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Abstract: This paper presents a novel approach for estimating the ego-motion of a vehicle 

in dynamic and unknown environments using tightly-coupled inertial and visual sensors. 

To improve the accuracy and robustness, we exploit the combination of point and line 

features to aid navigation. The mathematical framework is based on trifocal geometry 

among image triplets, which is simple and unified for point and line features. For the 

fusion algorithm design, we employ the Extended Kalman Filter (EKF) for error state 

prediction and covariance propagation, and the Sigma Point Kalman Filter (SPKF) for 

robust measurement updating in the presence of high nonlinearities. The outdoor and 

indoor experiments show that the combination of point and line features improves the 

estimation accuracy and robustness compared to the algorithm using point features alone. 

Keywords: vision-aided inertial navigation; point and line features; trifocal geometry; 

tightly-coupled 

 

1. Introduction 

Reliable navigation in dynamic and unknown environments is a key requirement for many 

applications, particularly for autonomous ground, underwater and air vehicles. The most common 

sensor modality used to tackle this problem is the Inertial Measurement Unit (IMU). However, inertial 
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navigation systems (INS) are proved to drift over time due to error accumulation [1]. In the last 

decades, the topic of vision-aided inertial navigation has received considerable attention in the research 

community, thanks to some important advantages [2–9]. Firstly, the integrated system can operate in 

environments where GPS is unreliable or unavailable. Secondly, the complementary frequency 

responses and noise characteristics of vision and inertial sensors address the respective limitations and 

deficiencies [10]. In particular, fast and highly dynamic motions can be precisely tracked by an IMU in 

a short time, and thus the problem of scale ambiguity and large latency in vision can be settled to a 

certain extent. On the other hand, the low-frequency drift in the inertial measurements can be 

significantly controlled by visual observations. Furthermore, both cameras and IMUs are low cost, 

light-weight and low power-consumption devices, which make them ideal for many payload-constrained 

platforms. Corke [10] has presented a comprehensive introduction of these two sensory modalities 

from a biological and an engineering perspective. 

The simplest fusion scheme for a vision-aided inertial navigation system (VINS) uses separate INS 

and visual blocks, and fuses information in a loosely-coupled approach [10]. For instance, some 

methods fuse the inertial navigation solution with the relative pose estimation between consecutive 

image measurements [11–14]. Tightly-coupled methods in contrast process the raw information of 

both sensors in a single estimator, thus all the correlations between them are considered, leading to 

higher accuracy [15,16]. The most common tightly-coupled scheme augments the 3D feature positions 

in the filter state, and concurrently estimates the motion and structure [2]. However, this method 

suffers from high computational complexity, as the dimension of the state vector increases with the 

number of the observed features. To address this problem, Mourikis [15] proposed an EKF-based 

algorithm which maintains a sliding window of poses in the filter state, and make use of the tracked 

features to impose constraints on these poses. The shortcomings of this approach are twofold: (1) the 

space complexity is high, because it needs to store all the tracked features; (2) it requires a 

reconstruction of the 3D position of the tracked feature points, which are not necessary in navigation 

tasks. To overcome these shortcomings, Hu [9] developed a sliding window odometry using the 

monocular camera geometry constraints among three images as measurements, resulting in a tradeoff 

between accuracy and computational cost. 

While the vision-aided inertial navigation has been extensively studied, and a considerable amount 

of work has also been dedicated to processing visual observations of point features [2,4,5,7], on the 

contrary, much less work has been aimed at exploring line features. In fact, line primitives and point 

primitives provide complementary information about the image [17]. There are many scenes (e.g., wall 

corners, stairwell edges, etc.) where the point primitive matches are unreliable while the line primitives 

are well matched, due to multi-pixel support [6]. 

On the other hand, points are crucial as they give more information than lines. For instance, there 

are no pose constraints imposed by line correspondences from two views, while there are well-known 

epipolar geometry constraints for point correspondences from two views [18]. 

