.A Firmware TI sysbios sdk 1.0.9
22 bytes for each drive (RXPDO:11 bytes, TXPDO:11 bytes)

DAQ module National Instrument USB-6356, 1.25 MS/s/ch, 32 MS memory N / A N / A

Oscilloscope Tektronix DPO 3014, 4 ch, 2.5 GS/s N / A N / A

In order to reduce potential interferences caused by kernel-level tasks, open-source based controllers,
e.g., IPC and embedded SBC, were configured to start with single-user mode and operate without
X-windows desktop manager. In addition, the modified network device driver and NEON floating point
unit (FPU) compiler option proposed in our previous work [24] are used for embedded SBC as the
platform optimization. For the motor drive platform, we chose TI industrial communication engine
(ICE) board and configured the drives to use identical process data object (PDO) data set for cyclic
synchronous position (CSP) mode operation. The frame arrival time observed at the motor drives,
M

drv(k)
i , was measured by logging GPIO output signals generated at the time when an EtherCAT

frame arrives. The GPIO signals were collected by using an external data acquisition (DAQ) board
with ns resolution timestamp. The statistical analysis on the measured samples was conducted using a
LabVIEW application.

Sensors 2015, 15 13958

4.2. Analysis of the Behavior of Motion Control Task

As described in Section 3.2, we need to obtain pre-runtime analysis results to determine a safe
phase offset Φp for the publish phase. Recall that the lower bound of Φp, Φ−

p , is determined by the
worst-case (Ji + Rcomp

i) and the upper bound of Φp, Φ+
p , is determined by the terms max(|J−

i |) and
Drtt, respectively. Thus, we measured the Ji and Rcomp

i values of the control task τ and analyzed them
on open-source based controllers.

Table 2 shows the measurement results of Ji, R
comp
i , and M con

i as we vary the length of control cycle
Tcycle and the number of motor drives N . The M con

i values, which are the start times of publish phase
without heuristic, were also measured and analyzed for the comparison with the results of our heuristic
later in Section 4.3. For each experiment, we conducted the measurement for 5 min, of which collected
data amounts to 1,200,000 samples with Tcycle = 250 µs for instance. In the results, ∆ denotes the
absolute difference between the maximum and minimum value for each term.

Table 2. Measurement results of Ji, R
comp
i , and M con

i for different controllers.

Controller Embedded SBC IPC

Tcycle 1000 µs 500 µs 250 µs 1000 µs 500 µs 250 µs

N 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

Ji (µs)
avg. 0.0
min. −16.9 −22.0 −19.4 −20.3 −15.3 −15.8 −15.2 −14.0 −10.6 −9.8 −7.7 −7.7 −6.8 −9.2 −10.6 −9.7 −10.0 −9.6 −10.6 −8.7 −9.8 −9.3 −9.9 −10.5
max. 24.8 32.4 31.2 29.3 22.9 18.5 20.8 17.5 12.5 12.2 11.4 9.4 6.2 9.7 11.3 9.6 10.2 10.1 10.5 9.4 9.4 10.5 9.9 10.2

st.d (σ) 1.5 1.6 1.8 2.1 1.2 1.3 1.4 1.7 0.8 0.9 0.8 1.1 1.5 1.8 1.5 1.8 1.4 1.9 1.6 1.8 1.7 1.8 1.7 1.8
diff. (∆) 41.7 54.4 50.6 49.6 38.2 34.3 36.0 31.5 23.1 22.0 19.1 17.1 13.0 18.9 21.9 19.3 20.2 19.7 21.1 18.1 19.2 19.8 19.8 20.7

