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Abstract: Machine learning has been successfully used for target localization in wireless
sensor networks (WSNs) due to its accurate and robust estimation against highly nonlinear
and noisy sensor measurement. For efficient and adaptive learning, this paper introduces
online semi-supervised support vector regression (OSS-SVR). The first advantage of the
proposed algorithm is that, based on semi-supervised learning framework, it can reduce the
requirement on the amount of the labeled training data, maintaining accurate estimation.
Second, with an extension to online learning, the proposed OSS-SVR automatically tracks
changes of the system to be learned, such as varied noise characteristics. We compare the
proposed algorithm with semi-supervised manifold learning, an online Gaussian process
and online semi-supervised colocalization. The algorithms are evaluated for estimating the
unknown location of a mobile robot in a WSN. The experimental results show that the
proposed algorithm is more accurate under the smaller amount of labeled training data and
is robust to varying noise. Moreover, the suggested algorithm performs fast computation,
maintaining the best localization performance in comparison with the other methods.

Keywords: semi-supervised learning; online support vector regression; wireless
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1. Introduction

Localization is one of the most important issues for wireless sensor networks (WSNs), because
many applications need to know where the data have been obtained. For example, in a target tracking
application, the measurement data are meaningless without location information about where the data
were obtained.

With recent advances in wireless communications and electronics, localization using RSSI (received
signal strength indicator) has attracted interest in many works in the literature [1,2]. Dealing with highly
nonlinear and noisy RSSI, machine learning methods, such as neural network [3], Q-learning [4] and
supervised learning [5], achieve good estimation for target localization. Because all of these methods
require a large amount of the labeled training data for high accuracy, however, significant effort,
such as cost, time and human skill, is needed. For example, in the indoor localization where GPS
(Global Positioning System) is not available, the labeled training data points have to be collected by the
human operator.

Against the need for a large set of labeled training data, semi-supervised learning has been recently
developed. For example, in localization or tracking using WSN, an acquisition of labeled data may
involve repeatedly placing a target and measuring corresponding RSSI from the sensor nodes in the
known locations. On the other hand, the unlabeled data can be easily collected by recording RSSI
without the position information.

A popular method to exploit unlabeled data is a manifold regularization (or graph-based method)
that captures an intrinsic geometric structure of the training data and eventually makes the estimator
smooth along the manifold [6]. The existing graph-based semi-supervised learning algorithms are
mainly focused on classification problems (e.g., [7–13]), while only a few regression problems, such
as localization, can be found in [14–16].

An advantage of the proposed method is its extension to online learning. Batch learning
algorithms [16,17] cannot adjust to environmental changes, because they initially learn data only
once. For example, in localization or tracking using WSN, the batch learning algorithms are not robust
to changes in noise characteristics. To improve the robustness, these batch algorithms must be retrained
from scratch, which has an expensive computational cost. To solve this problem, online learning
methods, such as [18], are developed in order to update the learning model sequentially with the arrival
of a new data point. They automatically track changes of the system model.

Motivated by the need for online learning, we extend the semi-supervised support vector regression
(SVR) to the online learning framework that takes advantage of both semi-supervised learning and
online learning. Online semi-supervised SVR (OSS-SVR) is accurate in that its solution is equivalent
to the batch semi-supervised SVR. Contrary to other online algorithms [18,19], moreover, OSS-SVR
can provide information on which data points are more important using support values [20]. These
values are utilized when removing data in order to manage data storage, maintaining the good
estimation performance.

We evaluate the developed algorithm (OSS-SVR) to estimate an unknown location of a mobile robot
in a WSN, by comparing with two existing semi-supervised learning algorithms (i.e., semi-supervised
colocalization [14], semi-supervised manifold learning [15]) and one online learning algorithm using a
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Gaussian process [19]. In comparison with these state-of-the-art methods, we confirm that our algorithm
estimates the location most accurately with fewer labeled data by efficiently exploiting unlabeled data.
Furthermore, OSS-SVR converges most rapidly to the best estimated trajectory when the environment is
changed. The computation of the proposed algorithm is very fast, maintaining the best accuracy.

This paper is organized as follows. In Section 2, we review some existing work for localization in
a wireless sensor network. Section 3 overviews the technical structure for our localization problem.
Section 4 presents the semi-supervised support vector machine algorithm. Section 5 describes an
extension to the online version from the batch algorithm in Section 4. Section 6 reports empirical results
with the description of the comparative algorithms, the parameter settings and the performance indices.
Finally, concluding remarks are given in Section 7.