In this paper, we propose a method that combines point and line features for navigation aiding in  

a simple and unified framework. Our algorithm can deal with any mixed combination of point and line 

correspondences utilizing trifocal geometry across two stereo views. In the implementation, the inertial 

sensors are tightly-coupled within feature tracking to improve the robustness and tracking speed. 

Meanwhile, the drifts of inertial sensors are greatly reduced by using the constraints imposed in the 
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tracked features. Leveraging both of the complementary characteristics of the inertial and visual 

sensors and the complementary characteristics between point and line features, the proposed algorithm 

demonstrates improved performance and robustness. 

The remainder of this paper is organized as follows: we describe the mathematical model of the 

VINS in Section 2, and then develop our estimator in Section 3. Experimental results are given in 

Section 4. Finally, Section 5 contains some conclusions and suggests several directions for future work. 

2. Mathematical Formulation 

2.1. Notations and Convention 

We denote scalars in italic lower case letters (e.g., a ), denote vectors in lower case letters with 

boldface non-italic (e.g., p ), and denote matrices in upper case letters with bold font (e.g., R ). If a 

vector or matrix describes the relative pose of one reference frame with respect to another, we combine 

subscript letters to designate the frames, e.g., WIp  represents the translation vector from the origin of 

the frame { }W  to the origin of the frame { }I , and WIR  represents the direction cosine matrix of frame 

{ }I  in the reference frame { }W . The six degrees of freedom transform between two reference frames 

can be represented as a translation followed by a rotation: 

W W I
WI WI= +t p R t  (1)

In the remaining Sections, unit quaternions are also used to describe the relative orientation of two 

reference frames, e.g., WIq  represents the orientation of frame { }I  in frame { }W . 

Finally, to represent projective geometry, it is simpler and more symmetric to introduce 

homogeneous coordinates, which provides a scale invariant representation for point and line in the 

Euclidean plane. In this paper, vectors in homogeneous coordinate form are expressed by an underline, 

e.g., ( )T
u v w=m  represents the point ( )' '

T
u v=m  in the Euclidean plane, with 

' / , ' / , 0.u u w v v w w=  =  ≠   

2.2. System Model 

The evolving IMU state is described by the vector: 

( ) ( ) ( ) ( ) ( )( ) ( )( )
TT T T TTW W

IMU WI WI WI g at q t t =   
x p v b b  (2)

where ( )W
WI tp  denotes the position of IMU in the world frame { }W ; ( )WIq t  is the unit quaternion of 

the IMU frame { }I  in the world frame; W
WIv  is the linear velocity of the IMU in the world frame; 

( )g tb  and ( )a tb  are the IMU gyroscope and accelerometer biases, respectively. 

In this work, we model the biases ( )g tb  and ( )a tb  as a Gaussian random walk process, driven by 

the white, zero-mean noise vectors gwn  and awn , with covariance matrices gwQ  and awQ  respectively. 

The time evolution of the IMU state is given by the following equation [2]: 

( )1
, , , ,

2
W W I W W
WI WI WI WI WI WI WI g gw a awq q=    = Ω     =   =    =p v ω v a b n b n    (3)
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where ( )I
WIΩ ω  is the quaternion multiplication matrix:  

( ) ( )0
TI

WII
WI

I I
WI WI

 −
 Ω =
  − ×  

ω
ω

ω ω
 (4)

which relates the time rate of change of the unit quaternion to the angular velocity; I
WIω  is the angular 

velocity of the IMU with respect to the world frame, and W
WIa  is the acceleration of the IMU with 

respected to the world frame expressed in the world frame. The measured angular velocity and linear 

acceleration from are: 
I

m WI g g= + +ω ω b n  (5)

( )( )T W W
m WI WI a aq= − + +a R a g b n  (6)

where ( )WIqR  is the direction cosine matrix corresponding to the unit quaternion WIq , gn  and an  are 

measurements noises of gyroscope and accelerometer, which are assumed to be zero-mean Gaussian 

noise with covariance matrices gQ  and aQ , respectively. Note that we do not consider the Earth’s 

rotation rate in the gyroscope measurement, because it is small enough relative to the noise and bias of 

the low-cost gyroscope. 