R
comp
i (µs)

avg. 54.8 78.1 123.8 226.3 52.7 76.5 120.8 214.8 51.8 74.8 120.1 211.4 32.3 43.5 67.7 119.7 32.2 43.7 66.6 119.5 31.9 42.9 67.2 118.6
min. 49.0 71.5 116.4 207.3 48.3 71.7 116.2 204.4 48.3 71.1 115.9 203.8 30.2 41.3 62.0 115.7 30.4 40.5 62.6 115.4 30.0 40.5 61.6 114.1
max. 150.3 174.3 250.7 407.3 115.1 137.8 207.4 310.0 83.7 107.6 159.6 235.6 38.2 51.8 74.3 126.4 38.4 50.2 73.2 126.7 38.8 50.8 74.2 125.4

st.d (σ) 3.7 4.2 5.9 11.7 3.1 3.6 5.3 8.2 2.1 2.2 2.7 4.0 0.6 0.7 0.7 1.9 0.5 0.5 0.5 0.6 0.4 0.5 0.5 0.4
diff. (∆) 101.7 102.8 134.3 200.0 68.8 66.1 91.2 105.6 40.4 36.5 43.7 31.8 8.0 10.5 12.3 10.7 8.0 9.7 10.6 11.3 8.8 10.3 12.6 11.3

Mcon
i (µs)

avg. 54.8 78.1 123.8 226.3 52.7 76.5 120.8 214.8 51.8 74.8 120.1 211.4 32.3 43.5 67.7 119.7 32.2 43.7 66.6 119.5 31.9 42.9 67.2 118.6
min. 36.9 64.2 112.7 206.9 38.3 65.9 110.9 201.8 43.2 68.0 112.7 203.1 25.4 35.0 58.3 111.3 23.1 34.5 57.0 111.9 22.9 34.3 57.4 105.2
max. 150.3 199.1 279.6 429.0 132.2 154.2 215.1 324.3 93.0 115.2 167.6 235.8 42.2 53.7 83.9 132.7 43.4 56.3 78.5 131.5 42.0 56.1 77.6 131.3

st.d (σ) 4.8 5.3 7.0 13.0 4.0 4.4 6.1 9.4 2.6 2.8 3.3 4.5 1.6 1.9 1.7 1.9 1.5 1.9 1.7 1.9 1.8 1.9 1.8 1.8
diff. (∆) 113.4 134.9 166.9 222.1 93.9 88.3 104.2 122.5 49.8 47.2 54.9 32.7 16.8 18.7 25.6 21.4 20.3 21.8 21.5 19.6 19.1 21.8 20.2 26.1

According to Table 2, when we use high-end IPC controller, the task release jitter Ji values are quite
stable for varying Tcycle and N . By contrast, Ji for low-end embedded SBC tends to increase as we
increase the control cycle Tcycle. It is considered that the cache pollution due to other background tasks
and kernel activities is enlarging the release jitter of control task as pointed out in previous works [9,19].
As for Rcomp

i , its average and deviation depend on both Tcycle and N when we use embedded SBC.
Regardless of the controller used, the average of Rcomp

i increases with respect to N . This is because the
feedback data size is linearly increased with N and the motion computation is performed for each axis,
i.e., drive, and thus the execution time for the retrieve phase and computation phase is monotonically
increased. On the other hand, the deviation of Rcomp

i using embedded SBC decreases significantly for
shorter Tcycle with a fixed N . It is considered that, with shorter Tcycle, there are less probabilities for
the control task to be exposed to the interferences from kernel-level activities and cache miss handling
overhead will also be reduced. As for M con

i , IPC and embedded SBC show different characteristics.
With IPC controller, the deviation and absolute difference values of M con

i are quite stable for all the

Sensors 2015, 15 13959

experimental configurations. However, with embedded SBC, we observe that the values increase with
respect to Tcycle and N , which indicates the deviation of M con

i in embedded SBC is affected by both Ji

and Rcomp
i .

Figure 8 illustrates the cumulative distribution function (CDF) of measured M con
i values. As

mentioned earlier, the sum of Ji and Rcomp
i determine M con

i and the absolute difference ∆ of Ji and
Rcomp

i primarily contributes to the deviation of M con
i . This characteristic is more apparent for embedded

SBC as shown in Figure 8. In summary, we expect from the pre-runtime analysis results that our heuristic
will be more beneficial to low-end embedded SBC with highly fluctuating message release interval.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400 450

P
ro

ba
bi

lit
y

(%
)

Start time of publish phase (µs)

Embedded SBC
IPC

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400 450

P
ro

ba
bi

lit
y

(%
)

Start time of publish phase (µs)

Embedded SBC
IPC

(b)

Figure 8. The CDF distribution of start time of publish phase in the Tcycle. (a) N = 8, Tcycle:
1000 µs; (b) N = 8, Tcycle: 500 µs.