2. Related Work

Machine learning for localization aims to learn a model that defines the mapping function between
sensor measurements and the location of a target of interest. However, due to the nonlinear and noisy
characteristics of sensors, such as RSSI, sufficient labeled training data are needed for a good estimation.
Furthermore, the algorithm should be able to update a learning model upon arrival of a new data point,
in order to adjust to dynamic environments. We review some existing work based on whether they adopt
the semi-supervised learning or online learning for the localization as follows.

Yang et al. [15] develop a semi-supervised manifold learning that solves the optimization problem
based on a least squares loss function and graph Laplacian. Because it solves simplified linear
optimization, it is fast, but inaccurate. Moreover, an online version of this algorithm has not
been developed.

There is an online method based on a Gaussian process (GP) [19]. Since the online GP of [19] uses
only current sensor measurements as training data, it is fast and naturally online. However, a strong
assumption of known sensor locations is needed.

An online and semi-supervised learning method named colocalization by Pan et al. [14] estimates
target location, as well as the locations of sensor nodes. They merge singular value decomposition,
graph Laplacian and the loss function into one optimization problem. However, many tuning parameters
that affect the optimal solution can be a burden. Furthermore, when the algorithm is applied to
online learning, it updates the model by approximation using harmonic functions [13]. Because the
approximated model is different from the solution using batch optimization, it can lose accuracy.

We introduce an SVR-based learning algorithm, which takes advantage of both online learning and
semi-supervised learning methods. It does not need the assumption of known sensor locations and
provides a unique solution and sparseness [20], contrary to an artificial neural network and reinforcement
learning [21]. It performs accurate and efficient online learning based on incremental and decremental
algorithms. The incremental algorithm learns the model given a new data point, providing the same
solution to the batch optimization. The decremental algorithm safely removes worthless or less important
data in order to limit the data size.
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3. Overview

This section overviews the problem formulation, including the experimental setup, the data collection,
the localization structure and the extended localization structure for a mobile target. In advance, we
summarize the notations of functions and variables that are used in this paper:

i ∈ {1, . . . , l} : an index in a labeled training dataset when a target is located at

l different locations

yXi ∈ R : the i-th target location in X coordinate

yYi ∈ R : the i-th target location in Y coordinate

zij ∈ R : an RSSI measurement of j-th sensor node corresponding to the

i-th target location yXi, yYi

ri = {zi1, . . . , zin} ∈ Rn : an RSSI observation set collected from all n sensor nodes

{ri, yXi}li=1 : a labeled dataset for X coordinate

{ri, yYi}li=1 : a labeled dataset for Y coordinate

{ri}uj=1 : an unlabeled dataset with the number of u data points

fX (r → yX) : the function mapping an RSSI measurement set r to X coordinate position

fY (r → yY) : the function mapping an RSSI measurement set r to Y coordinate position.

3.1. Experimental Setup

Figure 1a shows the localization setup where 13 static sensor nodes are fixed in the 3 m × 4 m
workspace. There is another base node (or base station) that is wirelessly connected to all deployed
nodes. The role of the base station is to collect and record RSSI from the deployed nodes and to estimate
a target position. A mobile robot equipped with one node broadcasts an RF signal whose strength (RSSI)
is recorded by the sensor nodes. For accuracy analysis, the true location of the mobile robot is measured
by the Vicon motion system that tracks reflective markers attached to the mobile robot.

The radio signal is easily influenced by the environment. Furthermore, its measured value affects
the performance of the localization. Here, we examine the characteristics of RSSI measurement. In
Figure 1b, we record RSSI measurements of one moving node (receiver), emitted by one fixed sensor
node (transceiver). The distance between the transceiver and the receiver varies from 0.2 m to 4 m. The
results of two trials show nonlinear and noisy RSSI measurements, which supports the need for learning
to obtain accurate position estimates.
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Figure 1. (a) Experimental setup with one mobile robot and thirteen sensor nodes. The nodes
use a commercial CC2420 radio chip, which provides an IEEE 802.15.4 communication, and
a received signal strength indicator (RSSI) for each received packet; (b) The relationship
between RSSI measurement and distance between one fixed sensor node and one mobile
node. The two trials are marked by a black-squared line and a red-diamond line, respectively.

3.2. Data Acquisition

Semi-supervised learning uses both labeled and unlabeled datasets. For obtaining the labeled training
data, i.e., two sets {ri, yXi}li=1, {ri, yYi}li=1, we collect RSSI measurements of the mobile robot placed at
the different l locations, repeatedly. This collection process for the labeled dataset is called fingerprinting.
On the other hand, the unlabeled dataset, i.e., {rj}uj=1, is obtained as we let the mobile robot move
autonomously and collect only the RSSI measurements. Because the unlabeled dataset does not include
the labels, i.e., yX and yY, it is easy to collect a large amount of unlabeled data points. We note that the
training dataset does not include the positions of the sensor nodes. Therefore, our algorithm does not
need the positions of the sensor nodes.

