
Sensors 2015, 15, 11528-11550; doi:10.3390/s150511528
OPEN ACCESS

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

Semi-Supervised Bayesian Classification of Materials with
Impact-Echo Signals
Jorge Igual *, Addisson Salazar, Gonzalo Safont and Luis Vergara

Departamento de Comunicaciones, Universitat Politecnica de Valencia, Camino de Vera s/n,
46022 Valencia, Spain; E-Mails: asalazar@dcom.upv.es (A.S.); gonsaar@upvnet.upv.es (G.S.);
lvergara@dcom.upv.es (L.V.)

* Author to whom correspondence should be addressed; E-Mail: jigual@dcom.upv.es;
Tel.: +34-966-528-515.

Academic Editor: Vittorio M.N. Passaro

Received: 23 March 2015 / Accepted: 11 May 2015 / Published: 19 May 2015

Abstract: The detection and identification of internal defects in a material require the
use of some technology that translates the hidden interior damages into observable signals
with different signature-defect correspondences. We apply impact-echo techniques for this
purpose. The materials are classified according to their defective status (homogeneous,
one defect or multiple defects) and kind of defect (hole or crack, passing through or
not). Every specimen is impacted by a hammer, and the spectrum of the propagated wave
is recorded. This spectrum is the input data to a Bayesian classifier that is based on the
modeling of the conditional probabilities with a mixture of Gaussians. The parameters
of the Gaussian mixtures and the class probabilities are estimated using an extended
expectation-maximization algorithm. The advantage of our proposal is that it is flexible,
since it obtains good results for a wide range of models even under little supervision;
e.g., it obtains a harmonic average of precision and recall value of 92.38% given only a
10% supervision ratio. We test the method with real specimens made of aluminum alloy.
The results show that the algorithm works very well. This technique could be applied in
many industrial problems, such as the optimization of the marble cutting process.
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1. Introduction

The field of non-destructive testing (NDT) of materials is a wide area, including any technique that
extracts information about the condition of a material specimen without altering its physical and/or
chemical properties (see, e.g., [1] for a survey of different NDT methods).

Two main elements appear in NDT: sensors and data processing. While sensors are very application
dependent and impose practical limits about monitoring resolution, data processing considers general
techniques, which may find application in a variety of significantly different NDT problems. From
another perspective, sensors are limited by the current sensor technology; meanwhile, data processing is
only limited by the required computational resources. On the other hand, non-destructive methods often
lead to automatic implementations, thus allowing “on-line” monitoring of large amounts of specimens.

The sensory system poses the essential resolution limits that can be reached to measure the material
state. However, large improvements can be achieved in the overall system performance by improving the
data processing methods. Although based on general techniques, these methods must take into account
the specific context where the NDT is to be applied. Hopefully, once success is demonstrated in that
specific context, the method could be extended to other significantly different NDT problems.

In this paper, we present a new classification method, which is specifically oriented to scenarios
where some degree of supervision is allowed. The general goal is to classify the specimen under analysis
in one of a predefined number of classes. The classifier is trained on the basis of a set of feature vectors
previously computed using the same NDT method and sensors. A subset of the whole set is labeled, while
the rest is considered of an unknown class. This is termed semi-supervised learning [2] and makes sense
in those NDT problems where some selected specimens can be “a posteriori” analyzed in a destructive
manner, so that the “true” class of the specimen could be known to train the classifier of future specimens
incoming to the system.

We apply the proposed data processing in the context of one particular NDT method: impact-echo
(IE) [3]. In this technique, a material is impacted with a hammer, which produces an acoustic response
that is collected by the sensory system located on the surface of the material. Usually, a set of sensors
are distributed across the different sides of the specimen to extract exhaustive information about its inner
state. The underlying physics is that of acoustic wave propagation in solids, where different types of
waves propagates into the solid and are recorded by properly-selected sensors when they arrive at the
surface. The waves are P-wave (normal stress), S-wave (shear stress) and R-wave (surface or Rayleigh).
Then, signal processing is performed on the collected signals to extract features that, grouped in a vector
form, are the inputs to the automatic classifier subsystem. The feature vector is preprocessed using
principal component analysis (PCA) [4]. PCA allows reducing the dimension of the input feature vector
while retaining most of the variation in the original data. It is used in many classification problems,
including the IE field [5].

IE is a low-resolution technique, which has been extensively applied to monitor the general state
of specimens. It has attractive advantages, like low cost, rapid global analysis, deeppenetration and
“on-line” processing capability. It is not appropriate for exact localization or characterization of inner
defects, where other higher resolution NDT methods, like ultrasonics, are more adequate. However, we
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will show in the experimental part of this paper that some specific information about the inner state can
be obtained by properly defining the targeted classes of the classifier.

Signal processing in IE can be roughly organized into four classes depending on the assumptions
considered: time domain, frequency domain, time-frequency domain and machine learning. The first
IE works were in the time and frequency domain. Time domain analysis is based on the estimation
of successive P-wave arrivals (multiple reflections between the parallel surfaces of a plate) that allows
the period and dominant frequency of the waveform to be estimated. In practice, the conditions of
an ideal plate are difficult to reach, and thus, a quick interpretation of the results in the time domain
is also difficult [6]. In frequency domain analysis, the fast Fourier transform (FFT) is used to obtain
the spectrum of the impact-echo signal. The value of the maximum peak frequency in the amplitude
spectrum is used to determine the thickness of the plate (see, e.g., [7]).

