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Abstract: A number of research works has studied packet scheduling policies in energy
scavenging wireless sensor networks, based on the predicted amount of harvested energy.
Most of them aim to achieve energy neutrality, which means that an embedded system can
operate perpetually while meeting application requirements. Unlike other renewable energy
sources, solar energy has the feature of distinct periodicity in the amount of harvested energy
over a day. Using this feature, this paper proposes a packet transmission control policy that
can enhance the network performance while keeping sensor nodes alive. Furthermore, this
paper suggests a novel solar energy prediction method that exploits the relation between
cloudiness and solar radiation. The experimental results and analyses show that the proposed
packet transmission policy outperforms others in terms of the deadline miss rate and data
throughput. Furthermore, the proposed solar energy prediction method can predict more
accurately than others by 6.92%.
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1. Introduction

Energy management is one of the essential factors in an embedded system due to the energy
limitation. In wireless sensor networks (WSNs), sensor nodes collect various environmental data, such
as temperature, humidity, sound and pressure. The faster the sensed data are sent to the server, the more
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valuable the data are, as they reflect the current situation more accurately. However, the data may not
be delivered always the minute that it is collected due to the energy constraint of sensor nodes. A WSN
suffers from the problem of small device dimensions. The device dimensions are related to the energy
management, since a large battery cannot be equipped. Although many researchers have studied how
to improve energy efficiency and how to enhance battery capacity, the lifetime of sensor nodes is still
limited. Thus, an alternative technology is garnering attention, which is an energy harvesting system
that acquires energy from various environmental sources, like the Sun, wind or pressure [1]. The past
energy management in WSN focused on saving energy to prevent battery discharge. On the other hand,
in the energy harvesting system, it is important to keep an energy-neutral policy, which means that
the sensor node permanently maintains the performance demanded by user applications without power
dissipation [2].

For an effective energy neutral policy, the system should be able to accurately predict the amount of
energy that will be harvested in the future. The prediction methods are categorized depending on the
type of utilized information. Some research predicts the current energy harvesting efficiency based on
the harvested energy in the past. The others use weather information. These kinds of prediction methods
provide better performance than the former, since they consider weather factors that are changing quickly
in a short time. This prediction, however, requires high computational complexity and needs to sense
environmental data for a long time to find a particular coefficient, although it is accurate within a variety
of times ranging from three hours to a week.

This paper consists of two parts: energy harvesting prediction and data transmission period control.
First, we predict the amount of harvested energy for the next three hours by using simple weather
information. While existing prediction methods require a lot of weather factors, our method leverages
just a few weather factors, which are the information of the past insolation and the cloud amount. From
the relation between the two kinds of information, the amount of future solar radiation is deduced,
so the proposed prediction method need not have a high computational or sensing overhead despite its
high accuracy.

Second, we propose ACSE (adaptive control of packet transmission period with solar energy
harvesting prediction) to control the packet transmission period based on our energy harvesting
prediction. The basic philosophy is very simple: when energy is harvested plentifully, sensor nodes
increase the throughput by shortening the transmission period. In the opposite case, they reduce
energy consumption by lengthening the transmission period. ACSE aims to maintain the performance
permanently while enhancing network throughput in the case of abundant solar insolation. It is easier to
estimate solar energy harvesting than other renewable energy, because it has obvious features, like the
distinct periodicity over a day. Such a feature is used by sensors to get a balance between throughput and
energy consumption. As a result, the sensor node can maximally utilize the battery, relieving the worry
about their battery dissipation.

The rest of the paper is organized as follows: Section 2 examines the related work about energy
harvesting prediction and the packet scheduling policy considering the amount of harvested energy.
Section 3 proposes a solar energy prediction method based on cloudiness and analyzes its accuracy.
Section 4 suggests our transmission period control policy based on solar energy prediction. In Section 5,
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the simulation result shows that our method has better energy efficiency and meets the deadline of
real-time works relatively well. Finally, Section 6 concludes this paper.