3.3. Localization Structure

Our algorithm for the localization consists of three steps, i.e., offline learning phase, test phase and
online learning phase.

3.3.1. Offline Learning Phase

Given the labeled and unlabeled training dataset, the major output of the training phase is two mapping
functions fX and fY, which represent a relationship between RSSI observation set and the 2D position of
a target. The details to obtain those functions will be described in Section 4.
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3.3.2. Test Phase

Test data r∗ ∈ Rn are defined as an RSSI measurement set obtained from all n sensor nodes. Then,
a base station estimates the location of the target using the test data r∗ by using the learned models fX

and fY.

3.3.3. Online Learning Phase

This paper considers a situation where new labeled data points are available after the offline learning
phase. For example, landmark-based applications using RFID [22] or vision sensors [23] can obtain the
online labeled dataset. The purpose of the online learning phase is to update the model fX and fY when
a new labeled data point comes. The detailed description is shown in Section 5.

3.4. Combination with Kalman Filter

In most target localization, targets move. However, the training datasets in the fingerprinting method
do not include the velocity information of the target, because the training data are collected when the
robot stops. One way to consider a moving target without the exact velocity measurement and without
modifying the fingerprinting method is using a target’s dynamic model in the framework of the Kalman
filter. By defining the observation model as the estimated location obtained from the fingerprinting
method, Kalman filter-based fingerprinting localization can be formulated. In Section 6.5, we compare
the experimental results of the Kalman filter-based fingerprinting methods.

4. Semi-Supervised SVR

This section describes semi-supervised support vector regression. The models fX and fY defined in the
previous section are learned independently. For simplification, from this section, we omit the subscripts
of fX, fY and yX, yY.

4.1. Semi-Supervised Learning Framework

Given a set of l labeled samples {(ri, yi)}li=1 and a set of u unlabeled samples {ri}l+ui=l+1,
semi-supervised learning aims to establish a mapping f by the following regularized
minimization functional:

f ∗ = arg min
f∈Hk

1

l

l∑
i=1

V (ri, yi, f) + γA‖f‖2A + γI‖f‖2I (1)

where V is a loss function that will be defined in Equation (7), ‖f‖2A in Equation (3) is the norm of
the function in the reproducing kernel Hilbert space (RKHS), ‖f‖2I in Equation (5) is the norm of the
function in the low dimensional manifold and γA, γI are the regularization weight parameters.
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By the representer theorem [24], the solution of Equation (1) can be defined as an expansion of kernel
function over the labeled and the unlabeled data, given by:

f(x) =
l+u∑
i=1

αiK(xi, x) + b (2)

with the bias term b and the kernel function K(xi, xj) = 〈φ(xi),φ(xj)〉, where φ(·) is a nonlinear
mapping to the RKHS.

The regularization term ‖f‖2A, which is associated with the RKHS, is defined as:

‖f‖2A = (Φα)T (Φα) = αTKα (3)

where Φ = [φ(x1), . . . ,φ(xl+u)], α = [α1, . . . ,αl+u]
T and K is the (l + u) × (l + u) kernel matrix

whose element is Kij . We adopt the Gaussian kernel given by:

Kij = K(ri, rj) = exp
(
−‖ri − rj‖2/σ2

k

)
(4)

where σ2
k is the kernel width parameter.

According to the manifold regularization, data points are samples from a low-dimensional manifold
embedded in a high-dimensional space. This is represented by the graph Laplacian and the kernel
function [6]:

‖f‖2I =
1

(l + u)2

l+u∑
i=1

l+u∑
j=1

Wij (f(ri)− f(rj))
2

=
1

(l + u)2
fTLf (5)

where L is the graph Laplacian given by L = D −W , f = [f(r1), . . . , f(rl+u)]
T , W is the adjacency

matrix of the data graph and D is the diagonal matrix given by Dii =
∑l+u

j=1Wij . In general, the edge
weights Wij are defined as a Gaussian function of the Euclidean distance, given by:

Wij = exp
(
−‖ri − rj‖2/σ2

w

)
(6)

where σ2
w is the kernel width parameter.

Minimizing ‖f‖2I is equivalent to penalizing the rapid changes of the regression function evaluated
between two data points. Therefore, γI‖f‖2I in Equation (1) controls the smoothness of the data
geometric structure.