Spectral analysis of IE signals was improved using time-frequency techniques considering their
non-stationarity, i.e., the transient nature of the IE signals. The principal aim was to overcome the
problem of noisy signals where the reflections are not clearly distinguished in the spectrum, which
shows multiple peaks due to artificial energy added by relatively strong R-waves. This is particularly
pronounced in cases of limited dimension specimens. Several time-frequency techniques, such as
short-time Fourier transform (STFT) and Hilbert–Huang, have been applied to improve the accuracy
in thickness estimation [8,9]. Recently, systematic errors in thickness estimation from IE testing due to
near-field effects on the P-wave and R-wave were investigated [10].

The ultimate advances in IE signal processing research came from the field of machine learning and
statistical pattern recognition. These methods extract some features from signals of specimens of known
classes and use them to train a pattern recognition algorithm that can be used to classify other specimens
of an unknown class. Several NDT applications can be suited to this framework, for instance the
classification of a material depending on the kind and number of defects, which is the problem addressed
in this paper. The degrees of freedom afforded by this framework facilitate multichannel analysis,
simultaneous use of features from different domains and the combination of different NDT methods.

Some examples of the combination of IE with other NDT methods to improve the results of defect
detection problems are the following: combination with the impulse-response method for identifying
delaminations in concrete floor toppings [11] and combination with ultrasonic pulse echo and ground
penetrating radar data (GPR) for detecting built-in honeycombing in scale concrete specimens [12].

The machine learning methods most commonly applied in IE signal analysis are based in artificial
neural networks (ANN). The problems studied with these methods include: prediction of the concrete
compressive strength and thickness of concrete structures [13]; prediction of the internal grouting
quality of prestressed ducts [14]; and identification of the pull-off adhesion of the concrete layers
in floors on the basis of parameters evaluated on the structural layer surface [15]. Recently, a linear
subspace representation of the original features, called the Grassmann manifold, was applied in IE. It
was demonstrated that subspace representation could characterize relevant time-frequency distribution
patterns and form significant clusters that are separable using a distance [5].

The machine learning method proposed herein has the following advantages compared with the other
methods mentioned above: (I) enabling semi-supervised learning (capable of incorporating different
proportions of unlabeled and labeled data); this facilitates a quick implementation of the method with a
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very small sample of specimens, faster than other supervised methods, such as ANN (the difficulties and
cost of obtaining labeled data have been extensively studied; see, e.g., [2]); (II) the level of operation
of the classification system can be adjusted depending on the percentage of false alarms allowed; (III)
the proposed multichannel setup allows mass spectra to be captured from the IE testing experiments
that register the differences between defective and homogeneous kinds of materials; (IV) the advantages
of a generative model; we obtain posterior probabilities for every class, so this probability can be used
in many different ways, not only for basic classification purposes, such as the maximum a posteriori
(MAP) estimate.

IE has been applied in different types of materials, such as marble, concrete or steel [11,16–18].
In those cases, large blocks are inspected to ascertain the general quality before cutting the material into
slabs. This prevents the possibility of accidents during the cutting process, which can deteriorate the
machinery and be dangerous to the human operators. It also helps in the setting of the block quality,
i.e., in the final price of the material. Training a block classifier is possible in this type of application by
selecting a set of blocks where training feature vectors are obtained using the IE method. Some of these
blocks are carefully inspected after cutting to judge the true inner state. In practice, this can be done only
in a small number of blocks, so we have a semi-supervised scenario.

The method proposed in this paper assumes knowledge of the number of classes. The multivariate
probability density of the feature vectors corresponding to a particular class is considered to be a mixture
of Gaussians (MoG). An MoG, also referred to as a Gaussian mixture model (GMM), assumes that all
of the feature vectors for a given class are generated from a weighted sum of a finite number of Gaussian
distributions with unknown parameters (mean and covariance). Hence, every feature vector is generated
by one of the mixture components of a given class.

A given feature vector can be originated, in principle, by any component of any of the classes.
However, labeled features are known to be generated by one of the components corresponding to the
labeled class, although the specific component inside the class is unknown. This knowledge can be
incorporated into the estimation of the whole model parameters, thus improving the performance of a
Bayes classifier.

In Section 2, the new semi-supervised method is presented. Then, in Section 3, the dataset and the IE
experimental setup are described. In Section 4, we present exhaustive results considering different target
classes and levels of supervision, followed by the conclusions.

2. Method

There are two basic paradigms in order to define a classifier: a discriminative approach, where the
goal is to directly assign the observations to the correct class, obtaining a rule that tries to minimize the
errors, and a generative model approach, where we try to learn how the observations are generated, and
after that, we assign the observation to the model with the highest probability. We will follow this second
approach using the Bayesian classifier.

The Bayesian classifier calculates the posterior distribution p(k/x) for every class k, k = 1 . . . K and
labels the observation x = [x1, . . . , xd]

T with the class that has the largest probability. Applying Bayes’
rule, we obtain:
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p(k/x) =
p(x/k)p(k)

K∑
k=1

p(x/k)p(k)

(1)

where p(x/k) is the conditional probability density of an observation vector x for class k, k = 1, 2, ..., K

and p(k) is the corresponding prior distribution for every class with
K∑
k=1

p(k) = 1.

