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Abstract: Acoustic emission (AE) testing is a widely used nondestructive testing (NDT) 

method to investigate material failure. When environmental conditions are harmful for the 

operation of the sensors, waveguides are typically mounted in between the inspected 

structure and the sensor. Such waveguides can be built from different materials or have 

different designs in accordance with the experimental needs. All these variations can cause 

changes in the acoustic emission signals in terms of modal conversion, additional 

attenuation or shift in frequency content. A finite element method (FEM) was used to 

model acoustic emission signal propagation in an aluminum plate with an attached 

waveguide and was validated against experimental data. The geometry of the waveguide is 

systematically changed by varying the radius and height to investigate the influence on the 

detected signals. Different waveguide materials were implemented and change of material 

properties as function of temperature were taken into account. Development of the option 

of modeling different waveguide options replaces the time consuming and expensive trial 

and error alternative of experiments. Thus, the aim of this research has important 

implications for those who use waveguides for AE testing. 
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1. Introduction 

Waveguides are used in acoustic emission (AE) detection to perform nondestructive testing (NDT) 

of structures under extreme operation conditions. For example, where high temperatures are such that 

the AE sensor with the active element made of piezoceramic lead-zirconate-titanate (PZT) cannot 

operate. The idea to mount piezoelectric sensors outside the extreme operation conditions came from 

researchers who used waveguides for nuclear applications [1]. Lynnworth et al. [2,3] used thin rods, 

clad rods or hollow tubes in between the piezoelectric sensor and the monitored high temperature 

structure. For example metallic buffer rods were used to monitor ultrasonic waves in molten aluminum 

at a temperature of 700 °C [4]. In the past, experimental studies were carried out to evaluate how close 

an AE signal detected by a sensor mounted on a waveguide duplicates the AE signal which was 

detected without the waveguide [5]. Both signals showed good agreement in terms of their shape but 

also highlighted the fact that the signal amplitudes reduces by 13 dB for a 1.59 mm aluminum 

waveguide of 306.4 mm length. The diameter of the waveguide had also an influence on signal 

degradation indicating a loss of duplication [5]. In practice, choosing the right waveguide to be used 

for measurements which involve temperatures outside the sensor specification, radiation, aggressive 

chemical environments or just objects much smaller than the sensor can be a real challenge. Typically, 

time consuming experiments must be performed before starting the measurement on the real test 

object, which can lead to high costs or destruction of AE sensors. Alternatively, the development of 

computational power and the high level of detail provided by FEM modeling, can lead to a simulation 

of AE signals propagation in waveguides is highly advantageous. In recent years various AE 

investigations on plate specimens were supported by simulations and their results compared to 

experimental data [6–9]. For AE signal detection PZT-based sensors are usually used. Using 

multiphysics FEM modeling platforms, like Comsol Multiphysics, allows including comprehensive 

AE sensor modeling. Recently, mass-backed piezoelectric sensor elements were numerically 

investigated using coupled physics between structural mechanics, piezoelectric effects and 

electrostatics in Comsol [7,10]. The approach presented in [7] includes a detailed analysis on a simple 

non-commercial system including full 3D-geoemtries and the interaction of the PZT-material with an 

attached circuit simulation. 

The aim of this research is to investigate the waveguide (WG) influence upon AE signal 

propagation using numerical approaches taking into consideration the WGs radius and height. 

Different materials and material property changes due to the operating temperatures are included in the 

numerical investigations. The validation of the modeling approach was done by simulating the 

propagation of AE signals in a 3 mm aluminum plate with an attached stainless steel waveguide. The 

same configuration was also used to obtain experimental AE signals.  

2. Simulation Methodology 

The monitoring of guided waves in thin, plate-like structures is based mainly on the theory of plate 

waves, which are also known as Lamb waves [11–13]. In acoustic emission measurements of rather 

thin plates (e.g., the thickness of the plate being less than a few mm) the modes encountered most often 

are the fundamental symmetric mode S0 and the fundamental anti-symmetric mode A0. 
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Simulation of Lamb waves using the finite element method has already been achieved using 

different platforms [10,14,15]. In the finite element method the approach to simulate elastic waves is 

given by the time dependent solutions of partial differential equations of the equilibrium state [16]. For 

realistic modelling of experimental data, the acoustic emission sensor and the attached circuitry were 

also implemented in the model to include their interaction, which has been proven to have a strong 

impact on the AE signal [7]. Therefore, the foundation of the presented approach is based on previous 

investigations [5,17] and is now adjusted to the needs of the waveguide investigation. Our approach 

uses the Comsol FEM platform for coupling the structural mechanics module and the AC/DC module 

to model the guided wave propagation, the piezoelectric conversion and the attached circuit within a  

P-SPICE simulation. The present simulation work has two main stages which are presented in  

Figure 1. 