2. Related Work

2.1. Solar Energy Harvesting Prediction Model

EWMA (energy prediction model using exponentially weighted moving-average) uses the profile
about the amount of harvested energy in the past. The basic idea is that the amount of harvested energy
does not change remarkably in a short time. EWMA splits a day into 48 sections from zero to 47, and
each section is 30 min long. When xk denotes the amount of the energy harvested at the k-th section
and a is a weighting factor, the average of the harvested energy at each section is as in Equation (1). xk
means the k-th variance of the estimated harvesting energy. Here, how to decide the weighting factor
a is very important, because the prediction accuracy totally depends on it. However, EWMA cannot
dynamically react to environmental change.

xk = axk−1 + (1− a)xk (1)

The method called cloudy computing [3] predicts the amount of harvested solar energy, using weather
information. It is shown that EWMA is not accurate enough for the recent future within 3 h. This method
uses two main coefficients to predict harvested energy. One coefficient considers the location of the
specific region, since the solar insolation is affected by the geographical location on the Earth. The
other indicates how clear the sky is. It is insisted that the amount of harvested energy may be linearly
proportional to the clearness. However, we will prove that this is not so simple through the thorough
investigation of the past data.

Most WSN research focuses on reducing the energy consumption of sensors, but does not consider
the future harvested energy. For instance, SEA-OR (Spectrum and Energy Aware Opportunistic
Routing) [4] considers the physical location, the residual energy level and the link reliability to decide
the back off-time of the sensor nodes, but future energy was not been taken into account. On the
other hand, our method can effectively manage the energy in sensor batteries by considering the energy
harvested in the near future, preventing the battery dissipation and harvested energy dumping due to the
battery being fully charged.

2.2. WSN Policy Based on Energy Harvesting Prediction

Hsu et al. [5] suggests a power control policy in energy harvesting systems. For energy neutrality, they
control the duty cycle of sensor nodes by making them switch between the active and the sleep mode
repeatedly. However, they consider only constant data generation, so this is not suitable for real-time
services, such as intrusion detection and volcano eruption monitoring.

LSA (lazy scheduling algorithm) [6] schedules packet transmission considering not only energy, but
also the packet deadline. The authors insist on using lazy scheduling to solve the problem of the lack
of energy, which can occur if greedy scheduling is applied to energy harvesting networks. However, the
method may often miss the deadline of burst data.
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The papers above have in common the assumption of constant data generation only. This assumption
does not match real-time applications in WSN. Furthermore, they assume that the amount of the
harvested energy can be predicted very accurately. However, this is dangerous, since solar energy
significantly fluctuates depending on the weather. Our study relieves those assumptions and overcomes
such limitations.

3. Energy Harvesting Prediction

The proposed scheme predicts the future insolation by analyzing the relation between the past
insolation and the cloud amount. Cloudy computing [3] has to collect the sunshine intensity at a specific
area for several months to predict harvested energy. On the contrary, our method brings past weather
information from KMA (Korea Meteorological Administration), as shown in Figure 1, without collecting
this large amount of data. Thus, this system can be quickly deployed and used in any region without
much advance preparation. Furthermore, the server estimates the future insolation based on the KMA
data on behalf of sensor nodes and broadcasts it to the sensors. Therefore, each sensor does not have to
receive a large amount of data from KMA and can save its energy for computation. In addition, since the
server was designed to deal with weather data presented in the XML format (KMA provides the data in
XML format), our system can be used in any country if their meteorological administration provides the
weather data in an XML-compatible format. However, there may be an issue regarding the accuracy of
the KMA data, since KMA provides data, not for the small region covered by a WSN, but for a large area,
like a city. Moreover, the KMA data are sensed every hour on the hour, not at every instant. Currently,
we argue that this kind of inaccuracy is a trade-off for the simple architecture and easy usage of the
proposed system. Later, if the data for the difference between KMA information and sensed values are
accumulated for a long time, the inaccuracy can be overcome by adopting a linear regression method.

Figure 1. The system overview.

KMA measures the cloud amount and insolation every hour. Furthermore, they provide their own
prediction on cloud amount and insolation for the next three hours. The amount of cloud is scaled from
zero to 10. The closer to 10 it is, the more clouds there are. Figure 2 shows the distribution of pairs of
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cloudiness and insolation in June from 2003 to 2012. We can see that the insolation is tightly related to
the amount of cloud. The more cloud there is, the lower the insolation intensity is. Our method predicts
the insolation intensity by using this relationship. This procedure consists of four steps. Let us examine
each step with an example:

1. Decide the date and time we want to predict the solar insolation.

The time range for which we can predict insolation is limited to three hours in the future,
because we can acquire only three-hour prediction on cloudiness from KMA. Let us assume
that we want to predict the insolation in Busan, Korea, at 3 p.m., 2 August 2013.