2.3. Measurement Model 

2.3.1. Camera Model 

In this Section, we consider the standard perspective camera model, which is commonly used in the 

computer vision applications. Let K  denote the intrinsic camera parameters matrix which can be 

obtained by calibrating. A mapping between the 3D homogeneous point [ ]1 2 3 4

T
M M M M=M  

in space and the homogeneous image pixel coordinates [ ]1
T

u v=m  can be given by: 

[ ]|∝ ⋅ =m K R t M PM  (7)

where ∝  means equality up to scale, and [ ]|= ⋅P K R t  is 3 × 4 camera matrix, with R and t  

representing pose of the camera with respect to the world reference frame. Similarly, a mapping 

between a 3-space line represented as a Plücker matrix L  and the homogenous image line l  is given 

by [18]: 

[ ] T× =l PLP  (8)

2.3.2. Review of the Trifocal Tensor 

A trifocal tensor is a 3 × 3 × 3 array of numbers that describes the geometric relations among  

three views. It depends only on the relative motion between the different views and is  
independent of scene structures. Assuming that the camera matrices of three views are [ ]1 | ,=P I 0  

[ ]2 4| ,=P A a  [ ]3 4|=P B b , the entries of the trifocal tensor can be derived accordingly using the 

standard matrix-vector notation [18]: 
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4 4
T T

i i i= −T a b a b  (9)

where ia  and ib denote the i -th column of the camera matrices 2P  and 3P , respectively. 

(a) (b) 

Figure 1. (a) The point-line-point correspondence among three views; (b) Stereo geometry 

for two views and line-line-line configuration. 

Once the trifocal tensor is computed, we can use of it to map a pair of matched points 1 2↔m m  in 

the first and second views into the third view, using the homography between the first view and the 

third view induced by a line in the second image [18]. As shown in Figure 1a, a line in second view 

defines a plane in space, and this plane induces a homography between the first view and third view. 

As recommended by Hartley [18], the line 2l̂  is chosen as the line perpendicular to the epipolar line. 

The transfer procedure is summarized as follows [18]: 

(1) Compute the epipolar line 21 1e =l F m , where 21F  is the fundamental matrix between the first 

and second views. 

(2) Compute the line 2l̂  which passes through 2m  and is perpendicular to el . If [ ]1 2 3

T

e e e el l l=l  

and [ ]2 21 22 1
T

m m=m , then [ ]2 2 1 21 2 22 1
ˆ T

e e e el l m l m l= − − +l . 

(3) The transferred point is 3 1 2
ˆˆ .T

i i
i

m
 =  
 
m T l  

Similarly, it is possible to transfer a pair of matched lines 2 3↔l l  in the second and third views into 

the first view according to the line transfer equation [18]: 

1 2 3
ˆ T

i il = l Tl  (10)

2.3.3. Stereo Vision Measurement Model via Trifocal Geometry 

In this Section, we exploit the trifocal geometry of stereo vision to deduce the measurement model. 

We depict the stereo camera configuration of two consecutive frames in Figure 1b. For the sake of 

clarity, we only provide the geometrical relations of lines. The camera matrices of the stereo image 

pair at the previous time step can be represented in canonical form as: 

[ ] 2
1 2 21 21| , | = =  P I 0 P R t  (11)
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where 21 0=R R  and 2
21 0=t t  encode the rigid transform of the rig which are known after calibration. 

The camera matrices of the successive stereo image pairs are defined as: 

3 4
3 31 31 4 41 41| , |   = =   P R t P R t  (12)

For simplicity, we assume that the IMU frame of reference coincides with the camera frame of 

reference. Thus, the terms in Equation (12) can be expressed as follows: 

131
T
WI WI=R R R  (13)

( )
1

3
31

T W W
WI WI WI= −t R p p  (14)

141 43 31 0
T
WI WI= =R R R R R R  (15)

( )
1

4 4 3
41 43 43 31 0 0

T W W
WI WI WI= + = + −t t R t t R R p p  (16)

where 
1WIR  and 

1

W
WIp  are the pose of IMU corresponding to the last time the image pair captured. 