 

Figure 1. Overview of the present study. 

The first stage is used to validate the simulation work through experimental results and at the 

second stage different waveguide parameters are changed and their effects are investigated. 

2.1. Acoustic Emission Test Source 

As a typical test source used in literature, AE signals can be generated in plates using pencil-lead 

breaks (PLB) [5,18,19]. In this investigation the fundamental Lamb wave modes were excited using a 

monopole point source located on the top surface of the plate, acting in the out-of-plane direction. The 

temporal source characteristics can be seen in Figure 2a. It is called a “cosine bell” function selected to 

model the time dependence of the local surface deflection of the material due to a pencil-lead break. A 

maximum amplitude of 1 N was used for all simulation investigations except for the experimental 

validation of the FEM results when the maximum force amplitude was 3 N. 



Sensors 2015, 15 11808 

 

 

 

Figure 2. PLB‚ Cosine bell’ source characteristics.  

2.2. Geometry Setup  

The geometrical setup used for the simulations was chosen as close as possible to the experimental 

geometry applying some simplifications to reduce computational intensity. The 3-dimensional 

geometry used represents a 3 mm thick aluminum plate with 600 mm × 600 mm size having the AE 

sensor directly attached as seen in Figure 3a. The plate and the sensor were cut in the xz-plane to 

reduce the overall volume by a factor of two. Symmetry conditions were then chosen at the xz-plane. 

The PLB source is acting in the out-of-plane direction at the center of the plate. Previous investigations 

have shown that for this size of the plate no edge reflections occur at the detector position within  

100 µs after signal excitation.  

 

Figure 3. Geometry model for the (a) plate and sensor (b) plate, WG and sensor and  

(c) details of the conical sensor used [5]. 

The sensor presented in Figure 3c is a conical type with a 1.5 mm aperture having the active 

element made of PZT 5A material. It is attached to the plate with a full solid contact as being welded. 

The sensor location was at 100 mm distance from the PLB source. This particular sensor model was 

chosen because of the geometrical simplicity making it easy to be implemented in the FEM simulation 
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and because it was validated experimentally before [7]. All geometrical and numerical sensor 

characteristics were implemented as shown in Figure 3c and as presented in [7].  

The waveguides were placed in between the plate and the sensor, at 100 mm distance from the 

source. One WG can be seen in Figure 3b. It is a WG with a conical termination on the upper end. 

Details about this particular waveguide will be given later in the description of the experimental setup. 

The symmetry condition at the xz-plane was also used for the models which involved usage of WGs.  

3. Validation of Simulation 

In this section the experimental setup used to validate the simulation work is described. Acoustic 

emission was generated using a PLB source on an aluminum plate. The detection was done using a 

conical element sensor directly applied on the plate and a second time with a waveguide in between.  

3.1. Experimental Setup 

The first experimental setup is shown in Figure 4a. Pencil-lead breaks using 0.3 mm diameter lead 

with 2H hardness and 3 mm length were applied on top of the aluminum plate. The plate dimensions of 

2000 mm by 1000 mm wide and 3 mm thickness were large enough to avoid incident edge reflections 

at the sensor position for the duration of the direct signal. 

 

Figure 4. Photography of the experimental setup of the (a) plate and (b) details of the 

conical sensor. 