From the measurement results given in Table 2, we can obtain the range of safe phase offset factor
δp as given in Equation (8). Since Drtt is the function of N and other parameters are known a priori,
it can also be easily computed. Table 3 summarizes the phase offset factors normalized with respect to
Tcycle when we vary the number of motor drives from 1 to 8 and the control cycle Tcycle from 250 µs to
1000 µs, respectively. It is noticeable that we cannot determine the safe phase offset factor for embedded
SBC with Tcycle = 250 µs. This is because the estimated Φ−

p and Φ+
p for the case were 94% and 84%,

respectively, which violates Constraint (3) in Section 3.2. It is noteworthy that our pre-runtime analysis
can also be used to estimate the achievable MCT for a given configuration.

Table 3. Normalized phase offset factor δp for Embedded SBC and IPC.

Controller
N 1 2 4 8

δp (%) δmin
p δmed

p δmax
p δmin

p δmed
p δmax

p δmin
p δmed

p δmax
p δmin

p δmed
p δmax

p

Tcycle = 1000 µs 16 57 97 20 58 96 28 62 96 43 69 94
Embedded SBC Tcycle = 500 µs 27 61 95 31 63 94 44 68 92 65 77 89

Tcycle = 250 µs 38 65 92 47 69 91 68 78 88 N/A N/A N/A

Tcycle = 1000 µs 5 52 98 6 52 98 9 53 96 14 55 95
IPC Tcycle = 500 µs 9 53 96 12 54 95 16 55 93 27 59 90

Tcycle = 250 µs 17 55 93 23 58 92 32 60 88 53 67 80

Sensors 2015, 15 13960

4.3. Frame Inter-Arrival Time Observed at Motor Drives

The objective of our heuristic is to keep the differences between frame inter-arrival times observed at
the motor drives, T drv(k)

i , and the control cycle Tcycle as small as possible for deterministic isochronous
control. To verify the effectiveness of our approach, we conducted a set of experiments to measure
T

drv(k)
i for different controller implementations and compared the results. In each experiment, the

measurement was performed for 30 min, for instance, of which collected data size amounts to 3,600,000
samples with Tcycle = 500 µs. Since we used homogeneous motor drives and the switching and
propagation delay of frames is very small and bounded, we can regard the values observed at the first
motor drive, T drv(1)

i , as the representative case without loss of generality. For performance evaluation,
we define additional performance indicators, ϵ1% and ϵ10%. The parameters ϵ1% and ϵ10% account for
the number of intervals between successive frame arrivals, of which length exceeding 1% and 10% with
respect to a given Tcycle, respectively.

We first measured and compared the frame inter-arrival times for various testbed configurations. The
configurations were varied according to Tcycle, N , controller hardware types, and whether to use our
heuristic or not. For the experiments with our heuristic, we chose the δmax

p values shown in Table 3.
The performance evaluation results are summarized in Table 4 and Figure 9. The boxes in the Figure 9
represent the range in which 99% of measured samples are located. The lower and upper whiskers in the
plots refer to the low 0.5% and low 99.5% value shown in Table 4.

Table 4. Comparison of frame inter-arrival times for different controller configurations.

Cont. Embedded SBC IPC

Tcycle 1000 µs 500 µs 1000 µs 500 µs

N 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

Frame inter-arrival time, without heuristic
avg. 1000.0 1000.0 1000.0 1000.0 500.0 500.0 500.0 500.0 1000.0 1000.0 1000.0 1000.0 500.0 500.0 500.0 500.0
min. 927.4 909.2 898.8 860.9 439.5 436.1 425.5 413.0 989.2 987.2 986.5 985.2 487.3 488.9 487.8 486.4
max. 1092.5 1120.3 1154.3 1180.9 578.7 577.0 589.4 620.9 1011.2 1013.5 1012.4 1014.3 514.9 513.0 514.1 515.3