The conditional distributions are modeled by an MoG for every class. An MoG is a weighted sum of
Gaussians with mean µi and covariance matrix Σi.

p(x/k) =
Ik∑

ik=1

αikNik (x;µik ,Σik)

Nik(x;µik ,Σik) = (2π)−d/2 |Σik |
−1/2 e

− 1
2

(x−µik
)T Σ−1

ik
(x−µik

)

(2)

where Ik is the number of Gaussians used in the MoG that models the conditional distribution of class k.
For every class, each Gaussian contributes to the mixture model in the proportion or mixing coefficient

αik , with αik ≥ 0 and
Ik∑

ik=1

αik = 1. These weights can also be interpreted as priors, indicating the prior

probability of the data coming from the corresponding Gaussian of the mixture.
When an observation x is available, we can apply Bayes’ theorem to calculate the posterior probability

in Equation (1), i.e., the probability that the observation comes from each class, and classify accordingly.
However, we need to estimate the previous model parameters. They include the prior probabilities

of every class and the parameters of the different mixture models. In order to do this, we define the
log-likelihood function L(X) of N observations X = [x1, . . . ,xN ]:

L(X; Ψ) = log p(X; Ψ) =
N∑

n=1

log p(xn; Ψ) =
N∑

n=1

log
K∑
k=1

p(xn/k)p(k) (3)

with the set of parameters to be estimated Ψ = {Ψ1, . . . ,ΨK}, where Ψk = {p(k),αik ,µik ,Σik}.
Using Equation (2) in Equation (3), we obtain:

L(X; Ψ) =
N∑

n=1

log
K∑
k=1

p(k)

Ik∑
ik=1

αikNik (xn;µik ,Σik) (4)

The maximum likelihood estimator calculates the parameters that maximize Equation (4), i.e.,
ΨMLE = arg max

Ψ
L(X; Ψ). Since this equation involves the log of a sum, it is not easy to find the

maximum, and an expectation-maximization (EM) approach [19] is better suited.
As usual, we assume that the observations X are part of a complete dataset (X,Z), Z = [z1, . . . , zN ],

where zn is a random vector of dimension I =
K∑
k=1

Ik. This vector is equal to zero, but one element,

which is equal to one, the class and Gaussian component that is responsible for the observation xn. i.e.,:

zn = [0, . . . 0︸ ︷︷ ︸
I1

, . . . , 0, . . . , 1, . . . 0︸ ︷︷ ︸
Ik

, . . . , 0, . . . 0︸ ︷︷ ︸
IK

] (5)

with the one corresponding to the m-th element, i.e., the k-th class and ik-th component in the mixture
model of the k-th class conditional distribution.
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The corresponding complete data log-likelihood reads:

Lc(X,Z; Ψ) = log p(X,Z; Ψ) =
N∑

n=1

log p(xn, zn; Ψ) (6)

Using Equation (5), Lc(X,Z; Ψ) can be expressed as:

Lc(X,Z; Ψ) = log
N∏

n=1

I∏
m=1

(p(xn/znm = 1)p(znm = 1))znm =

N∑
n=1

I∑
m=1

znm(log p(xn/znm = 1) + log p(znm = 1))

(7)

Following the EM procedure, we first take the expectation of the complete log-likelihood. This
expectation is obtained assuming that the model parameters are fixed Ψ = Ψj , i.e., the class
probabilities, proportions, means and covariance matrices are fixed. If the expectation is taken with
respect to the posterior distribution of the unobserved data, it is guaranteed that maximizing the
complete log-likelihood, we are also maximizing the incomplete log-likelihood function, which is the
real problem. This is the expectation step in the EM algorithm and can be summarized as:

Q(Ψ; Ψj) = E[log p(X,Z; Ψ)/X,Ψj] (8)

Substituting:

Q(Ψ; Ψj) =
N∑

n=1

I∑
m=1

E[znm](log(p(xn/znm = 1) + log δm) (9)

where δm = p(znm = 1), with the constraint
I∑

m=1

δm = 1.

The expectation step calculates the expected value of the responsibilities using the present values of
the parameters:

E[znm/xn,Ψ
j] = 1 · p(znm = 1/xn,Ψ

j) + 0 · p(znm = 0/xn,Ψ
j) =

= p(znm = 1/xn,Ψ
j)

(10)

The posterior probabilities p(znm = 1/xn,Ψ
j), i.e., the responsibility that the element m-th takes for

generating the n-th observation given the current model parameters, are obtained using Bayes’ theorem:

p(znm = 1/xn,Ψ
j) =

p(xn/znm = 1)p(znm = 1)
I∑

m=1

p(xn/znm = 1)p(znm = 1)

=
p(xn/znm = 1)δm
I∑

m=1

p(xn/znm = 1)δm

(11)

Once the expectation is calculated, Equation (7) is no longer a random variable; we have just a
log-likelihood function Q(Ψ; Ψj) that can be maximized as usual with respect to the model parameters,
obtaining a new estimate of them Ψj+1; this is the maximization step of the algorithm:

Q(Ψ; Ψj) =
N∑

n=1

I∑
m=1

p(znm = 1/xn,Ψ
j)(log(p(xn/znm = 1) + log δm) (12)

This two-step procedure is repeated iteratively until convergence, and it is guaranteed that in every
iteration, the likelihood function is increased and, therefore, converges to a local maximum.
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To obtain the new parameters, we have to maximize Q(Ψ; Ψj). In order to maximize Q(Ψ; Ψj), we
take derivatives with respect to every parameter of the model and set them equal to zero. Note that the
function Q(Ψ; Ψj) can be decoupled in a sum of different terms, where each of them includes only one
kind of parameter, i.e., δj+1

m ,µj+1
m ,Σj+1

m . Remember that index m is related to the corresponding ik in
Equation (2) depending on the number of classes and Gaussians per class model.