The propagation distance was chosen to be 100 mm, distance which was large enough to allow the 

full development of the fundamental Lamb waves. This testing setup was used to obtain the reference 

AE signal. Details of the conical sensor are presented in Figure 4b. On top of the backing mass is the 

small piezoelectric PZT-5A active element with 1.5 mm aperture. Medium viscosity silicone grease 

was used to attach/couple the sensing element to the backing mass but also to couple the sensor to the 

plate. For the experiment an extremely thin layer of couplant was used to remove the air present due to 

the asperities on the two surfaces that are in “contact”. Thus with the couplant in place nearly perfect 

contact is present. For the modeled cases couplant is not required as the surfaces are perfect and do not 

have asperities. Thus perfect contact is present. 
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For the second experimental investigation the conical waveguide was mounted perpendicular to the 

plate at 100 mm distance to the PLB position using low impedance materials as support structure. A 

detailed view of the setup can be seen in Figure 5a. The WG used had a circular cross section of  

3.99 mm diameter and a length of 274 mm. The conical element attached to the upper part of the WG 

has a 32.55° semi angle and 17.62 mm diameter size at the upper surface with a total length of  

10.68 mm. The same conical sensor as used in the previous investigation was mounted at the center of 

the upper surface of the WG in the same manner as in the plate case. A photograph of the waveguide 

used in the experimental measurements is presented in Figure 5b. 

 

Figure 5. Photography of the experimental setup of (a) plate and waveguide and  

(b) photography of the conical waveguide.  

In both experimental configurations, the sensor was connected to a preamplifier with a total gain of 

40 dB. All signals were acquired using threshold based signal triggering at 45 dB using a PCI-2 

acquisition card with a band-pass filter ranging from 10 kHz to 3MHz. For each configuration ten 

consecutive pencil-lead breaks were recorded. 

3.2. Simulation Details 

Numerical convergence was achieved using 1 mm maximum element size for the mesh network 

along the wave propagation path and a distribution with maximum element growth rate of 1.05 for the 

entire plate. A maximum element size of 0.5 mm was used for the sensor. The types of elements used 

were tetrahedral using a Delaunay tessellation [20] for mesh growth. These mesh settings were chosen in 

accordance with other literature concerning AE wave propagation and were found to be convergent [8,9]. 

The selected time step was also an important factor when investigating the convergence of the 

numerical solution. From the numerical investigation conducted by Sause et al., a 100 ns time step has 

shown good results having a coherence level of >0.99 [9]. A total duration of 150 µs was calculated for 

the model using a 100 ns time step without the waveguide and duration of about 250 µs for the 

investigation involving the conical waveguide. The reason for this extension of duration was to detect 

the signal on top of the waveguide. For the waveguide case, low reflecting boundary conditions were 

implemented at the boundary of the propagation domain in order to let the waves pass out without 
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reflections from the edges. Simulation results were filtered with a 4th order Butterworth high-pass 

filter at 10 kHz to take into account the experimental band-pass filter. 

For the aluminum plate, AlMg3 alloy properties were used, and for the waveguide those of steel 

were used. The elastic properties and electric properties of the materials assigned to the domains used 

in the modeling work are included in Table 1. 

Table 1. Set of material constants used in simulation. 

Property AlMg3 Steel PZT-5A 
Brass 

UNS C2600 
Alumina

Density [kg/m3] 2660 7850 7750 8627.6 3900 

Elastic modulus [GPa] 70 200 

C11 = C22 = 120.3;  
C12 = 75.2; 

C13 = C23 = 75.1;  
C44 = C55 = 21.1; 

C66 = 22.6 

113.3 300 

Poisson ratio 0.33 0.33 - 0.34 0.222 

Rod sound velocity [m/s] 5129.89 5047.54 - 3623.84 8770.5 

Piezoelectric constants [C/m2] - - 
S31 = S32 = −5.4 S33 = 15.8 

S24 = S15 = 12.3 
- - 

Electrical permittivity - - 
χ11 = 919.1 χ22 = 919.1  

χ33 = 826.6  
- - 

3.3. Comparison of Simulation vs. Experiment 

In this section the experimental signals are compared to the simulated signals in order to validate 

the modeling approach before expanding this numerical investigation to different materials, WG 

designs or operating conditions. Figure 6 shows the direct comparison between experimental signals 

and simulated signals.  

 

Figure 6. Experimental results vs. simulation results for (a) plate signal-reference  

(b) WG signal.  
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The signals detected without the WG are showing the presence of the fundamental modes S0 and A0 

in both cases. Only small discrepancies in magnitude are observed in the duration of 100 µs, which can 

be attributed to the attached circuitry for the cables and preamplifier, as previously shown in [7]. 