Low 0.5% 983.6 981.0 975.4 960.2 486.3 483.2 481.0 467.5 993.7 993.0 993.3 991.4 494.4 493.1 493.9 492.2
Low 99.5% 1018.3 1021.6 1028.1 1048.8 515.9 519.3 523.2 542.4 1006.5 1006.9 1006.8 1008.4 506.4 506.5 506.4 507.5

st.d (σ) 6.5 6.9 9.3 14.4 5.4 6.1 7.2 14.0 2.3 2.4 2.5 3.3 2.0 2.4 2.2 2.8
diff. (∆) 165.1 211.1 255.5 320.0 139.2 140.9 163.9 207.9 22.0 26.3 25.9 29.1 27.6 24.1 26.3 28.9
ϵ1% 74,334 92,133 233,650 1,112,919 1,406,008 1,588,274 1,794,865 2,376,029 52 234 156 3,211 99,161 185,027 131,175 298,757
ϵ10% 0 3 17 1275 81 683 4137 13403 0 0 0 0 0 0 0 0

Frame inter-arrival time, with heuristic applying δmax

avg. 1000.0 1000.0 1000.0 1000.0 500.0 500.0 500.0 500.0 1000.0 1000.0 1000.0 1000.0 500.0 500.0 500.0 500.0
min. 991.0 984.9 982.0 979.9 492.2 485.5 483.2 479.0 987.9 989.6 988.3 981.0 487.8 489.4 488.5 483.0
max. 1008.3 1014.5 1020.3 1021.7 508.8 514.5 518.5 521.5 1010.5 1010.0 1010.5 1018.5 512.8 510.9 511.9 516.7

Low 0.5% 995.2 994.9 993.8 991.9 495.9 495.8 493.9 493.4 993.3 993.3 993.4 991.1 493.2 493.3 493.4 492.6
Low 99.5% 1004.7 1004.9 1006.2 1007.9 504.4 504.6 505.5 506.8 1006.4 1006.1 1006.2 1008.5 506.5 506.1 506.1 507.2

st.d (σ) 2.0 3.1 3.1 4.2 1.7 1.8 2.5 2.8 2.2 2.2 2.3 3.1 2.2 2.2 2.3 2.6
diff. (∆) 17.3 29.6 38.3 41.8 16.6 29.0 35.3 42.5 22.6 20.4 22.2 37.5 25.0 21.5 23.4 33.7
ϵ1% 0 13 102 841 5,765 10,725 127,923 260,307 13 5 23 3,813 176,025 147,529 164,685 234,918
ϵ10% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

As shown in Table 4, IPC greatly outperforms embedded SBC in terms of the deviation of frame
inter-arrival time jitters without our heuristic. For all Tcycle and N configurations used, IPC controller
has zero ϵ10% and much smaller ϵ1% than embedded SBC. However, after applying our heuristic, we

Sensors 2015, 15 13961

can observe that embedded SBC controller shows performances comparable to IPC for all Tcycle and N .
For instance, ϵ10% is decreased to zero and ϵ1% is reduced by up to 89% compared with the case without
our heuristic where Tcycle = 500 µs and N = 8.

 850

 900

 950

 1000

 1050

 1100

 1150

 1200

1 2 4 8F
ra

m
e
 i
n
te

r-
a
rr

iv
a
l
ti
m

e
s
 (

µ
s
)

The number of motor drives (N)

Embedded SBC without heuristic

Industrial PC without heuristic

Embedded SBC with heuristic

Industrial PC with heuristic

(a) Tcycle: 1000 µs

 400

 450

 500

 550

 600

 650

1 2 4 8F
ra

m
e

 i
n

te
r-

a
rr

iv
a

l
ti
m

e
s
 (

µ
s
)

The number of motor drives (N)

Embedded SBC without heuristic

Industrial PC without heuristic

Embedded SBC with heuristic

Industrial PC with heuristic

(b) Tcycle: 500 µs

Figure 9. Distribution of frame inter-arrival times for different controller configurations.