We employ the following ε-insensitive loss function:

V (ri, yi, f) =

{
0 if |f(ri)− yi| < ε

|f(ri)− yi| − ε otherwise
(7)

Minimizing the loss function Equation (7) aims to bound the estimated error |f(ri) − yi| within the
margin ε.
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4.2. Complete Formulation

In this subsection, the complete formulation of the semi-supervised support vector regression is
given based on the ingredients from Equations (2), (3), (5) and (7) to Equation (1). We additionally
introduce slack variables ξi, ξ∗i along with the ε-insensitive loss function in order to cope with infeasible
constraints of the optimization problem that uses only the ε constraint. Substituting Equations (2) to (7)
into Equation (1) with the slack variables ξi, ξ∗i , the primal problem is defined as:

min
α∈Rl+u,ξ∈Rl,ξ∗∈Rl

1

l

l∑
i=1

(ξi + ξ∗i ) + γAα
TKα

+
1

(l + u)2
γIα

TKLKα

subject to: yi −
l+u∑
j=1

αjKij − b ≤ ε + ξi

l+u∑
j=1

αjKij + b− yi ≤ ε + ξ∗i

ξi, ξ
∗
i ≥ 0, i = 1, . . . , l (8)

After the introduction of four sets of l multipliers β, β∗, η and η∗, the Lagrangian H associated with
the problem is:

H(α, b, ξ, ξ∗,β,β∗,η,η∗) = (9)

1

2
αT
(

2γAK +
2

(l + u)2
γIKLK

)
α +

1

l

l∑
i=1

(ξi + ξ∗i )

−
l∑

i=1

βi

(
ε + ξi − yi +

l+u∑
j=1

αjKij + b

)

−
l∑

i=1

β∗i

(
ε + ξ∗i + yi −

l+u∑
j=1

αjKij − b

)

−1

l

l∑
i=1

(ηiξi + η∗iξ
∗
i )

In order to convert the primal problem to the dual representation, we take derivatives:

∂H

∂b
=

l∑
i=1

(βi − β∗i ) = 0 (10)

∂H

∂ξ
(∗)
i

=
1

l
− β

(∗)
i −

1

l
η
(∗)
i = 0 (11)

where β
(∗)
i denotes both βi and β∗i .
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Using Equations (10) and (11), we can rewrite the Lagrangian as a function of only α, β and β∗ from
Equation (9), given by:

H(α,β,β∗) =

1

2
αT
(

2γAK +
2

(l + u)2
γIKLK

)
α− αTKJTLB

−ε
l∑

i=1

(βi + β∗i ) +
l∑

i=1

yi(βi − β∗i )

subject to :
l∑

i=1

(βi − β∗i ) = 0

0 ≤ βi,β
∗
i ≤

1

l
, i = 1, . . . , l (12)

here, JL = [Il×l ~0l×u] is an l× (l+ u) matrix, where Il×l is the l× l identity matrix and ~0l×u is the l× u
zero matrix, and B = [β1 − β∗1, . . . ,βl − β∗l ]

T .
Taking derivatives with respect to α, we obtain:

∂H

∂α
=

(
2γAK +

2

(l + u)2
γIKLK

)
α−KJTLB = 0 (13)

From Equation (13), a direct relationship between α and B is obtained as follows:

α =

(
2γAI + 2

1

(l + u)2
γILK

)−1
JTLB (14)

where I is the (l + u) × (l + u) identity matrix. Substituting Equation (14) back into the Lagrangian
Equation (12), we arrive at the convex optimization problem:

max
β∈Rl,β∗∈Rl

−1

2
BTJLK

(
2γAI +

2

(l + u)2
γILK

)−1
JTLB − ε

l∑
i=1

(βi + β∗i ) +
l∑

i=1

yi(βi − β∗i )

subject to :
l∑

i=1

(βi − β∗i ) = 0

0 ≤ βi,β
∗
i ≤

1

l
, i = 1, . . . , l (15)

The optimal solution B∗ of the above quadratic program is linked to the optimal α∗ in Equation (14).
Then, the optimal regression function f ∗(x) can be obtained by substituting α∗ = [α∗1, . . . ,α

∗
l+u]

T

into Equation (2). In summary, for the batch algorithm with given labeled and unlabeled datasets, the
basic steps for obtaining the weights α∗ are: (I) construct edge weights Wij and the graph Laplacian
L = D −W ; (II) build a kernel function K; (III) choose regularization parameters γA and γI ; and (IV)
solve the quadratic programming Equation (15).
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5. Online Semi-Supervised SVR

This section extends the semi-supervised batch SVR described in the previous section to online
semi-supervised SVR. We use the idea from [25] for online extension, i.e., adding or removing new
data, maintaining the satisfaction of the Karush–Kuhn–Tucker (KKT) conditions. The resulting solution
has the equivalent form to the batch version; thus, it does not learn the entire model again, which allows
a much faster model update.