Beyond 100 µs duration of the simulated signal reflections from the domain edges can be observed 

contributing to the signal change in shape and amplitude. In comparison, the signals including the WG 

are looking almost the same. The amplitude of the signals is reduced for both S0 and A0 modes. For 

this case the difference between simulation and experiment may also be attributed to the attached 

circuitry but also to usage of pencil-lead breaks as test source which can induce strength variation in 

the source magnitude [21]. 

When comparing a set of different experimental signals generated by different PLBs, as presented 

in Figure 7 the variation of signal magnitude can readily be estimated. We can conclude that the 

numerical approach is feasible to describe the acoustic emission signal propagation for the simple plate 

configuration, but also when the configuration changes to a more complex setup like the conical 

shaped waveguide. 

 

Figure 7. Experimental WG signals generated by different PLBs.  

Time domain representations of simulated signals are shown in Figure 8a. An offset of 72.5 µs was 

found between the arrival time of the reference signal on the plate and the signal on the waveguide. 

The exact same value was also found for the experimental signals. This good agreement between the 

experimental and modeled signals arrival times especially validates the chosen material properties of 

Table 1. 

As generally expected, the waveguide signal is lower in amplitude vs. the signal detected directly on 

the plate. The reduced amplitude detected by the sensor mounted on the waveguide can be attributed to 

the effect of WG diameter change but also to the loss of higher frequencies of the S0 and A0 modes 

which are not properly transferred to the WG as shown in previous experimental investigations [5]. A 

detailed view of the S0 mode is shown in Figure 8b. Careful inspection of the time domain signals 

reveals that not all modes are attenuated equivalently. The S0 mode detected on top of the WG exhibits 

an increased amplitude when compared with the reference signal. This can be due to the larger aperture 
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of the waveguide in comparison to the sensor aperture. This tendency was pointed out before by  

Sause et al., in the investigation concerning acoustic sensor modeling [7].  

 

Figure 8. Comparison between (a) simulated signals and (b) simulation signals with a 

detail view of the S0 mode and (c) FFTs of simulated and experimental signals. 

In order to demonstrate the signal attenuation due to the initial transmission from the plate and by 

traveling through the waveguide all results were transformed into the frequency domain using the Fast 

Fourier Transformation (FFT). The frequency spectra of the respective signals are shown in Figure 8c. 

The magnitude is compared in the low frequency range between 0 and 100 kHz. The overall  

magnitude difference was found to be 10 dB between the reference signals and the signals detected on  

the waveguide. 

4. Parameter Study 

4.1. Influence of Waveguide Geometry and Material 

The conical shaped WG geometry described in the previous section was primarily used for the 

validation purpose to comply with the experimental setup. For all other simulation studies a simple 

WG with constant circular cross section was used as shown in Figure 9. The geometrical impact upon 

the AE propagation was studied by changes in the geometry and radius of the WG as can be seen in 

Figure 9.  
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Figure 9. Schematic geometry of the waveguide cases studied. 

Four different WG lengths were implemented ranging from 76.5 mm to 306.3 mm. The diameter 

was changed from 0.795 mm to 7.950 mm in eight steps. Details of all considered values are reported 

in Table 2.  

Table 2. Parameters for cases studies. 

Parameters Constant Values Varied Values 

Length variation [mm] Diameter = 1.59 76.57 153.15 229.71 306.3  

Diameter variation [mm] Length = 306.3 0.79 1.59 2.38 3.18 3.97 4.77 5.56 7.9 

Material variation 
Diameter = 1.59 

Length = 306.3 
Aluminum Steel Alumina Brass 

Acoustic signal transmission can also be affected by the WG material. Different types of materials 

were considered. For all cases the plate was made of aluminum and only the WG materials were varied 

as presented in Table 2. For all material variations the waveguide size was kept identical to assess only 

the changes of the AE signal due to the different materials. 

All calculated signals were subject to the same post processing steps in order to have comparable 

signals. The steps follow the ones used by Hamstad et al., in his experimental study regarding small 

diameter waveguide for wideband acoustic emission [5], which were also used by the authors in a 

previous investigation [17]. Keeping the same data processing allows comparing this work with the 

previous findings in a direct way. The data processing steps used are: 

• The WG signal was shifted forward in time to superimpose  

• All signals were terminated at a convenient zero 

• All signals were extended with 0 values to a total length of 2048 points 

• The Fast Fourier Transformation (FFT) was calculated with a square window function 

• The resulting FFTs were smoothed by a 30 point Savitzky-Golay (5th polynomial) method 

• The FFTs magnitudes were compared from 0 to 100 kHz. 