Once the objective function Q(Ψ; Ψj) is decomposed, we can obtain the new mean, variance and
component weight in the same way as in the classic EM algorithm:

µj+1
m =

N∑
n=1

p(znm = 1/xn,Ψ
j)xn

N∑
n=1

p(znm = 1/xn,Ψj)

(13)

Σj+1
m =

N∑
n=1

p(znm = 1/xn,Ψ
j)(xn − µj

m)(xn − µj
m)T

N∑
n=1

p(znm = 1/xn,Ψj)

(14)

δj+1
m =

1

N

N∑
n=1

p(znm = 1/xn,Ψ
j) (15)

We estimate the new probability for every class p(kj+1) integrating out the corresponding
δj+1
m elements:

p(kj+1) =
M∑

m=m0+1

δj+1
m (16)

where the indexes of the summation are:

m0 =
k−1∑
j=1

Ij

M =
k∑

j=1

Ij

(17)

The new weights for every Gaussian component are obtained normalizing the full responsibility by
the corresponding class probability:

αj+1
m =

δj+1
m

p(kj+1)
(18)

In the case that all classes have the same number of Gaussians, the notation simplifies to:

p(kj+1) =
kR∑

m=(k−1)R+1

δj+1
m , k = 1, . . . , K (19)

αj+1
m =

δj+1
m

dm/ReR∑
n=bm/RcR+1

δj+1
n

, m = 1, . . . , KR (20)

where b.c , d.e are the floor and ceiling operators, respectively.
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Supervision is introduced implicitly in Equation (11). The posterior probability p(znm = 1/xn,Ψ
j)

for samples with a known class k is easily computed, such as:

p(znm = 1/xn,Ψ
j) =

p(xn/znm = 1)αm

I∑
m=1

p(xn/znm = 1)αm

(21)

for the interval of indexes m corresponding to the components of the mixture model of the known class
k with priors αm and p(znm = 1/xn,Ψ

j) = 0 for the rest of indexes m.
Since this posterior probability is used in the maximization step, it means that samples xn that belong

to a known class k are used to update the parameters of that class only: mean, covariance and prior
probabilities of the MoG for that class; see Equations (13)–(15). In other words, the rest of the classes
do not take into account those samples in the updating step of their parameters, since in their sums, those
terms are zero, p(znm = 1/xn,Ψ

j) = 0, for indexes m out of the interval corresponding to the known
class k.

The algorithm is summarized in Figure 1. First, you set the models (one MoG per class) and the
parameters (how many Gaussians per class). Second, the mean and covariance matrices of each class
are initialized. For this purpose, only the samples from a known class (supervised samples) are used in
the initialization of the corresponding class parameters. Third, the data are preprocessed using PCA in
order to reduce the dimensions of the feature vector. Fourth, the algorithm is run until convergence. The
algorithm stops when the new and old parameters change less than a threshold value.

Set of models: classes = 1,..., eq. (2)k K

0j =

Preprocessing data PCA

Known class ?

Update ALL classes models

E-step   eq. (11)

M-step  eq. (13), (14), (15)

Update class k model

E-step   eq. (21)

M-step  eq. (13), (14), (15)

Initialization each model

Update class probabilities  eq. (16)

Update component probabilities  eq. (18)

End ? Classification step
yesno

yes, class kno

Data nx

j j= +1

n N= 1,...,

Figure 1. Flowchart of the algorithm.
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3. Data

We apply the explained algorithm to real data obtained in the lab using materials made of
aluminum alloy series 2000 of dimensions 7 × 5 × 22 cm (width, height and length, respectively).
These dimensions were appropriate for lab experiments and may be considered reasonable scale replicas
of real specimens used in different problems were the impact echo method has been applied (see, for
example, [20–22] and the references therein). Moreover, these dimensions are appropriate for a dense
excitation of resonant modes [23], thus leading to rich spectrum content. We show an example of a piece
under study in Figure 2: arrows point to the hammer and the accelerometers, while the red and white
cables connect the accelerometers to the acquisition equipment.

Figure 2. Example of the piece under study.

Up to three defects per piece were drilled in different locations of each piece. The defects passed
through the pieces and consisted of holes in the shape of cylinders of 10 mm and cracks in the shape of
parallelepipeds of 5 × 20 mm cross-sections. Some of the defects cross all of the pieces, e.g., a hole that
passes totally through the other face of the material, and some others do not, stopping at some point in
the interior of the piece. The material was excited by an impact, and its response was measured by the
accelerometers (sensors).

As an example, in Figure 3, we show the setup for a piece with a hole and a crack defect. We
use seven sensors located on different surfaces of the parallelepiped in order to capture the information
coming from different directions and distances from the impact and defects. In the example provided
in the figure, the hammer impacts on the front face. There is a hole in the Y axis far from the impact
surface and one crack in the XZ plane near the impact plane.

With respect to the equipment, we used an impact hammer 084A14 PCB, eight accelerometers (a1–a8
in the figure) 353B17 PCB, an ICPsignal conditioner F482A18 and a data acquisition module 6067E.
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The acquisition parameters were: sampling frequency = 100,000 kHz and observation time = 50 ms. We
use as input data the spectrum of the recorded signals coming from the sensors, normalized using the
maximum of the impact signal amplitude. The total number of experiments included 1881 executions of
the IE test from 76 specimens.

Figure 3. Setup experiment for a piece with a hole and a crack.

The 76 pieces can be grouped into different classes attending to several criteria: the status of the
piece, the kind of defect, the orientation of the defect and the length of the defect. Depending on the
criteria we use, we can state different classification problems with an increasing number of classes. The
first problem has four classes, since the pieces are divided into four groups: non-defective (also called
homogeneous), one hole defect, one crack defect and multiple defects.