2. Get the past data on insolation and cloudiness from KMA.

The insolation intensity is largely affected by the Sun’s altitude, and the altitude changes with
the Earth’s revolution around the Sun. Thus, we get the data of 20 days around the targeting
date or, in the previous example, the data of 10 days before and after 2 August (from 23 July
to 12 August) are used to predict the future insolation. We also need to decide how many
years’ data will be used; then, we found out, through our experiment, that the prediction
accuracy is not improved linearly in proportion to the amount of data. Therefore, we decide
to get the data of the recent 10 years, as the prediction accuracy is not noticeably improved
although more than 10 years’ data are used.

3. Compute the average of insolation over the days that were in a similar situation in the past.

As mentioned above, we got a total of 200 data (10 years × 20 days/year) from the KMA
database, but we do not use all of the data. First, we filter out the days for which the
cloudiness situation was different from the target instant. If the degree of cloudiness was
predicted as seven by KMA at the aforementioned instant, 3 p.m., 2 August 2013, we extract
only the data of the days whose cloudiness was seven. Figure 3 shows this screening result,
with the number of days being counted for each quantized insolation intensity value (MJ/m2).
For instance, the number of days for which the insolation value was between 1.8 and 2.1 is
five. Eventually, we can estimate the insolation at the target instant by averaging all of the
insolation intensity values in Figure 3.

4. Complement the estimated insolation according to the required confidence level.

In the last step, the average of the previous insolation intensities was adopted as the
predicted insolation at the target instant. However, it is a little dangerous to use this value,
as it is in the real-time embedded system, because the real insolation can be weaker than
the estimated value. In this case, the system consumes more energy than the harvested one,
resulting in the death of the real-time system. Therefore, we need to prevent the dissipation
of the entire amount of energy by adopting a small conservative value as the estimated
insolation. We calculated the confidence intervals of the estimated insolation with various
confidence levels, α = 0.7, 0.8 and 0.9, as follows:

X ∼ N(µ, σ2), f(x) =
1

σ
√
2π
e−(x−µ)2/σ2

(2)

max a, P (X ≥ a) ≥ α (3)
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Figure 2. The insolation depending on the cloud amount in June from 2003 to 2012.

Figure 3. Quantized insolation distribution.

Figure 4 compares the actual insolation with the original estimated value and the lower bound of each
confidence interval. The actual values are always greater than the lower bounds with the confidence
level = 0.9, while they go beyond the confidence intervals associated with the other confidence levels
sometimes. As a result, it will be safe to adopt the lower bound of the confidence level = 0.9 as the
estimated value. However, note that too conservative policies yield low network throughput by forcing
the system to save too much energy even when enough residual energy remains in the battery.

Figure 5 illustrates the insolation estimated by several schemes. For the proposed method, the original
estimation values without the complementation using any confidence level are used. Although our
method overestimates the insolation sometimes, the accuracy is very high in comparison with others.
The accuracy of the proposed method and cloudy computing are 85.02% and 78.09%, respectively, the
difference being 6.92%. Particularly, EWMA excessively underestimates the insolation, with only an
accuracy of 40.52%, which may degrade the performance of the WSN too much.
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Figure 4. The comparison with the lower bounds of confidence intervals.

Figure 5. The comparison with existing algorithms.

4. ACSE: Packet Transmission Period Control

This section suggests how to control the packet transmission period based on the prediction result in
Section 3. Note that our transmission period control method, called ACSE, does not have to be combined
with our own energy harvesting prediction all of the time. Provided that another prediction method is
more accurate than our method, ACSE may give better performance by adopting it.

4.1. WSN and Task Model

Our model is similar to [7] in which a base station exists, and each sensor node has a periodic and
an aperiodic task. Figure 6 shows a system consisting of a sensor, a transceiver, an energy harvesting
module, a battery, a processor and memory. Each node sends packets to the BS (base station), and then,
the BS forwards them to the server after data aggregation. The energy level in the energy storage module
is between Bmin and Bmax. H(t, h) in Equation (4) denotes the estimated energy to be harvested for h
hours from t, and p(t) is a function to predict the amount of harvested energy for one hour starting from
time t.
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Figure 6. Energy harvesting sensor network model.