4.1.1. Influence of WG Diameter  

As in the validation step, the reference signal considered here is the one detected directly on plate. 

All the signals detected on top of the waveguides are considered to carry the “waveguide signature”. In 
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Figure 10 the time domain representation of the calculated signals are directly compared. First, only 

the extreme cases were chosen to be plotted. The first signal plotted with red colour corresponds to the 

WG with 0.794 mm diameter and the blue one is given by the model with a ten times larger waveguide 

diameter. Those two cases are directly compared with the reference signal (black). The detected WG 

signals are clearly showing the presence of both fundamental A0 and S0 modes, duplicating the shape 

of the signal which was initially propagating in the plate. In the smallest rod case (0.795 mm 

diameter), the duplicated WG sensor signal is very small in amplitude in comparison to the reference 

signal. In contrast, the larger diameter WG transmits a signal of almost the same amplitude and shape 

particularly in the A0 region. In Figure 10b signals generated by the models with waveguides having 

diameter dimensions in between the two extreme cases are presented. 

 

Figure 10. Time domain signals of the (a) extreme WG diameter cases and  

(b) intermediate WG diameter cases. 

Signals generated by all diameter cases were subject to a Wavelet Transformation (WT) and their 

wavelet coefficient intensity was used to extract the maximum amplitude at different frequencies. The 

WT was performed using the AGU Vallen software, with a WT diagram of the reference signal shown 

in Figure 11a.  

In order to compare the signal changes induced by the WG, the maximum magnitude of both 

fundamental modes was evaluated at constant frequency for each WG diameter case. Overall the signal 

amplitude has a tendency to increase with higher diameter WGs. 

Such a comparison can be seen in Figure 11b for the A0 mode and in Figure 12a for the S0 mode. 

The basic conclusion here is that the A0 amplitude is increasing with the WG diameter but the 

transmitted signal amplitude tends to saturate when the WG diameter dimensions approaches the value 

of 4.77 mm. The change in signal amplitude is a consequence of diameter variation of the WG, a 

finding which was found to be valid for a broad frequency range.  
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Figure 11. (a) Wavelet transform of reference case and (b) maximum A0 amplitude as 

function of WG diameter and frequency. 

 

Figure 12. Magnitude (a) of S0 mode from WT (b) from FFT.  

The same behavior is found for the S0 mode. The detected S0 mode amplitude is almost the same as 

in the reference case when a larger waveguide diameter was used. However, a lower WG diameter size 

seems to be already sufficient to achieve the same amplitude (Figure 12a). This corresponds to a 

waveguide with the diameter of 1.59 mm, a size which is close to the PZT sensor tip diameter of  

1.5 mm. Increasing waveguide diameters yield an increase of the S0 mode amplitude until it saturates 

and finally starts to decrease. From the FFT magnitudes (Figure 12b) it can also be seen that the 

highest magnitude offset of 22 dB is induced by the usage of the smallest diameter waveguide. 

4.1.2. Influence of Waveguide Length  

Waveforms of the simulations using waveguides with extreme lengths are presented in Figure 13a. 

From the time domain representation of the signals it can be seen that both fundamental modes are 

present and the wave shape is not affected much by the WG length. In the shortest WG case (height of 

76.57 mm) multiple reflections (from the ends of the WG) of the modes are detected, which are not 

present in the longest WG case. All signals computed for the four different WG lengths are presented 
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in Figure 13b. Reflections can be observed to vanish for all increasing lengths of the WGs. All signals 

were subject to FFT and analyzed with respect to their magnitude.  

  

Figure 13. Calculated signals for (a) extreme WG length cases; (b) all cases and  

(c) frequency spectra thereof. 

The frequency spectra presented in Figure 13c show that the signals from 0 to 100 kHz are reduced 

in magnitude by 10 dB, with exception being made by the shortest waveguide for which the 

attenuation is even higher at 20 dB. The latter effect is attributed to the multiple reflections which 

occur during the signal time. A time delay of 15 µs induced by each waveguide in arrival time is 

noticed, which can be associated with the 76.5 mm extra height added to each case. 