If we split the one defect pieces into subclasses attending to the orientation of the defect, we have a
second problem with eight classes: homogeneous, one hole in the X axis, one hole in the Y axis, one
hole in the Z axis, one crack in the XY plane, one crack in the YZ plane, one crack in the XZ plane and
multiple defects.

The most challenging case is when we also use the length of the defect: if it goes through the piece
or just up to some point in between, we call these subclasses passing through and not passing through,
respectively. Thus, in the most complex case, we have fourteen classes.

Due to technical reasons and for simplicity in the making of the specimens in the lab, we have
no Z direction hole pieces, nor obviously passing through and not passing through Z direction hole
samples. Therefore, the three classification problems that we address have four, seven and twelve
classes, respectively.

All of the information about the specimens and data collection is summarized in Table 1.
One important issue in any classification procedure is to take care of the dimensions of the data during

the preprocessing of the data. Since we have to estimate some parameters, it is important to be sure that
the estimates are accurate enough to prevent possible overfitting. In our case, this means that we have to
reduce the dimensions of the feature vector: the spectrum of the signals captured by the accelerometers.
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To this end, we preprocess the data applying PCA, as explained in [24]. The number of PCA components
that we keep is given by a threshold on the fraction of variance captured by those components.

Table 1. Dataset: number of pieces and experiments per class.

Type of Defect
Number of

Pieces
Number of

Experiments
Size of Defect

(mm)

Homogeneous 6 200 -
Passing through a hole in the X axis 4 85 ∅ =10, X:70
Half-passing through a hole in the X axis 4 89 ∅ =10, X:35
Passing through a hole in the Y axis 4 84 ∅ =10, X:50
Half-passing through a hole in the Y axis 4 83 ∅ =10, X:25
Passing through a crack in the XY plane 8 170 X = 20, Y = 50, Z = 5
Half-passing through a crack in the XY plane 8 160 X = 20, Y = 25, Z = 5
Passing through a crack in the ZY plane 8 187 X = 5, Y = 50, Z = 20
Half-passing through a crack in the ZY plane 8 160 X = 5, Y = 25, Z = 20
Passing through a crack in the ZX plane 8 185 X = 70, Y = 5, Z= 20
Half-passing through a crack in the ZX plane 8 182 X = 35, Y = 5, Z = 20

Multiple defects 6 296
Combinations
of cracks and holes

Total 76 1881

Another important factor is the number of samples that are available, i.e., the total amount of data
available during the learning process. On the one hand, the pieces made in the lab were submitted to
different impacts in order to increase the number of samples and to introduce some randomness and
noise in the recording process, since the impact is slightly different in every experiment. On the other
hand, since the mechanical process of making pieces with specific defects is difficult, we use resampling
techniques to increase the size of the sample when necessary [25]. This consists of generating new
realizations, called replicas, by adding to the real recorded value a small amount of white Gaussian noise
with a small standard deviation. This helps to improve the learning process, and by using cross-validation
methods, we can assure that no overfitting problems arise.

4. Results

We applied the classifier to the dataset explained in the previous section. We split the samples into
two groups: a training set containing 80% of the data and a testing set with the rest of the samples.
In order to cross-validate the results, we ran the algorithm 40 times for every experiment with different
training-test data, and we show the calculated mean values.

4.1. Measures

To quantify the results, we use a confusion matrix [26]. We define the confusion matrix as a matrix
where every row represents the estimated class (the result of our algorithm) and every column the true
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class (the solution); note that the transpose definition (exchanging rows and columns) could have also
been used. With K classes, the confusion matrix is K × K, where the diagonal entries correspond to
the correct classifications. The off-diagonal values in every row tell us how the wrong classifications for
that estimated class (false positives) are distributed among the true classes and the off-diagonal values in
every column how many specimens from a given class are wrongly assigned to each of the other classes
(false negatives). This matrix contains all of the information about the performance of the algorithm
for our dataset, but it can be tedious to analyze the results and obtain simple conclusions from the
confusion matrix. Therefore, we will use also other measures obtained from the confusion matrix to
clarify the results.

Since we are considering the same cost for every wrong classification, we are not interested at this
point in comparisons between particular classes. Therefore, we can obtain Ci, i = 1 . . . K confusion
matrices 2 × 2, where for each Ci matrix, the i-th class is the positive one and the aggregate of the
rest of them is the negative one (errors). These matrices are easily obtained by simply summing up the
corresponding values of the whole confusion matrix. The Ci matrices allow us to obtain the precision pi
and recall ri values for every class i = 1 . . . K:

pi =
TPi

TPi + FPi

(22)

ri =
TPi

Pi

(23)

where TPi are the true positives (when the estimated and true classes are the same Ci), FPi are the false
positives (when we assign the piece to the positive class Ci erroneously, no matter which is the true class)
and Pi is the total number of specimens of the i-th class. In other words, precision indicates the ability
of the algorithm to distinguish between true and false positives, i.e., how many of the pieces assigned to
class iare correct; a large pi value indicates that most of the pieces that are assigned to class i actually
belong to that class. Recall, also called the true positive rate or sensitivity, indicates the ability to detect
the positive cases, i.e., how many of the pieces from the i-th class are detected; a large ri value indicates
that most of the pieces from that class are identified. We can even reduce these two indices to just one,
combining them properly; e.g., the F measure, which is defined for every class as the harmonic average
of precision and recall values:

Fi =
2

1
pi

+ 1
ri

(24)

The values of precision, recall and the F measure are between zero and one, with larger values
indicating better performance. In order to make the comparison easier between results, we will use
percentage values, i.e., in the interval 0–100. It is important to remark that these values must be used
with care, especially in cases where the class distributions change or are skewed and when the cost
functions are not 0–1 loss functions (no cost to correct classification and the same cost for all errors). In
our experiments, we do not have these problems, since we use the same equiprobable class distributions
during the training and testing stages, and as we mentioned, we will consider the same cost for any
wrong classification.
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4.2. General Results

In this subsection, we analyze the general behavior of the algorithm no matter which of the three
problems we are solving. We are not interested in how the algorithm performs for any particular class, but
we want to extract general conclusions about the performance of the algorithm and how it is influenced
by different variables, such as the model parameters or the data size.