We conducted another set of experiments to observe the performances according to δp shown in
Table 3. Figure 10 illustrates the distributions of frame inter-arrival time for δmin

p , δmed
p , and δmax

p .
Compared with the results in Figure 9, our heuristic can greatly reduce the deviation of frame inter-arrival
time irrespective of δp used where the 99% of frame inter-arrival times have jitters less than ±8 µs for all
N . However, we can also notice that the advantage of our heuristic is much more outstanding for δmax

p

compared with δmin
p . This is because δmax

p is computed with relatively deterministic values Drtt and J−
i .

Hence, we can state that it is recommended to use δmax
p for best performance with our heuristic.

 950
 960
 970
 980
 990

 1000
 1010
 1020
 1030
 1040
 1050

1 2 4 8

F
ra

m
e

 i
n

te
r-

a
rr

iv
a

l
ti
m

e
s
 (

µ
s
)

The number of motor drives (N)

δp
min

δp
med

δp
max

(a) Tcycle: 1000 µs

 450
 460
 470
 480
 490
 500
 510
 520
 530
 540
 550

1 2 4 8

F
ra

m
e

 i
n

te
r-

a
rr

iv
a

l
ti
m

e
s
 (

µ
s
)

The number of motor drives (N)

δp
min

δp
med

δp
max

(b) Tcycle: 500 µs

Figure 10. Frame inter-arrival times for different phase offset (δp).

We also compared the performance of embedded SBC and that of a commercial EtherCAT master
controller, which has similar hardware specification. All experimental configurations are the same as
previous experiments, except for the implementation of motion control task. We used TwinCAT-2
NC PTP runtime to implement a motion application for the commercial controller. Figure 11 shows

Sensors 2015, 15 13962

the performance evaluation results. The results demonstrate that embedded SBC with our heuristic
outperforms the commercial controller for all the test configurations used. For Tcycle = 1000 µs, the
commercial controller has good performance in average because the 99% of measured samples are
located in 24.9 µs, 29.4 µs, and 35.7 µs, which amount to 2%–3% with respect to Tcycle for varying
N . However, for a smaller control cycle Tcycle = 500 µs, the performance degradation of the commercial
controller is noticeable with increasing N in terms of absolute difference ∆. By contrast, the evaluation
results of our approach show quite stable distribution for all the test configurations. Although the
commercial controller used in the experiment may not be fully optimized, the results imply that our
approach can achieve performance comparable to a commercial solution.

 800

 850

 900

 950

 1000

 1050

 1100

 1150

 1200

1 2 4F
ra

m
e

 i
n

te
r-

a
rr

iv
a

l
ti
m

e
s
 (

µ
s
)

The number of motor drives (N)

Commercial EPC

Embedded SBC with heuristic δp
max

(a) Tcycle: 1000 µs

 300
 400
 500
 600
 700
 800
 900

 1000
 1100
 1200

1 2 4F
ra

m
e

 i
n

te
r-

a
rr

iv
a

l
ti
m

e
s
 (

µ
s
)

The number of motor drives (N)

Commercial EPC

Embedded SBC with heuristic δp
max

(b) Tcycle: 500 µs

Figure 11. Performance comparison between embedded SBC and commercial controller.

We now consider the usefulness of our approach for guaranteeing the synchronicity among multiple
motor drives. For the purpose, we measured the frame inter-arrival times observed at different motor
drives by connecting GPIO pins of corresponding motor drives to the probes of oscilloscope. In the
experiment, we used embedded SBC for the motion controller. Figure 12 demonstrates the measurement
results of T drv(1)

i and T
drv(8)
i with Tcycle = 500 µs and N = 8. The observations from the measurement

results are as follows. First, although the measurements were conducted for the first drive and the last
drive in the control network, the characteristics of frame inter-arrival times observed at those drives
are similar to each other. This means that the communication delays and frame switching overheads
are highly deterministic throughout the control network regardless of the relative position of a drive.
Second, the inter-arrival times with our heuristic performs similar to the case without heuristic in
average. However, the absolute jitter of frame inter-arrival times has been dramatically reduced after
applying our heuristic. This characteristic makes it easy to determine a safe clock shift time for accurate
clock-based synchronization described in Section 2.2, and thus contributes to higher synchronicity of
coordinated motion.