Two trifocal tensors, { }L
L i= TT  relating the previous image pair to the current left image and 

{ }R
R i= TT  relating to the current right image can be determined according to Equation (9) using the 

camera matrices Equations (11) and (12): 

( ) ( )
1 11 2 3 0 0, , , , , , ,W W

L WI WI WI WI= =P P P R t R p R pT T T  (17)

( ) ( )
1 11 2 4 0 0, , , , , , ,W W

L WI WI WI WI= =P P P R t R p R pT T T  (18)

From the corresponding point set { }1 2 3 4↔ ↔ ↔m m m m  and the point transfer relations among 

the triplets, the following non-linear functions can be defined: 

( )( )1 11 0 0 1 2 3 2 1, , , , , , , ,W W
L WI WI WI WIh ×=R t R p R p m m m 0T  (19)

( )( )1 11 0 0 1 2 4 2 1, , , , , , , ,W W
R WI WI WI WIh ×=R t R p R p m m m 0T  (20)

where ( )1h ⋅  denotes the pixel differences between the transferred point and the measured point. 

For line measurements, we also need a formulation to compare the transferred lines with the 

measured lines. Because of the aperture problem [19], only the measurement components which are 

orthogonal to the transferred line can be used for correction. In [3,17], the line-point is chosen as 

observation, which is defined as the closest point on the line segment to the image origin. Accordingly, 

the error function is defined as the differences between the measured and transferred line-points, which 

is similar to the error function of point features. However, when the lines pass through the origin, the 

orientation error of the lines cannot be revealed by this error function. Thus, we choose the signed 

distances between the endpoints of the measured line segment to the transferred line as observation. 

Suppose that as  and bs  are the end points of the line segment measured in the first view. We denote 

the line transferred from the second and third views by ( )1 2 3
ˆ ˆ ˆˆ , ,

T

l l l=l . The signed distances  

between the end points of the measured line segment and the transferred line make up the line 

observation function: 
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( ) ( )
( ) ( )

2 2

1 2

1 2 1
2 2

1 2

ˆ ˆˆ /

ˆ ˆˆ /

a

b

l l

l l
×

 
⋅ + 

= = 
 ⋅ +  

s l
d 0

s l

 (21)

Similarly, the line observation function concerning the first, second, and fourth views is defined as: 

( ) ( )
( ) ( )

2 2

1 2

2 2 1
2 2

1 2

ˆ ˆˆ '/ ' '

ˆ ˆˆ '/ ' '

a

b

l l

l l
×

 
⋅ + 

= = 
 ⋅ +  

s l
d 0

s l

 (22)

where ( )1 2 3
ˆ ˆ ˆˆ ' ', ', '

T

l l l=l  is the line transferred from the second and fourth views. 

As we process the point and line measurements in a unified manner after defining the corresponding 

error, we define the observation model in a single function: 

( ) ( ) { }( )1 1 1 10 0 0 0 1 2 3 4 4 1, , , , , , , , , , , , , , ,W W W W
L WI WI WI WI R WI WI WI WIh ×= =z R t R p R p R t R p R p f f f f 0T T  (23)

where { }1 2 3 4, , ,f f f f  denotes the general feature correspondences among the four views, LT and RT  

encode the motion information between the successive stereo image pairs, and the function ( )h ⋅  

defines the observations based on the feature type. 