The first thing we have to establish is the dimension of the feature space, i.e., the number of principal
components that we are going to keep after PCA. We will use the 12-class problem to determine the
feature space dimension, since it is the most complicated case. To analyze the influence of the dimension
of the feature vector, we run the algorithm for different dimensions. We obtain the confusion matrix and
then calculate the F value. In Figure 4, we show the box and whiskers plot of the F value for all of the
classes and the overall F mean value (40 runs for each one) when the feature vector is a 3 × 1 vector
(top), a 7 × 1 vector (middle) and a 16 × 1 vector (bottom). These values correspond to keeping 25%,
50% and 75% of the total amount of the variance when applying PCA. The overall F mean values are:
83.09, 92.38 and 88.46, respectively.
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Figure 4. Dimension reduction of the feature vector after PCA. Box and whiskers plot of
the F measure for each of the 12 classes. (Top) 3× 1 feature vector; (Middle) 7× 1 feature
vector; (Bottom) 16× 1 feature vector. Above each plot is the overall mean F measure.

As we can see in Figure 4, the best results are obtained in the middle case, when the data are projected
to a seven-dimensional PCA space. When we increase the dimensions from three to seven, the results
improve dramatically: the mean F value goes from 83.09 to 92.38. However, if we increase the number
of descriptors to 16, then the results for the test data are worse, as shown in the bottom plot (F reduces
to 88.46). This fact is especially clear for Classes 3, 8 and 9, with a large variance and a poor mean
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classification performance. These results correspond to the case of nine Gaussians per class and a 0.3
supervision ratio. However, we obtain the same conclusion for a wide range of numbers of Gaussians
(Ik in Equation (2)) and supervision values (percentage of known labels used in the training stage).
Therefore, we will use the first seven principal components of the PCA transformation of the spectrum
as the feature vector.

Once the preprocessing is done, we address the influence of the model complexity on the performance
of the classifier, i.e., how to choose the number of Gaussians per class. We seek a number of Gaussians
large enough to capture the distribution of the class, but not too high to avoid overfitting. We assume
that the complexity of every class is similar, so we will use the same number of Gaussians per class.
In such a way, we will not bias the results in favor of any class. With respect to the initialization of the
parameters of each Gaussian component for every class (the mean, covariance matrix and proportions of
every component), we use the set of supervised samples. The mean of every component corresponds to
a random known value of the corresponding class, and the initial covariance matrix is the same for all
of the components in the same class: it is obtained as the sample covariance from the known samples,
and the components are equiprobable. The initial class priors are calculated obtaining the proportion of
every class in the total number of samples with a known class. We used a similar number of samples
from every class in all of the problems, so we do not have to worry about the influence of the prior in the
evaluation of the results.

We trained and tested the model for an interval of Gaussians, from just three up to 25, in steps of two,
i.e., Ik = 3, 5, . . . , 25. In Figure 5, we show the F value obtained for the problem of seven classes during
the training (top) and test (bottom) phases. The training results improve as the complexity of the model
does, since we can always introduce new Gaussians in order to fit the data better. However, it is clear
that the algorithm suffers from overfitting for a number of Gaussians approximately greater than nine,
since the test performance is reduced while the training improves; i.e., for a large number of Gaussians,
the model is so complex, that it can fit to the training data, but is not able to generalize to new data. To
avoid this problem, we restrict our model to a maximum of nine Gaussians per class.

The supervision ratio depends on the available data. It is expected that if the number of samples with
a known class increases, the performance of the algorithm should be better. Note that in the extreme
case where we know which class any training sample belongs to, our algorithm reduces to the estimation
of every class mixture model through the standard EM algorithm. Once the different distributions are
obtained, it would be easy to assign the new data to the class with higher probability. On the other hand,
for the unsupervised case, every sample will contribute to every mixture model, so it could become an
unsolvable problem if modes of different class distributions overlap, because it would be impossible to
assign it to one model or another. The algorithm could find the correct Gaussian components in the
overall observation distribution, but it could assign the components to the wrong class. If this is the case,
the only solution is to introduce some level of supervision in order to guarantee that the components are
assigned properly to the corresponding class. In addition, as explained previously, we cannot afford to
have a very large number of samples of every class, since it would be very expensive and time consuming.
That is to say, it would be a nice feature of the classifier to learn from a reduced number of samples.
Therefore, we need to test the influence of the supervision ratio and sample size in the performance of
the algorithm in order to quantify this effect.
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Figure 5. Model selection: number of Gaussians per class for the seven classes problem.
(Top) Mean F value of each class for the training dataset vs. the number of Gaussians per
class; (Bottom) the same for the testing dataset.