Sensors 2015, 15 13963

(a) Without heuristic

(b) With heuristic applying δmax
p

Figure 12. Frame inter-arrival times for different motor drives (Drive 1 and Drive 8) where
Tcycle = 500 µs, N = 8.

5. Conclusions

In modern networked motion control systems, guaranteeing isochronous control is very crucial
for higher precision and synchronicity of target motion application. This paper proposed a simple
and efficient heuristic approach to guarantee isochronous control by adjusting message transfer phase
offset based on pre-runtime analysis. We also made it easy to apply phase offset adjustment code to
the auto-generated motion application runtime code by integrating the pre-runtime analysis stubs and
user-controlled phase offset with an open-source motion application IDE. Our proposed heuristic can
also be effectively used to determine a safe shift time of global clock for accurately coordinated motion
of multiple motor drives.

For in-depth and practical evaluation, we conducted extensive measurements for various
configurations on a realistic testbed that was constructed from open-source software and COTS hardware
platforms. The performance evaluation results show that our heuristic can bound successive actuation
jitters within 1%–2% of the control cycle time even on a low-end embedded processor without any
kernel-level modification and customized hardware. We also observed that our approach can provide
performances comparable to or even better than that of a commercial controller.

In our future research, we will study how to extend our heuristic to support lightweight on-line
adjustment. We also plan to extend our model for multiple control tasks with heterogeneous periods
to provide higher precision and synchronicity of complex control under heavy interfering workloads
such as monitoring and logging.

Sensors 2015, 15 13964

Acknowledgments

This research was supported by Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2013R1A1A2004984).

Author Contributions

Ikhwan Kim and Taehyoun Kim conceived the idea and wrote the paper. Taehyoun Kim elaborated
the problem formulation. Ikhwan Kim implemented the experimental testbed and performed the
performance evaluation.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Rajkumar, R.; Lee, I.; Sha, L.; Stankovic, J. Cyber-Physical systems: The Next Computing
Revolution. In Proceedings of the ACM/IEEE Design Automation Conference (DAC), Anaheim,
CA, USA, 13–18 June 2010; pp. 731–736.

2. Mahalik, N.P.; Nambiar, A.N. Trends in food packaging and manufacturing systems and
technology. Trends Food Sci. Technol. 2010, 21, 117–128.

3. Giam, T.S.; Tan, K.K.; Huang, S. Precision coordinated control of multi-axis gantry stages.
ISA Trans. 2007, 46, 399–409.

4. Ramesh, R.; Jyothirmai, S.; Lavanya, K. Intelligent automation of design and manufacturing in
machine tools using an open architecture motion controller. J. Manuf. Syst. 2013, 32, 248–259.

5. Danielis, P.; Skodzik, J.; Altmann, V.; Schweissguth, E.B.; Golatowski, F.; Timmermann,
D.; Schacht, J. Survey on Real-Time Communication Via Ethernet in Industrial Automation
Environments. In Proceedings of the IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA), Barcelona, Spain, 16–19 September 2014; pp. 1–8.

6. Jasperneite, J.; Schumacher, M.; Weber, K. Limits of Increasing the Performance of Industrial
Ethernet Protocols. In Proceedings of the IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), Patras, Greece, 25–28 September 2007; pp. 17–24.

7. Vitturi, S.; Peretti, L.; Seno, L.; Zigliotto, M.; Zunino, C. Real-time Ethernet networks for motion
control. Comput. Stand. Interface 2011, 33, 465–476.

8. Robert, J.; Georges, J.-P.; Rondeau, E.; Divoux, T. Minimum Cycle Time Analysis of
Ethernet-Based Real-Time Protocols. Int. J. Comput. Commun. 2012, 7, 743–757.

9. Sung, M.; Kim, I.; Kim, T. Toward a Holistic Delay Analysis of EtherCAT Synchronized Control
Process. Int. J. Comput. Commun. 2013, 8, 608–621.