3. Estimator Description 

3.1. Structure of the State Vector 

As can be seen in the previous Section, the measurement models are implicit relative-pose 

measurements, which relate the system state at two different time instants (i.e., the current time and the 

previous time when image pair is captured). However, the “standard” Kalman filter formulation 

requires that the measurements employed for the state update be independent of any previous filter 

states. The problem can be addressed by augment the state vector to include a history of IMU pose 

when last image pair is recorded. With these state augmentations, the measurements are only related to 

the current state, and thus, a Kalman filter framework can be applied. The augmented nominal state is 

given by: 

( ) ( )
1 1

ˆˆˆ ˆ
TTTT W W

IMU WI Iq =   
x x p  (24)

where ˆT
IMUx  is the nominal state of IMU, which can be obtained by integrating Equation (3) without 

considering the noise term; ( )
1

ˆ
TW

WIp  and ( )
1

ˆ T
W
Iq  denotes the nominal-state pose of the IMU at time 

when the last image pair is recorded. The augmented error state is defined accordingly: 

( ) ( )1

1

TT TIW
IMU WI

 δ = δ δ δ  
x x p θ  (25)

where IMUδx  is the IMU error-state defined as: 
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( ) ( ) ( )
TT T TW I W T T

IMU WI WI g a
 δ = δ δ δ δ δ  

x p θ v b b  (26)

The standard additive error definition is used for the position, velocity and biases, while for the 

orientation error Iδθ , the multiplicative error definition is applied: 

( )1ˆ 1
2

T
TW W I

I Iq q  = ⊗ δ  
θ  (27)

where the symbol ⊗  denotes quaternion multiplication. With the above error definition, the true-state 

may be expressed as a suitable composition of the nominal and the error-states: 

ˆ= ⊕ δx x x  (28)

where ⊕  means a generic composition. 

3.2. Filter Propagation 

The continuous-time IMU error-state model may be given as a single matrix error equation: 

IMU IMU IMU IMU IMUδ = δ +x F x G n  (29)

where: 

( ) ( )( )
( )( ) ( ) ( )( ) ( )( )

3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3

3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

I
WI g

IMU WI m a WI

t t

q t t t q t

× × × ×

× × ×

× × ×

× × × × ×

× × × × ×

 
 

 − − × −  
 =  − − × −  
 
 
  

0 I 0 0 0

0 ω b 0 I 0

F 0 R a b 0 0 R

0 0 0 0 0

0 0 0 0 0

 (30)

( )( )

3 3 3 3 3 3 3 3

3 3 3 3 3 3 3

3 3 3 3 3 3

3 3 3 3 3 3 3

3 3 3 3 3 3 3

WIIMU
q t

× × × ×

× × ×

× × ×

× × ×

× × ×

 
 − 
 −=
 
 
 
 

0 0 0 0

I 0 0 0

0 R 0 0G

0 0 I 0

0 0 0 I

 (31)

( ) ( ) ( ) ( )
TT TT T

IMU g a gw aw
 =   

n n n n n  (32)

Since the past pose is unchanged during the filter prediction step, its corresponding derivatives  

are zero: 

1 1

ˆˆ ,W W
WI Iq= =p 0 0  (33)

1

1
, IW

WIδ = δ =p 0 θ 0  (34)

Combining Equations (29) and (34), the continuous-time augmented error state equation is given by: 

c c IMUδ = δ +x F x G n  (35)

where:  
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15 6

6 15 6 6

IMU
c

×

× ×

 
=  
 

F 0
F

0 0
 (36)

6 6

IMU
c

×

 
=  
 

G
G

0
 (37)

where IMUF  and IMUG  are defined in Equations (30) and (31). 

Each time a new IMU measurement is received, the nominal state prediction is performed by 

numerical integration of the kinematic Equations (3) and (33). In order to obtain the error covariance, 

we compute the discrete-time state transition matrix: 

( ) ( )( )1

1, exp
k

k

t

k k k ct
t t d

+

+= = τ τΦ Φ F  (38)

The elements of kΦ  can be computed analytically following similar derivation as [20]. The state 

transition matrix is slightly different from [21], because the rates of filter prediction and filter update 

are different in our case. 
The noise covariance matrix dQ  of the discrete-time system is evaluated by: 

( ) ( )1

1 1, ,
k

k

t T T
d k c c c kt

t t d
+

+ += τ τ τQ Φ G Q G Φ  (39)

The predicted covariance is then obtained as: 

1| |
T

k k k k k k d+ = +P Φ P Φ Q  (40)

3.3. Measurement Update 

Since the measurement model is highly nonlinear, we employ statistical linearization for 

measurement updating, which is generally more accurate than the first order Taylor series expansion [22]. 