To analyze the influence of the data size and supervision, we obtain the results for different sets
of samples per class, 50, 100, 200, 300 and 500, and two different supervision rates, 0.1 and 0.5. In
Figure 6, we show the results for the four- and 12-class problems. Again, we use the F value in the
figures to simplify the analysis.
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Figure 6. Influence of data size and supervision. (Top) Four-class problem; (top-left) mean
F value for the four classes vs. the number of samples per class for a 10% supervision
ratio; (top-right) results with 50% of supervision; (Bottom) 12-class problem; (bottom-left)
mean F value for the 12 classes for a 10% supervision ratio; (bottom-right) results with
50% supervision.
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As we can see, the algorithm needs a minimum amount of data of around 200 samples per class to
obtain good results in both problems, i.e., the sample size matters: if it is very low, e.g., 50 or 100, the
classification rate can be poor (as low as an F value of 0.5 or 0.3 for the four- and 12-class problems,
respectively). However, after some number of samples (300 in our experiments), increasing the number
of samples does not improve the results significantly. The only way to increase the classification rate
is by introducing more supervision. In other words, as was expected, the supervision factor helps to
obtain better F values, since more samples are used exclusively for training the mixture model of the
corresponding class. Therefore, in a real application, the first goal is to achieve a minimum number of
samples for every class so that the estimates can achieve a minimum quality. After that, if we can obtain
more samples with known labels, we know that the performance will improve, since the problem is no
longer about the amount of data, but the quality of the data.

To clearly see the effect of the amount of supervision on performance, we show in Figure 7 the F value
for different supervision rates: 0.1 (almost unsupervised), 0.3, 0.5, 0.7 and 0.9 (almost supervised). As
was expected, the supervision allows one to model the distributions better, so the classification accuracy
improves. Note that, even in the case of almost completely supervised classification, the classification is
not perfect, since the classes are not separable, but the values are very close to a perfect classification,
showing the good behavior of our algorithm.
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Figure 7. Influence of supervision. F value vs. percentage of supervision. (Top) Four-class
problem; (Bottom) 12-class problem.

4.3. Results Depending on the Kind of Defect

Until now, we have studied the general performance of the algorithm, obtaining conclusions about
the preprocessing of the feature vector (PCA dimensions reduction), the complexity of the model (how
many Gaussians) and how the data size and supervision affects the results of the algorithm. Now, we
will proceed to the analysis from the point of view of a single class.

In all previous figures, regardless if the 4-, 7- or 12-class problem was used, there was almost always
a class that was perfectly classified even in inappropriate conditions (a feature vector with very few
dimensions, bad class probability models with a small number of Gaussians and bad estimates of the
model with few data and no supervision). This class was always the homogeneous material. It is quite
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logical to assume that a material that has no defect has a very different spectrum from defective materials.
In a real implementation, we have no idea about the prior probabilities of the classes. We do not know
if there are more defective than non-defective pieces or vice versa. Therefore, we have to remark again
on the importance of using classification measures that are not sensitive to the prior probabilities of
the classes; e.g., if we always decide that the piece is homogeneous and the prior of the non-defective
material class is 0.95, we will obtain a 0.95 true positive rate, which can be misunderstood as the good
performance of the algorithm if we only consider this measure.

The same could be said about the cost function. In a real implementation, attending to many other
variables, such as the revenues, the owner of the system can change the decision making threshold in
order to obtain the true positive/false alarm rate that is better for him; e.g., if many pieces are being
classified as defective, he can change the decision rule that changes the cost function or, equivalently,
assigning the piece to the defective class only when the posterior probability is higher than a given value
instead of assigning it to the class with higher posterior probability.

In this section, we use nine Gaussians per class and 500 samples per class during training. The
four-class problem essentially tests the ability of the algorithm to discriminate between defective and
non-defective pieces. In Figure 8, we obtain the precision and recall values for each of the four classes
(homogeneous, hole defect, crack defect and multiple defects) with respect to the supervision ratio, and
in Table 2, we show the confusion matrix for the case of 0.1 supervision (the worst case).
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Figure 8. Precision and recall for the four-class problem vs. the supervision ratio.

As we can see in the figure, the results are very good. The precision of the homogeneous class
is nearly 100% for any supervision value. In the case of low supervision, the precision is a little bit
lower than 90% for the pieces with multiple defects and almost equal to 85% for the one defect blocks.
However, the recall is almost perfect for the homogeneous and multiple defect classes in all supervision
scenarios, i.e., almost no piece in these classes is missed, regardless if they are included during the
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learning process. The lowest precision value of 75% is for the pieces with a crack and 0.1 supervision.
Note that low supervision is the most realistic case for industrial applications, since most defects are not
observable and we want to retain the largest amount of pieces. Looking at Table 2, we see that most of
the errors occur when one crack and hole classes are confused; i.e., the cost would be drastically reduced
if we consider that the kind of defect does not matter and we merge the hole and crack class into just
one class.

Table 2. Confusion matrix for the 4-class problem (supervision 0.1).

Homogeneous Hole Crack Multiple

homogeneous 99.74 0.03 0.13 0.10
hole 0.28 83.05 15.99 0.68
crack 0.85 13.81 84.82 0.52

multiple 1.92 0.42 7.23 90.43

In the seven-class problem, we split the hole and crack classes into subclasses, taking into account
the direction of the defect: homogeneous, X hole, Y hole, XY crack, ZY crack, ZX crack and multiple
defects. In Figure 9, we show the precision and recall values for the seven classes. For the sake of clarity,
we split the results into different subplots.
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Figure 9. Precision and recall for the seven-class problem vs. supervision ratio.

Again, the homogeneous class is the best one, and increasing the supervision improves the
performance for all classes. If we analyze the errors between classes, we find that most of the mistakes
are between the Y hole and ZY crack classes. The values in the confusion matrix are shown in Table 3
only for the case of 0.5 supervision. However, the same occurs for the rest of the supervision values.
A detailed understanding of this aspect will require an in-depth analysis from the perspective of wave
propagation, which is outside of the scope of this work. However, we may conjecture that due to the
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orientation of the impact and the similar width of both the ZY crack and the Y hole in the X direction
(see Figure 3), the respective cross-sections “seen” by the impact point are similar, thus facilitating the
confusion of these two kinds of defects.