5.1. Karush–Kuhn–Tucker Conditions of Semi-Supervised SVR

We define a margin function h(ri) for the i-th data (ri, yi) as:

h(ri) = f(ri)− yi =
l∑

j=1

PijBj − yi + b (16)

where P = KQ and Q =
(

2γAI + 2
(l+u)2

γILK
)−1

Furthermore, the (i, j)-th element of the matrix P
is defined as:

P (ri, rj) = Pij =
l+u∑
k=1

KikQkj (17)

where Kik = K(ri, rk) and Qkj = Q(rk, rj).
The Lagrange formulation of Equation (15) can be represented as:

LD =
1

2

l∑
i=1

l∑
j=1

Pij(βi − β∗i )(βj − β∗j) + ε

l∑
i=1

(βi + β∗i )

−
l∑

i=1

yi(βi − β∗i )−
l∑

i=1

(δiβi + δ∗iβ
∗
i )

+
l∑

i=1

µi(βi −
1

l
) +

l∑
i=1

µ∗i (β
∗
i −

1

l
)

+ b
l∑

i=1

yi(βi − β∗i ) (18)

Computing partial derivatives of the Lagrangian LD leads to the KKT conditions:

∂LD
∂βi

=
l∑

j=1

Pij(βj − β∗j) + ε− yi + b− δi + µi = 0 (19)

∂LD
∂β∗i

=
l∑

j=1

Pij(βj − β∗j) + ε + yi − b− δ∗i + µ∗i = 0 (20)

∂LD
∂b

=
l∑

j=1

(βj − β∗j) = 0 (21)

δ
(∗)
i ≥ 0, δ

(∗)
i β

(∗)
i = 0 (22)
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µ
(∗)
i ≥ 0, µ

(∗)
i

(
β
(∗)
i −

1

l

)
= 0 (23)

0 ≤ β
(∗)
i ≤

1

l
(24)

we recall Bi = βi − β∗i in Equation (12) and define a margin function h(xi) for the i-th data (xi, yi) as:

h(ri) = f(ri)− yi =
l∑

j=1

PijBj − yi + b (25)

By combining all of the KKT conditions from Equations (19) to (24), we can obtain the following:

h(ri) > ε, Bi = −1
l

h(ri) = ε, −1
l
< Bi < 0

−ε < h(xi) < ε, Bi = 0

h(ri) = −ε, 0 < Bi < 1
l

h(ri) < −ε, Bi = 1
l

(26)

According to Karush–Kuhn–Tucker (KKT) conditions, we can separate labeled training samples into
three subsets:

Support set S = {(ri, yi) | 0 < |Bi| < 1
l
, |h(ri)| = ε}

Error set E = {(ri, yi) | |Bi| = 1
l
, |h(ri)| > ε}

Remaining set R = {(ri, yi) | |Bi| = 0, |h(ri)| < ε}
(27)

5.2. Adding a New Sample

Let us denote a new sample and corresponding coefficient by (rc, yc), Bc whose initial value is set to
zero. When the new sample is added, Bi (for i = 1, · · · , l), b and Bc are updated. The variation of the
margin is given by:

∆h(ri) =
l∑

j=1

Pij∆Bj + Pic∆Bc + ∆b (28)

The sum of all of the coefficients should remain zero according to Equation (10), which, in turn, can
be written as:

∆Bc +
l∑

i=1

∆Bi = 0 (29)

By the KKT conditions in Equation (27), only the support set samples can change Bi. Furthermore,
for the support set samples, the margin function is always ε, so the variation of the margin function is
zero. Thus, Equations (28) and (29) can be represented to discover the values of the variations of B and
b, in the following: [

∆b ∆Bs1 · · · ∆Bsls
]T

= κ∆Bc (30)

where:

κ =
[
κb κs1 · · · κsls

]T
(31)

= −M
[

1 Ps1c · · · Pslsc

]T
(32)
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and:

M =


0 1 · · · 1

1 Ps1s1 · · · Ps1sls
...

... . . . ...
1 Pslss1 · · · Pslssls


−1

(33)

This states that we can update Bi for (ri, yi) ∈ S and b when Bc is given. Moreover, h(ri) for
(ri, yi) ∈ S are consistent according to Equation (27).