Specifically, the Sigma Point approach is applied. First, the following sets of sigma points are selected: 

( )

( ) ( )( )
( ) ( )( )

0
27 1

1|

1|

,

, 1,..., ,

, 1,..., 2

i
k k

i

i
k k

i

n i n

n i n n

×

+

+

=  

= + λ    =

= − + λ    = +

0

P

P

X

X

X

 
(41)

where 21n =  is the dimension of the state, the parameter ( )2 n nλ = α + κ −  with tuning parameters 

,α κ , ( )
i

P  indicates the i th column of the matrix square-root of the covariance matrix P . We define 

the following weights for the sigma points: 

( )

( ) ( )
( ) ( )

( )

0

0 2

,

1 ,

1
, 1,2,..., 2

2

m

c

i i
m c

W
n

W
n

W W i n
n

λ=
λ +

λ= + − α + β
λ +

= =   =
λ +

 (42)
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where β is related to the higher order moments of the distribution [23] (a good starting guess is 2β =  

for Gaussian distribution). 

The predicted measurement vector is determined by propagating individual sigma point through the 
nonlinear observation function ( )h ⋅  defined in Equation (23): 

( ) ( )( ) ( )( ) { }( )1 1 1 2 3 4ˆ ˆ, , , , ,i i i
j L k R k j

h + += ⊕ ⊕x x f f f fZ T X T X  (43)

The mean and covariance are computed as: 

( ) ( )
2

0

ˆ
i L

i i
j m j

i

W
=

=

= Z Z  (44)

( )
2

( ) ( )

0

ˆ ˆj j

i L Tz z i i i
c j j j j

i

W
=

=

   = − −   P Z Z Z Z  (45)

( ) ( )
2

( )
27 1

0

ˆj

i L Txz i i i
c j j

i

W
=

×
=

   = − −  P 0X Z Z  (46)

where j jz zP  and jxzP  are the predicted measurement covariance matrix and the state-measurement 

cross-covariance matrix, respectively. 

The filter gain is given as follows: 

( ) 1
j j jxz z z

j j

−
= +K P P R  (47)

where jR  is the measurement noise covariance matrix. 

Then, the error state and error covariance are updated using the normal Kalman filter equation: 

( )1| 1 1|
ˆ

k k k k j j+ + +δ = δ + −x x K 0 Z  (48)

1| 1 1|
j jz z T

k k k k j j+ + += −P P K P K  (49)

After measurement update, the estimated state 1| 1k k+ +δx  is then used to correct nominal state 1ˆ k +x . 

Finally, replace old state by current state and revise the corresponding error covariance: 

1 1 1 1 1| 1 1| 1ˆ ˆ , , T
k n k k e k k k e k k e+ + + + + + + +=  δ = δ =x T x x T x P T P T  (50)

with: 

7 7 9 7 7 6 6 9 6 6

9 7 9 9 7 9 6 9 9 6

7 7 9 7 7 6 6 9 6 6

,n e

× × × ×

× × × ×

× × × ×

   
   = =   
      

I 0 0 I 0 0

T 0 I 0 T 0 I 0

I 0 0 I 0 0

 (51)

4. Experimental Results and Discussion 

4.1. Outdoor Experiment 

We evaluate the proposed method using the publicly available KITTI Vision Benchmark Suite [24], 

which provides several multi-sensor datasets with ground truth. The selected dataset was captured in a 

residential area from the experimental vehicle, equipped with a GPS/IMU localization unit with RTK 
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correction signals (OXTS RT3003), and a stereo rig with two grayscale cameras (PointGrey Flea2). 