H(t, h) =

∫ t+h

t

p(x)dx, p(t) : a predictionfunction

=
t+1+h∑
x=t+1

p(x)

(4)

• An aperiodic task: A sensor node generates packets either when the condition is met or when it
receives a server query. An example of the aperiodic task is: “If the temperature is over 30 ◦C,
report its temperature immediately”. When E and R denote the packet transmission energy and
the average number of aperiodic events per hour, the total energy for h hours is defined as:

C(h) = E ×R× h (5)

• A periodic task: This task is to send a packet to the BS periodically. An example is: “Report
the temperature every 30 min for the next 5 h”. Each periodic task x is numbered from one to n.
Tx denotes the transmission period of the periodic task x. Each task has a transmission deadline;
thus, it has the minimum and the maximum period, Tminx and Tmaxx . For the periodic task, the total
energy consumption for h hours is computed as:

D(h) = hE ×
∑
x

1

Tx
, Tminx ≤ Tx ≤ Tmaxx (6)

4.2. Adaptive Transmission Period Control

The insolation intensity for a day typically has the form of a bell curve, like Figure 7, unless the
weather changes abruptly during the daytime. The actual harvested energy is proportional to both the
intensity and the conversion efficiency of the solar module. In the figure, H th and ce denote the energy
that the sensor application requires and the convergence efficiency of the solar module.
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Figure 7. The insolation intensity for a day.

We divided the energy harvesting situations into four types: increase, decrease, neutrality and deficit.
In the first three types, more energy is harvested than that required by the applications. They were
subdivided into three types depending on the estimated change of insolation for the next three hours.
If the insolation were to likely increase continuously, it is the increase type. The opposite case is the
decrease type. If the insolation were guessed to fluctuate, it is the neutrality type. On the other hand, in
the deficit type, more energy is used than the harvested energy.

Figure 8 depicts in detail how the energy harvesting type can be determined for the cases where
the harvested energy is larger than the needed energy. This case includes the increase, decrease and
neutrality types. For this decision, the gradient of the insolation change is calculated like this:

g(x1, x2) =
p(x2)− p(x1)
x2 − x1

(7)

where p(xk) is the aforementioned prediction function on the insolation at xk. The insolation is predicted
every hour.

- Increase type: The amount of harvested energy is expected to continuously increase for the next
three hours. Generally, it happens in the morning.

- Decrease type: Oppositely, as observed in the afternoon, the harvested energy is expected to
continuously decrease for the next three hours

- Neutrality type: The harvested energy dose not continuously increase nor decrease for the next
three hours. Namely, the harvested energy is predicted to fluctuate for the next three hours.

As mentioned earlier, if less energy is harvested than the energy needed, it is classified as the
deficit type.

Our method, ACSE, dynamically controls the packet transmission of periodic tasks, depending on the
energy harvesting types. The goal is to keep a WSN alive even when solar energy is not harvested at
all, so that important aperiodic packets may be delivered in real time. At the same time, the throughput
of periodic tasks should be maximized. Thus, ACSE adopts a different scheduling policy depending on
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the energy harvesting type. The scheduling policies will be described in detail later. Before that, the
notations, listed in Table 1, are introduced.

Figure 8. Decision for three energy harvesting types: increase, decrease and neutrality.

Table 1. Notation definitions.

Symbol Definition

α The proportional factor for the energy ratio
A(h) The total amount of harvested energy for the next h hours
Bp(h) The energy that the periodic tasks can use for the next h hours
Cmax(h) The maximum energy that the aperiodic tasks may use for the next h hours
D(h) The energy that the periodic tasks will use if they keep the current periods for the next h hours
hr The remaining time until the solar energy harvesting type is expected to get out of the deficit type

A(h) = H(tcur, h) (8)

Bp(h) = Bcur −Bmin + A(h)− Cmax(h) (9)