5.3. Recursive Update of Inverse Matrix

Calculating the inverse matrix Equation (33) can be inefficient. Fortunately, Ma et al. [25] and
Martin [26] suggest a recursive algorithm to update M Equation (33) without explicitly computing the
inverse. This method also can be used for our algorithm. When a sample (ri, yi) is added to the set S,
the new matrix M can be updated in the following:

Mnew =

[
M ~0

~0T 0

]
+

1

νi

[
κM

1

] [
κTM 1

]
(34)

where:
κM = −M

[
1 Pis1 · · · Pisls

]T
(35)

νi = Pii +
[

1 Pis1 · · · Pisls

]
κM (36)

and ~0 is the (ls + 1)× 1 zero vector.
When the k-th sample (rk, yk) in the set S is removed, M can be updated by:

Mnew
ij = Mij −MikMkj/Mkk (37)

for i, j ∈ [1, · · · , k, k + 2, · · · , ls + 1].

5.4. Incremental and Decremental Algorithms

Since the standard online SVR was developed in [25], many other researches, such as [27–29], had
followed its incremental and decremental algorithms that update the variation ∆Bc caused by a new
sample or a removed sample, for the quick termination of the online learning. The only difference in
comparison with the existing online SVR is making the kernel matrixK and the graph LaplacianL before
starting the incremental and decremental algorithms. Therefore, the same incremental and decremental
algorithms can be used once we build K and L. We skip the details (see Section 3.2 and Appendix
in [25]) to avoid overlap.

We close this section with remarks on the usages of the incremental and decremental algorithms. The
incremental algorithm is used whenever a new data point comes in. However, maintaining all data whose
volume increases over time is inefficient for calculation speed and memory. As a solution to this problem,
the decremental algorithm is used to limit the data size by forgetting useless or less important data. The
concept of support vectors offers a natural criterion for this. The useless dataset is defined as the training
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data in the set R. Furthermore, less important data are defined as the training data within S ∪ E, which
have small coefficients Bi that slightly affect the margin function in Equation (25). The relationship
between localization performance and calculation time, when adopting the decremental algorithm, will
be analyzed in Section 6.3.

6. Experiments

For evaluation of the online learning algorithms, we assume that the target location corresponding
RSSI measurements at any time are available as labeled training data.

This section describes the comparative algorithms in Section 6.1 and the parameter setting in
Section 6.2. In Section 6.3, localization results are shown when we vary the initial training data
amount and intentionally change an environment. In Section 6.4, the results are shown when we apply
decremental algorithm. In Section 6.5, Kalman filter-based fingerprinting methods are compared.

6.1. Comparative Algorithms

The proposed algorithm is compared with other recently-developed learning algorithms, summarized
in Table 1.

Table 1. Comparative algorithms. SVR, support vector regression.

Learning Method Semi-Supervised Online

Semi-Supervised Manifold Learning [15] © ×

Gaussian Process [19] × ©

Semi-Supervised Colocalization [14] © ©

Online Semi-Supervised SVR (developed) © ©

6.1.1. Semi-Supervised Colocalization

Similarly to our algorithm, this builds an optimization problem with a loss function and graph
Laplacian. As a training set, semi-supervised colocalization (SSC) uses target location, locations of
sensor nodes and RSSI measurements. Given RSSI measurements as test data, SSC estimates the
location of the target and also the locations of the sensor nodes in order to recover unknown locations
of the sensor nodes in the training set. For better target tracking performance, many labeled (known)
locations of sensor nodes are needed.

6.1.2. Gaussian Process

For RSSI-based localization, a Gaussian process makes a probabilistic distribution that represents
where the target is located. Similar to SSC, the online GP of [19] also needs an assumption that the
locations of all sensor nodes are known, while the SVR-based method does not need to know the sensor
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locations. We give SSC and GP advantageous information of the locations of the sensor nodes for all
experiments. Localization using GP in a wireless sensor network is studied in our previous work.

6.1.3. Semi-Supervised Manifold Learning

Semi-supervised manifold learning (SSML) is extended from Laplacian regularized least squares
(LapRLS [30]) by modifying a classification problem to a regression problem. Because this method uses
fast linear optimization, it can be suitable for real-time applications. However, this is inaccurate, and only
the batch version has been reported. In order to compare online tracking performance dealing with new
incoming data, we perform SSML whenever a new data point comes, enduring a long calculation time.

6.2. Parameter Setting

All tuning parameters are optimized by 10-fold cross-validation [31] using 40 labeled data and 30
unlabeled data. We set optimal kernel parameters minimizing the training error. Figure 2 shows the
training error curves of the used algorithms with respect to the tuning parameters. The training error is
defined as CV (cross-validation) error, given by:

CV error =
1

K

K∑
k=1

Ek(λ1, λ2, . . .)