The duration is about 440 s, with a traveling distance of about 3600 m, and the average speed is about  

29 km/h. All the sensors are rigidly mounted on top of the vehicle. The intrinsic parameters of the 

cameras and the transformation between the cameras and GPS/IMU were well calibrated. Moreover, 

the cameras and GPS/IMU are manually synchronized, with sampling rates of 10 Hz and  

100 Hz, respectively. 

The announced gyroscope and accelerometer bias specifications are 36 deg/h (1σ ) and 1 mg (1σ ), 

respectively. The resolution of stereo images is 1226 × 370 pixels, with 90° field view. For the position 

ground truth, we use the trajectory of the GPS/IMU output, with open sky localization errors less  

than 5 cm. 

4.1.1. Feature Detection, Tracking, and Outlier Rejection 

For point features, the fast corner detection (FAST) algorithm [25] was used for feature extraction, 

and matching was carried out by normalized cross-correlation. The main advantage of the FAST 

detector compared to others is the better trade-off between accuracy and efficiency. In order to reduce 

the computational complexity and to guarantee the well distribution of the image features, we choose  

a subset of the matched point features by means of bucketing [26]: Divide the image into several  

non-overlapping rectangles, and maintain a maximal number of feature points in each rectangle. 

We extract lines using EDlines detector [27] in the scale space, which can give accurate results in 

real-time. Then we employ the method described in [28] for line matching. The lines are described 

local appearances by the so-called Line Band Descriptor (LBD) similar to SIFT [29] for point features, 

and are matched by exploiting the local appearance similarities and geometric consistencies [28]. The 

average execution time of line matching between views is about 56 ms with Intel Core i5 2.6 GHz 

processors running the non-optimized C++ code. Figure 2 shows a sample image from the dataset with 

extracted points and lines. As can be seen, both point and line features are rich in the selected sequence. 

In order to reject mismatched features and features located on independently moving objects (e.g., 

the running car), we employ a chi-square test [30] for the measurement residuals. We compute the 

Mahalanobis distance: 

( ) ( ) ( )1
ˆ ˆj j

T z z

j j j j

−
υ = − + −0 P R 0Z Z  (52)

where ( )ˆ
j−0 Z  is the measurement residual, and j jz z

j+P R  is the covariance of the measurement 

residual. The rejection threshold is usually chosen by an empirical evaluation of reliability of feature 

matching. We set the threshold to 12 in the experiment. The feature measurements whose residuals 

exceed the threshold are discarded. 
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Figure 2. Sample image with extracted point (red) and line (green) features. 

4.1.2. Experimental Results 

In this Section, we compare the performance of our algorithm with the following methods:  

(1) GPS/IMU localization unit, with open sky localization errors less than 5 cm; (2) VINS using only 

point feature; (3) pure inertial-only navigation solution; (4) pure stereo visual odometry [31]. 

The trajectory estimation results of different algorithms with the ground truth data are shown in 

Figure 3. The corresponding 3D position errors are depicted in Figure 4. The overall root-mean-square 

errors (RMSE) are shown in Table 1. It can be found that the inertial-only navigation suffers from 

error accumulation and is not reliable for long-term operation; Secondly, the result of pure stereo 

visual odometry is inferior, specially where the vehicle turns, and the error grows super-linearly owing 

to the inherent bias in stereo visual odometry; Thirdly, the combining of inertial navigation and stereo 

vision with point feature alone can reduce the drift rate effectively, and the additional information from 

line measurements results in better performance. Note that the jumps from 80 s to 100 s are caused by 

ground truth errors. It also shows the advantage of the proposed method in cluttered urban 

environments where the GPS information is less reliable. 

 

Figure 3. The motion trajectory plot on Google Maps. The initial position is denoted by  

a red square. 
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Figure 4. 3D Position Errors of different solutions. 

Table 1. The overall RMSE of the outdoor experiment. 