The energy increasing and decreasing ratio can be figured out by using the equations in
Equations (8)∼(10), where A(h) and Bp(h) denote the total harvested energy and the maximum energy
that the periodic tasks can use for the next h hours. Bcur is the current residual energy, and Bmin is
the minimum energy for a sensor node to keep running without harvested energy for some duration. In
our method, this Bmin was defined as the energy that the periodic tasks can use for one month with the
longest possible period of packet generation, because the rainy season in Korea is rarely longer than
one month. Thus, the minimum energy guarantees that a sensor node can provide its minimum service
even if it cannot harvest energy at all for one month. Then, Cmax(h) denotes the maximum energy that
aperiodic tasks may use for the next h hours. Actually, it is impossible to know how many aperiodic
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tasks will happen in advance, so we assume that they follow the Poisson distribution. Given an arrival
rate λ, we compute the maximum number of events that can happen for the next h hours with a higher
chance above 95%. Our method will be evaluated in the next section with various arrival rates.
Bp(h) is the energy that the periodic tasks can use for the next h hours. It is compared with D(h),

which is the energy that the periodic tasks will use for the next h hours assuming that they maintain
the current period. If Bp(h) is less than D(h), then a sensor node needs to use the longer period of its
periodic task to prevent entire energy dissipation. Otherwise, the period can be shortened to increase
the throughput, because the battery energy is enough. The ratio between Bp(h) and D(h) is defined as
the proportional factor α in Equation (10). The energy consumption for the next h hours is increased or
decreased depending on the value of α. If α is greater than one, the period of periodic tasks is shortened,
because more available energy is expected for the next h hours.

α =
Bp(h)

D(h)
(10)

ACSE has four period control policies corresponding to the four different solar energy
harvesting types.

- Neutrality policy: This policy is adopted in the neutrality type. Although the insolation intensity
is not stable, the harvested energy is expected to be larger than or equal to the requested energy.
Thus, the current periods are maintained for the next h hours.

- Increase policy: More and more energy is expected to be harvested continuously for the next h
hours. Thus, each periodic task can transmit α times as many packets as the current number of
packets. In Equation (11), Tx and Tx denote the current period and the new period, and n is the
number of periodic task applications in the sensor node. The α is greater than one.

Tx =
1

α
× Tx, Tminx ≤ Tx ≤ Tmaxx , forx = 1, · · · , n (11)

- Decrease policy: Although the harvested energy is still greater than the needed energy, the
insolation intensity is continuously weakened. Thus, the battery can be totally dissipated if the
current period is kept for a long time. The periodic tasks lengthen their periods by using α smaller
than one in Equation (11).

- Deficit policy: In the deficit type, less energy is harvested than the required energy, so staying
alive until the deficit type ends is the goal. Instead of predicting for the next h hours, simply,
ACSE firstly estimates hr, which is the remaining time until the solar energy harvesting type will
be changed into other types than the deficit type, by leveraging the weather information. Then, the
proportional factor α that is computed between Bp(hr) and D(hr) is used to control the packet
transmission period in Equation (11). Note that Bp(hr) and D(hr) denote the total energy that the
periodic tasks can use and the energy required to keep the current period until enough energy can
be harvested again.

Bp(hr) = Bcur −Bmin + A(hr)− Cmax(hr)

α =
Bp(hr)

D(hr)

(12)
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5. Performance Evaluation

Using MATLAB, we performed the simulation to evaluate ACSE in terms of energy efficiency
and throughput. Therefore, before that, we needed to estimate the amount of energy that might be
harvested during the simulation time. Setting the simulation to continue for five days from 8 a.m., 4 May
2014, we compared our estimated insolation intensity with the KMA’s report. In short, our scheme in
Section 3 could predict the future insolation fairly well with a difference of only 6.78% from the actual
value. Each sensor node had three periodic tasks and an aperiodic task that generated packets following
the Poisson distribution. Other experimental parameters are given in Table 2.

Table 2. Simulation parameters.

Parameter Value

Battery range (Bmin, Bmax) 0, 10 MJ
The number of simulation 30
The duration of simulation 120 h

The rate of the periodic tasks (R1:R2:R3) 1:1.5:2
The energy per the periodic packet (E) 28 kJ

The deadline time of the aperiodic packet 5 min
Ts, Tf 19, 7 h

The compared methods are the greedy method, lazy method and optimal packet scheduling [8].
The greedy method focuses on the transmission throughput without considering residual energy. It tries
to maximize the throughput as long as the battery power is available. On the contrary, the lazy
method emphasizes the long lifetime of the system rather than the network throughput, delaying packet
transmission as much as possible. Lastly, the optimal scheduling adjusts transmission periods so that
the total transmission time of all packets may be minimized, based on accurate energy harvesting
information. However, they did not propose any energy prediction method. In addition, they need
to know entire packets that they will send in advance; thus, they cannot handle aperiodic packets
generated irregularly.