Ek(λ1, λ2, . . .) =

√√√√ 1

N

N∑
i=1

‖ŷi − yi‖22

where K = 10 is the number of the fold, Ek is the RMSE (root mean squared error) of one fold, N is
the number of data in one fold, ŷi is the estimated location, yi is the true location and ‖ · ‖2 denotes the
vector two-norm. Variables of CV error are defined as λ1 = σk in Figure 2a and λ1 = γI , λ2 = γA in
Figure 2b.

All of the compared learning algorithms use common kernel function Equation (4). The kernel
parameter σk in Equation (4) is selected to be smaller than 1.5, avoiding extremely small values, which
yield large RMSE in all of the methods, as shown in Figure 2a. The parameter ε in Equation (7) is set
to 0.02, after the similar analysis in the range [0.01, 1]. Small changes in the tuning parameters do not
affect training error much.

The parameters γI and γA are additional parameters for OSS-SVR, as described in Section 4. As
γI increases, the influence of unlabeled data increases by Equation (1). Therefore, γI determines the
impact of unlabeled data. As can be seen in Figure 2b, γI is more sensitive than γA. Therefore, we find
a proper range of γA first and, then, select good values for γI , γA.

In general, the graph Laplacian Equation (6) is built with k-nearest neighbor data points. When the
graph Laplacian with k-nearest neighbors is updated online with new data, however, calculation of the
new graph Laplacian is quite slow, because it has to find new neighbors and make new kernel matrices.
This has to be repeated while ∆Bi, ∆b, ∆Bc and ∆h(xi) are being updated using Equation (30). To
avoid this complex process, we build the graph Laplacian with all data points instead of the k-nearest
data points. Therefore, we can quickly update the graph Laplacian with the additional advantage of no
need for finding optimal parameter k.
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Figure 2. CV (cross-validation) error over the validation set as (a) a function of the kernel
parameter for all compared methods and (b) a function of regularization parameters γI , γA
for online semi-supervised (OSS)-SVR.

6.3. Localization Results for a Circular Trajectory

In this section, we test localization algorithms where the target moves along a circular path. First, we
show the online tracking results of each algorithm with respect to the repeated target motion. Second,
we compare performance varying the amount of initial training data. Third, we examine localization
performance when the system model is disturbed by bias noise.

First, Figure 3 shows the online tracking result when no initial labeled data and 30 initial unlabeled
data points are used for each algorithm. Moreover, a new labeled data point is learned per time step. The
number on the title of each figure indicates how many laps the target has moved. Overall, localization
performances, except GP, tend to improve over time, because they learn the repeated relationship
between RSSI measurements and target positions. In this experiment, we compare the capability of
the algorithms for accuracy and speed of convergence to the true trajectory. In Figure 3, although
10 repetitions passed, SSC, SSML and GP do not approach the true trajectory. On the other hand,
our algorithm gets close to the true trajectory in only four repetitions. In comparison with all of the
others, the proposed online semi-supervised SVR (OSS-SVR) gives the best accurate localization with
the fastest convergence.

Next, we vary the initial number of labeled training data and show localization error during two laps
of the target motion. Localization error is defined as the root mean squared error (RMSE), given by:

RMSE =

√√√√1/T
T∑
t=1

‖ŷt − yt‖22 (38)

where ‖ · ‖2 denotes the vector two-norm, ŷt is the estimated location, yt is the true location at time
step t and T is the duration of two laps of the target moving. For all of the methods, the same
unlabeled data (total 30 points) are used along with the randomly-picked labeled data. Figure 4a shows
the mean-standard deviation over 10 repetitions in order to reduce the statistical variability of the
randomly-picked labeled data. We can observe that our method gives the smallest error and deviation
over the variation of labeled data.
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Figure 3. Localization results of a circular trajectory for four different methods. Target
circles ground repeatedly, whose true trajectory is marked by the blue-circled line, and the
estimated path is shown in red line. All of the figures show online tracking results where the
title number of each figure indicates the number of laps the target has made.

Finally, when the environment is changed, we examine the robustness or fast recovery to an accurate
solution of each online learning. Figure 4b shows how fast and accurate they learn the changed model
under the same experimental setup used in Figure 3. At this time, localization error is defined by

RMSE =
√

1/20
∑i

t=i−19 ‖ŷt − yt‖22, with current time step i. We intentionally force constant bias
noise, whose magnitude is 10% of the maximum RSSI value, into the measurements of one sensor node.
The bias noise is added (i.e., at 10 seconds in Figure 4b) just after the learning models of each algorithm
have converged. Our method quickly builds a corrected learning model leading to the best estimation,
while SSC shows large error to the bias noise and slow recovery. We note that SSML and GP are not
much affected by bias noise, because the online GP of [19] uses only current sensor measurement and
SSML trains all of the old and current data per every time step. Therefore, the bias noise does not have
meaning for the two methods. However in the long run, they cannot approach accurate estimation in
comparison with SSC and OSS-SVR.
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Figure 4. Localization performance of circular trajectory according to (a) the number of
labeled data and (b) the change of the model interrupted by bias noise.