Methods Position RMSE (m) Orientation RMSE (deg) 

VINS (points and lines) 10.6338 0.8313 
VINS (points only) 16.4150 0.9126 

Pure INS 2149.9 2.0034 
Pure stereo odometry 72.6399 8.1809 

We demonstrate the velocity and attitude deviations of the proposed method with the corresponding 

3σ  bounds in Figures 5 and 6, which verify that the velocity and attitude estimates are consistent. Note 

that the standard deviations of the roll and pitch angle errors are bounded, while the standard deviation 

of the yaw angle error grows over time. This is consistent with the observable property of the VINS 

system, which indicates that the yaw angle is unobservable [8]. The yaw angle error is bounded under 

5° due to the accuracy of the gyroscopes in the experiment. 

 

Figure 5. The velocity estimation errors and 3σ  bounds (the large deviations around 100th 

second is due to the ground truth errors). 
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Figure 6. The attitude estimation errors and 3 σ  bounds. 

Finally, the estimates of the gyroscope and accelerometer biases are depicted in Figure 7. All the 

estimated biases converge quickly to some reasonable ranges, meaning a practical estimation and 

allowing the compensation of the INS. 

 

Figure 7. Estimated gyroscope and accelerometer bias. 

4.2. Indoor Experiment 

To demonstrate the robustness of our algorithm in a textureless structured environment, we perform 

indoor experiments in a corridor scenario with textureless walls which lead to very few points being 

tracked in some frames. The test rig consists a PointGrey Bumblebee2 stereo pair, a Xsens MTi unit, 

and a laptop for data recording (Figure 8a). The accuracy specifications and sampling rates of the 

sensors are listed in Table 2. The relative pose of the IMU and the camera are well calibrated prior to 

the experiment using the method proposed in [32], and keep unchanged during the experiment. The 

actual motion of the pushcart is a move along with the corridor, and then return to the initial point. The 

full length of the path is about 82 m. 
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Table 2. The accuracy specifications and sampling rates of the sensors. 

Sensors Accuracies Sampling Rates 

IMU 
Gyro bias stability (1σ ): 1°/s  

Accelerometer bias stability: 0.02 m/s2 
100 Hz 

Stereo Camera 

Resolution: 640 × 480 pixels  
Focus length: 3.8 mm  

Field of view: 70°  
Base line: 12 cm 

12 Hz 

In Figure 8b, we show the bird’s eye view of the estimated trajectories. It is obvious that the 

combination of point and line features leads to much better performance than the use of point features 

alone in this scenario. The reason is that the point features are few or not well distributed over the 

image in some frames, leading to a bad orientation estimation. In Figure 8c, a plot of the number of 

inlier point and line features per frame is shown, which clearly demonstrates the superiority of 

combining both feature types under such circumstances. 

 

Figure 8. Performance in low-textured indoor environment: (a) Experimental setup and 

experimental scene; (b) Top view of estimated trajectories; (c) The number of point and 

line inliers used to estimate the motion. 
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5. Conclusions/Outlook 

This paper presents a tightly-coupled vision-aided inertial navigation algorithm, which exploits 

point and line features to aid navigation in a simple and unified framework. The measurement models 

of the point and line features are derived, and incorporated into a single estimator. The outdoor 

experimental results show that the proposed algorithm performs well in cluttered urban environments. 

The overall RMSE of position and orientation is about 10.6 m and 0.83°, respectively, over a path of 

up to about 4 km in length. The indoor experiment demonstrates the better performance and robustness 

of combining both point and line features in textureless structured environments. The proposed 

approach which combines both feature types can deal with different types of environments with a 

slight increase in computational cost. 

As part of future work, we aim to improve the proposed approach, by taking advantage of the 

structural regularity of man-made environments, such as Manhattan-world scenes, i.e., scenes that lines 

should be orthogonal or parallel to each other [33]. Unlike ordinary lines, the Manhattan-world lines 

encode the global orientation information, which can be used to eliminate the accumulated orientation 

errors, and further suppress the position drifts. 
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