10. Kim, K.; Sung, M.; Jin, H. Design and Implementation of a Delay-Guaranteed Motor Drive for
Precision Motion Control. IEEE Trans. Industr. Inform. 2012, 8, 351–365.

11. Cena, G.; Bertolotti, I.C.; Scanzio, S.; Valenzano, A.; Zunino, C. Evaluation of EtherCAT
Distributed Clock Performance. IEEE Trans. Industr. Inform. 2012, 8, 20–29.

Sensors 2015, 15 13965

12. Felser, M. Real-Time Ethernet-Industry Prospective. IEEE Proc. 2005, 93, 1118–1129.
13. Jansen, D.; Buttner, H. Real-time Ethernet—The EtherCAT solution. Comput. Control Eng. 2004,

15, 16–21.
14. Marti, P.; Fuertes, J.M.; Fohler, G.; Ramamritham, K. Jitter Compensation for Real-Time Control

Systems. In Proceedings of the IEEE International Real-Time Systems Symposium (RTSS),
London, UK, 3–6 December 2001; pp. 39–48.

15. Buttazzo, G.; Cervin, A. Comparative Assessment and Evaluation of Jitter Control Methods. In
Proceedings of the International Conference on Real-Time and Network Systems (RTNS 2007),
Nancy, France, 29–30 March 2007; pp. 163–172.

16. Maruyama, T.; Yamada, T. Hardware Acceleration Architecture for EtherCAT Master Controller.
In Proceedings of the IEEE International Workshop on Factory Communication Systems (WFCS),
Lemgo, Germany, 21–24 May 2012; pp. 223–232.

17. Orfanus, D.; Indergaard, R.; Prytz, G.; Wien, T. EtherCAT-based Platform for Distributed Control in
High-Performance Industrial Applications. In Proceedings of the IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA), Cagliari, Italy, 10–13 September 2013;
pp. 1–8.

18. Cereia, M.; Bertolotti, I.C.; Scanzio, S. Performance of a Real-Time EtherCAT Master Under
Linux. IEEE Trans. Indstr. Inform. 2011, 7, 679–687.

19. Cereia, M.; Scanzio, S. A User Space EtherCAT Master Architecture for Hard Real-Time Control
Systems. In Proceedings of the IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA), Krakow, Poland, 17–21 September 2012; pp. 1–8.

20. Kim, I.; Kim, T.; Sung, M.; Tisserant, E.; Bessard, L.; Choi, C. An Open-source Development
Environment for Industrial Automation with EtherCAT and PLCopen Motion Control. In
Proceedings of the IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA), Cagliari, Italy, 10–13 September 2013; pp. 1–4.

21. Lee, S.; Jin, H.; Kim, K. A Simulation Tool for Optimal Phasing of Nodes Distributed over
Industrial Real-Time Networks. In Proceedings of 4th International Workshop on Analysis Tools
and Methodologies for Embedded and Real-time Systems (WATERS 2013), Paris, France, 9 July
2013; pp. 13–18.

22. Xenomai | Real-Time Framework for Linux. Available online: http://xenomai.org (accessed on
15 April 2015).

23. IgH EtherCAT Master for Linux. Available online: http://www.etherlab.org/en/ethercat/index.php
(accessed on 15 April 2015).

24. Kim, C.; Kim, I.; Kim, T. Xenomai-based Embedded Controller for High-Precision, Synchronized
Motion Applications. Korea Inst. Inf. Sci. (KIISE) Trans. Comput. Pract. 2015, 21, 173–182.
Available online: https://rtes.uos.ac.kr/download/Kiise15.pdf (accessed on 22 April 2015).

c⃝ 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

	Introduction
	Background and Related Works
	Real-Time Requirements for Modern Motion Control System
	EtherCAT Synchronization Methods
	Related Works

	Phase Offset Adjustment for Isochronous Control: A Tool-based Heuristic Approach
	System Model and Problem Statement
	Proposed Heuristic
	Implementation of Our Heuristic

	Performance Evaluation
	Experimental Setup
	Analysis of the Behavior of Motion Control Task
	Frame Inter-Arrival Time Observed at Motor Drives

	Conclusions