6.4. Localization Results for a Sinusoidal Trajectory

In the experimental setting of the prior section, the target moved in a circular trajectory in order to
show visual localization results. In this section, a more complex target path is made, as in Figure 5a, to
search the whole area. In the case of the online learning, many training data points stack up. Therefore,
we limit the amount of training data using a decremental algorithm. For OSS-SVR, a data point having
the lowest support value is removed. For the other methods, the oldest data point is removed sequentially.
Those data points are removed when the RMSE is smaller than a pre-defined threshold value. We set 0.3
for OSS-SVR and SSC and 1.0 for SSML as the threshold values, because each method has different
values for the final error. Figure 5 shows the online tracking results when no initial labeled data and 30
initial unlabeled data points are used. As shown in Figure 5b, OSS-SVR yields the best accuracy with
the fastest convergence. During the early time steps, OSS-SVR may take a slightly longer time than the
others in Figure 5c. As time passes, however, the computation time remains bounded to being small,
because the well-learned model does not spend much time for learning the new training data.
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Figure 5. Localization performance of a sinusoidal trajectory, when we apply a decremental
algorithm to each method in order to limit the amount of training data. (a) Target path;
(b) localization error; and (c) calculation time.
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6.5. Localization Results of Kalman Filter-Based Fingerprinting

Fingerprinting methods can be further improved for tracking a moving target. This section shows an
extended localization algorithm where the fingerprinting methods are combined with the Kalman filter.
The target state takes the form Tt = [yXt, yYt, vXt, vYt]

T where yXt, yYt are 2D positions and vXt, vYt are
2D velocities. The state dynamics are given by:

Tt = FTt−1 + Γσ (39)

where four-by-four matrix F is given by [1 0 ∆t 0; 0 1 0 ∆t; 0 0 1 0; 0 0 0 1] and Γσ is a Gaussian noise,
whose mean is zero and variance is Σσ. The variance matrix Σσ is a diagonal matrix whose diagonal
elements are σ2

X, σ2
Y, σ2

vX
and σ2

vY
, respectively.

We use the estimated position obtained from the fingerprinting methods as the observation of the
Kalman filter, i.e., Zt = [ŷXt, ŷYt]

T , where ŷXt, ŷYt are the estimated position from the fingerprinting
learning method, such as OSS-SVR, SSC, SSML and GP. Therefore, the measurements are given by:

Zt = HTt + Γε (40)

where two-by-four matrix H is given by [1 0 0 0; 0 1 0 0] and Γε is a Gaussian noise, whose mean is zero
and variance is Σε. The variance matrix Σε is a diagonal matrix whose diagonal elements are ε2. Then,
iterative updates of dynamic and observation model are implemented.

We compare the results of the Kalman filter-based localization of SSML, GP, SSC and our
algorithm. The experimental trajectory is same as Figure 5a. In this scenario, we use 100 initial
labeled training data points and 50 initial unlabeled data points. As shown in Figure 6, all of the
Kalman filter-based localization results provide better accuracy than the basic fingerprinting methods
in Figure 5b. Furthermore, in Figure 6, the suggested algorithm gives the greatest accuracy when the
Kalman filter is combined.
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Figure 6. Comparison of Kalman filter-based localization of SSML, GP and our algorithm.
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7. Conclusions

This paper proposes an online semi-supervised regression algorithm by combining the core concepts
of the manifold regularization framework and the supervised online SVR. By taking advantage of
both semi-supervised learning and online learning, our algorithm achieves good accuracy using only
a small number of labeled training data and automatically tracks the change of the system to be learned.
Furthermore, support vectors are used to decide the importance of a data point in a straightforward
manner, allowing minimal memory usage. In comparison with the three state-of-the-art learning methods
for target localization using WSN, the proposed algorithm yields the most precise performance of online
estimation and rapid recovery to accurate estimation after bias noise is added. Moreover, computation
of the suggested algorithm is fast, while maintaining the best accuracy in comparison with the other
methods. Furthermore, we formulate a Kalman filter-based fingerprinting localization in order to track a
moving target more smoothly and accurately.
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