Overall the FFTs of the signals detected with waveguides of different lengths are not providing 

substantial deviations to the reference case and no significant magnitude reduction when compared 

relative to each other. Thus for the given range of investigation, the choice of the waveguide length 

does not seem to be of vital importance and thus may be adapted to the experimental needs. These may 

originate from the environmental conditions requiring the sensor to be located as far as possible from a 

harmful position. 
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4.1.3. Influence of Waveguide Material 

In practice, waveguides are made from different materials, which can have an impact on 

transmission of the signal or on the signal arrival time. In this section four types of waveguides are 

analyzed: metallic WGs made of aluminum, steel, brass and one ceramic WG made of alumina  

(cf. Table 1). All simulated waveguides are of the same diameter (1.59 mm) and length (306.3 mm). 

Comparison is made in the time domain representation of the signals to identify shape changes, shifts 

of arrival times or modal conversions and also using frequency spectra to compare the magnitude 

changes as function frequency. All other model parameters were kept identical to the reference case.  

In Figure 14 simulated signals of the waveguides are presented in comparison with the reference 

signal. The time delay between signals was not eliminated in order to visualize the material influence. 

The reference case shows the arrivals of the fundamental modes after 20.5 µs for S0 and 32.4 µs for A0. 

The aluminum WG induces a delay of 60.2 µs in arrival time, the steel WG 66.84 µs and the brass WG 

imposes an arrival time difference of 97.98 µs. In Figure 14b a comparison between the reference 

signal and the signal obtained on top of the ceramic WG is made. The difference in arrival time of 

32.94 µs is much smaller in this case due to the high sound velocity of the alumina. For the same 

reason a first reflection of the modes is detected within the 150 µs duration. The presence of the S0 and 

A0 modes is clearly observed in all signals and no conversion of the modes was noticed. 

 

Figure 14. Calculated signals for (a) metallic waveguides and (b) ceramic waveguide. 

Choosing an appropriate waveguide material can be a solution to obtain higher amplitudes. Signal 

transmission coefficients depend on the acoustic impedance of the materials forming the interface. The 

FFTs presented in Figure 15a show similar frequency spectra in the frequency range up to 1 MHz, but 

a clear difference in magnitude is noticed when compared to the reference signal or when compared 

relative to each other. 

The largest decrease in magnitude is observed when using an aluminum waveguide with a total 

decrease of about 10 dB. Less amplitude reduction was observed in the case of a Steel WG and the 

alumina WG, both being about 3.5 dB. The transmission coefficients for the brass waveguide are 

somewhere in between steel and aluminum, but the signal detected in this case has 5 dB less amplitude 

than the reference signal. Transmission coefficients can be calculated when knowing the incident wave 
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amplitude and the amplitude of the wave traveling into the waveguide. In Figure 15b a graphical 

representation of the calculated transmission coefficients for the A0 mode are plotted for all material 

combinations. The signal amplitudes were extracted using the maximum magnitude of the signals WT 

at constant frequency of 50 kHz. The highest signal transmission is obviously achieved when using 

steel and alumina waveguides. 

 

Figure 15. (a) Calculated FFT spectra and (b) A0 transmission coefficients.  

4.2. Influence of Waveguide Temperature  

Changes in waveguides due to temperature are an important factor when considering the usage of 

waveguides in acoustic emission measurements. Typical questions of sufficient waveguide length in 

order to avoid harmful temperatures at the sensor position arise when conducting measurements in 

such extreme temperature conditions. In this section, the presented model is extended by a coupled 

heat transfer analysis. This was implemented in Comsol Multiphysics by adding the Heat Transfer 

module to the previous modules. A two-steps study was used for the computation. The first study step 

was considered to be stationary and was used to solve the heat transfer equations assuming that the 

temperature is in a stationary state during the moment of signal propagation. The temperature 

distribution inside the waveguide was obtained by two temperature boundary conditions. At the plate 

all boundaries were set to 520 °C and on the upper end of the waveguide, the boundary was set at  

20 °C temperature.  