Figure 9 shows the variance of transmission numbers against the simulation time. At first, the greedy
method sent more packets than the others, but the number of transmissions became stable during some
intervals, e.g., 9 to 25 and 31 to 47 h from the starting time. The greedy method consumed all of the
energy very quickly, and it could not send more packets until the battery was recharged. Solar energy
cannot be harvested at night. Furthermore, the solar radiation in the early morning and in the late
afternoon was not strong enough to harvest as much as the energy needed for packet transmission. On
the other hand, the lazy method held off packet transmissions throughout the simulation so long as their
deadlines had not passed. Conclusively, as time grew, the optimal and the proposed ACSE showed the
best performance in terms of throughput. Note that, mentioned before, the optimal method needs several
strict assumptions, e.g., entire packet generation information and accurate estimation of harvested energy.
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Figure 9. The number of packet transmissions.

Figure 10 illustrates the trace of the battery energy level change. The greedy method stayed at the
complete discharge of the battery for a long time. The optimal method also often made the battery
dissipate completely, since it is based on the assumption that the harvested energy can be accurately
estimated. Our experiment showed an error of 6.78% compared with the actual harvested energy. On
the other hand, the lazy method stayed at the full-charge of battery for a long time at the cost of low
throughput. In this state, more solar energy is overflowed, which may have been stored and used by
other methods. Unlike all other methods, ACSE always maintained the battery state between full charge
and complete discharge. Thus, most aperiodic packets were successfully delivered even in the nighttime.

Figure 10. The change of the battery level.

We observed the number of packets that missed the deadline due to the lack of energy.
This experiment continued for five days and was repeated 30 times. As mentioned earlier, each sensor
ran three periodic tasks and aperiodic tasks generated following the Poisson distribution. The arrival
rates, λ, were set to 4, 8 and 12, and the results are given in Table 3. When λ = 4, ACSE missed the
deadline of only three packets among a total of 491 packets, the success ratio being 99.4%. The greedy
and optimal method could not satisfy the deadlines of packets frequently due to the battery dissipation,
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as shown in Figure 10. On the other hand, the lazy method satisfies the deadline best at the cost of
throughput, since it pursues only the saving of energy for unexpected future use.

Table 3. The number of packets missing the deadline. ACSE, adaptive control of packet
transmission period with solar energy harvesting prediction.

λ Greedy Lazy ACSE Optimal

4 14 0 3 9
8 37 0 7 29
12 136 11 23 106

Besides the similar performance to the optimal scheduling in terms of throughput, ACSE also has
a lower deadline miss ratio. These advantages are because ACSE dynamically controls transmission
periods considering not only residual energy, but also the variance of harvested energy. Therefore, we
argue that the proposed method ACSE can provide reasonable and realistic performance for energy
harvesting wireless sensor network applications.

6. Conclusions

Our study suggests a novel estimation scheme for energy harvesting within three hours and ACSE
for controlling packet transmissions according to the estimated energy. The estimation scheme utilizes
weather factors, such as the past insolation and cloudiness. The scheme analyzes the correlation between
these factors with consideration of the Earth’s rotation. On the other hand, ACSE controls the packet
transmission adaptively based on the estimated harvested energy. In our experiment, the integration of
those schemes not only improved the prediction accuracy, but also enhanced the network throughput.
Additionally, ACSE showed a lower deadline missing ratio and a higher energy utilization than the
compared methods. Therefore, we can say that ACSE is an approach that can be used in a practical
network. In the future, we have to handle two more issues: First, our prediction scheme for energy
harvesting is relatively inaccurate for heavily cloudy days. Second, as mentioned earlier, the KMA data
are measured at only several points in a city; thus, the past insolation and cloudiness might be a little
different in the physical location of our sensor network. These errors can be corrected through data
collection at the real position for a long time.
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