Table 3. Confusion matrix for the 7-class problem (supervision 0.5).

Homog. X Hole Y Hole XY Crack ZY Crack ZX Crack Multiple

homog. 98.74 0.00 0.44 0.05 0.16 0.60 0.00
X hole 1.05 89.95 5.58 0.42 1.68 1.21 0.11
Y hole 0.06 1.76 92.55 0.30 4.72 0.61 0.00

XY crack 0.17 0.06 1.07 94.23 1.53 1.13 1.81
ZY crack 0.26 2.52 7.09 1.63 87.35 1.10 0.05
ZX crack 0.36 2.69 2.23 1.92 1.87 90.93 0.00
multiple 0.00 0.00 0.05 4.85 0.00 0.00 95.10

In the 12-class problem, we introduce another distinction between defects (passing through or not
passing through): homogeneous, through X hole, non-through X hole, through Y hole, non-through Y
hole, through XY crack, non-through XY crack, through ZY crack, non-through ZY crack, through ZX
crack, non-through ZX crack and multiple defects. In Figure 10, we show the precision and recall values
for each of the twelve classes with respect to the supervision ratio. For the sake of clarity, we split the
results into different figures, each one corresponding to four out of the 12 classes. Since the problem
is much more complex, the results are good, but worse than in the previous scenarios. The detailed
analysis of the confusion matrix (not shown for the sake of readability) reveals the same conclusion as
in the seven-class problem: most mistakes are between holes and cracks that are aligned in the direction
of the impact hammer.
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Figure 10. Precision and recall for the 12-classes problem vs. supervision ratio.
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4.4. ROC Curves

Since the algorithm assigns a posteriori probability for every sample, we can use this probability value
as a score to obtain an ROC curve for every class. ROC curves have two important characteristics. First,
they are insensitive to class probabilities. Second, they provide information about detection rate vs. false
alarm rate, so a user can choose the working point of the detector based on his preferences. Therefore,
by analyzing the ROC graph, the user can choose the operating point (the pair true positive-false positive
rates) according to his interest, e.g., a conservative detection system where we want to avoid the false
positives, or just the point where the system obtains the best performance. According to this policy, we
only have to adapt the threshold (score or probability) to the corresponding value. This is an important
advantage of our Bayesian classifier with respect to other classification algorithms that only provide a
binary decision, so it is difficult to evaluate the results beyond a misclassification point of view. Since
we are working with up to twelve classes, it is important to know if the posterior distributions are similar
or not, as this can give us an idea about the robustness of the classifier when the samples, priors or cost
function change.

In Figure 11, we show the ROC curves for the 4, 7 and 12 classes for the 0.1 supervision case. As
we can see, the graphs are clearly over the diagonal line in all cases, exhibiting the good performance of
the algorithm. With this information, the user can select the operating point without having to learn or
adapt any parameter in the system; just changing the detection threshold results in the false alarm rate
that he wants.
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Figure 11. ROC curves. Detection rate vs. false alarm rate. (a) Four classes; (b) seven
classes; (c) 12 classes.
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5. Discussion and Conclusions

The statement of the problem from a statistical point of view permits the use of a generative model
that is helpful in the understanding of the problem. Since we obtain the posterior probability for every
class, we can use it for simple classification or for a more sophisticated analysis based on ROC curves.

In an industrial application, such as in the marble industry, flexibility is a key factor, since the user
needs an adaptable tool where the classifier can be modified easily by considering economic reasons.
However, this flexibility is more helpful if the user can learn from it. In other words, we need to
quantify the change in the results not only in terms of classification-misclassification rates, as typical
discriminative classifiers do. This is an advantage of our algorithm, since the user can analyze the
posterior probabilities and learn from them in order to define the classification rule that is appropriate
for them.

We have used the MoG model to approximate the conditional distribution of the data given a class.
We have explained how to estimate the number of Gaussians and the rest of the parameters in order
to obtain good performance while avoiding overfitting. Of course, the final results will depend on the
separability of the classes.

A very good characteristic of the proposed algorithm is that it does not require a large amount of
samples to estimate the parameters properly. In addition, we have shown how the quantity and quality
of the data, i.e., the supervision ratio, complement each other. This means that in a real application, we
do not require the destruction of many pieces to obtain enough data, and, therefore, the implementation
is affordable.

The results show that the homogeneous class is easily separable from the rest of the classes. An
interesting conclusion is that homogeneous and defective specimens are rarely misclassified. When the
number of classes increases, i.e., when the defective pieces are subdivided into different subclasses, the
problem is not as easy. This is especially true for the specimens that have similar defects, e.g., a hole
and a crack with the same orientation. In this case, the only way to improve the performance is to better
estimate the model parameters by increasing the supervision ratio. The price to pay is the economic cost,
as we need to destroy more specimens to determine to which class they belong.

In order to help those who want to replicate our experiments, we give some advice. First, run multiple
impact-echo experiments and discard the first ones. Second, the size of the test specimen plays an
important role in the signals. It is necessary to perform the impact-echo test at several points on the
surface to identify possible geometrical effects. In summary, it is advisable to test first the variables that
can affect the results and to be sure that, in case you cannot control them, at least you can reduce their
effects by running the experiments under different conditions, so that the effects are averaged and the
signals are not biased.
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