The obtained temperature distribution after the stationary study step can be seen in Figure 16a. In 

the second study step, the model was solved as previously described, but with the superimposed 

temperature distribution and temperature dependent material properties as listed in Table 3. The WG 

and plate material used for this simulation was the iron alloy UNS K12211. The waveguide used had a 

circular cross section with a diameter of 1.59 mm and a length of 306.3 mm. 

To compare the results and to see the impact of the temperature on signal propagation, a second 

model with all components at room temperature of 20 °C was used as reference. All calculations were 

performed for 160 µs duration. The time domain signals in Figure 16b show two signals which are 

dominated by the A0 mode with no significant difference in shape and amplitude. A time delay of  
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1.65 µs in arrival time is noticed, which can be directly related to the change of material properties and 

geometric expansion due to the temperature difference. 

In summary, the overall appearance of the signals in Figure 16b leads to the conclusion that 

temperature difference of 500 °C has almost no effect on the signal shape and amplitude as long as the 

material properties change only for the same amount as the iron alloy UNS K12211 investigated in the 

present case. 

 

Figure 16. (a) Temperature distribution in plate and waveguide and (b) comparison of 

signals at room temperature and with elevated temperature.  

Table 3. Temperature-dependent material properties. 

Property UNS K12211 

Density [kg/m3] 
7919.309 െ 0.124948 ∗ ܶଵ െ 2.88651 10ିସ ∗ ܶଶ ൅ 1.131694	10ି଻ ∗ ܶଷ ݂ݎ݋ ܭ293 ൏ ܶ ൑  ܭ1605

Elastic modulus [GPa] 
2.109875 10ଵଵ ൅ 3.572844 10଻ ∗ ܶଵ െ 106319.6 ∗ ܶଶ ݂ݎ݋ ܭ293 ൏ ܶ ൑  ܭ1605

Poisson ratio 
0.2712267 ൅ ܧ7.030261 10ିହ ∗ ܶଵ െ 3.856929 10ି଼ ∗ ܶଶ ൅ 1.246582	10ିଵଵ ∗ ܶଷ ݂ݎ݋ ܭ273 ൏ ܶ ൑  ܭ1053

Thermal conductivity 

[W/m*K] 

1.842649 10ଵଵ െ 2.509462 10଻ ∗ ܶଵ െ 28588.37 ∗ ܶଶ ݂ݎ݋ ܭ273 ൏ ܶ ൑  ܭ1500

Heat capacity at 

constant pressure 

[J/kg*K] 

െ215.7306 ൅ 6.0185 ∗ ܶଵ െ 0.01834293 ∗ ܶଶ ൅ 2.414973 10ିହ ∗ ܶଷ െ 1.078824 10ି଼ ∗ ܶସ ݂ݎ݋ ܭ293 ൏ ܶ ൑  ܭ848

5. Conclusions 

In this paper it has been shown that finite element modeling can be used to simulate acoustic 

emission wave propagation generated by pencil-lead breaks in thin plates and rods. Experimental work 

conducted in this research has been used to validate the presented simulation approach. 

Extended numerical investigations have been used to evaluate the influence of the waveguides 

geometry and material on signal propagation. It has been demonstrated that the waveguide diameter 
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will predominantly affect the signal amplitude. For example an aluminum waveguide with 4.77 mm 

diameter allows reaching the same signal A0 mode amplitude as a direct detection of the signal on the 

plate. The waveguide length did not show a significant influence on the detected signals as far as their 

frequency spectra is concerned but may lead to early reflections if chosen too short. Acoustic 

impedance mismatches were analyzed by changing the waveguide materials. Steel or alumina 

waveguides were found to improve the detection of signals in an aluminum plate by 65% in terms of 

magnitude when compared with an aluminum waveguide. Also the impact of the waveguide material 

may be considered for further investigations, when the signal arrival time may have an impact on the 

sensor operation or possibly destruction if it is exposed to extreme environmental conditions. The 

numerical investigation concerning the influence of elevated temperatures on acoustic signal 

propagation has demonstrated the possibilities of a coupled multiphysics analysis. It could be 

observed, that no significant changes of the signal occur, despite of the 500 °C temperature difference 

between the plate and the end of the waveguide (detection point). This work emphasizes the possibility of 

modern computational methods to replace some experimental efforts by skilled numerical analysis using 

FEM methods to establish a suitable type of waveguide for an indirect acoustic emission measurement.  
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