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Abstract: The artificial fish swarm algorithm (AFSA) is one of the state-of-the-art swarm 

intelligent techniques, which is widely utilized for optimization purposes. Fiber optic 

gyroscope (FOG) error parameters such as scale factors, biases and misalignment errors are 

relatively unstable, especially with the environmental disturbances and the aging of fiber coils. 

These uncalibrated error parameters are the main reasons that the precision of FOG-based 

strapdown inertial navigation system (SINS) degraded. This research is mainly on the 

application of a novel artificial fish swarm algorithm (NAFSA) on FOG error coefficients 

recalibration/identification. First, the NAFSA avoided the demerits (e.g., lack of using 

artificial fishes’ pervious experiences, lack of existing balance between exploration and 

exploitation, and high computational cost) of the standard AFSA during the optimization 

process. To solve these weak points, functional behaviors and the overall procedures of 

AFSA have been improved with some parameters eliminated and several supplementary 

parameters added. Second, a hybrid FOG error coefficients recalibration algorithm has been 

proposed based on NAFSA and Monte Carlo simulation (MCS) approaches. This combination 

leads to maximum utilization of the involved approaches for FOG error coefficients 

recalibration. After that, the NAFSA is verified with simulation and experiments and its 
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priorities are compared with that of the conventional calibration method and optimal AFSA. 

Results demonstrate high efficiency of the NAFSA on FOG error coefficients recalibration. 

Keywords: novel artificial fish swarm algorithm; fiber optic gyroscope; error coefficients 

recalibration; Monte Carlo simulation; swarm intelligence optimization 

 

1. Introduction 

The artificial fish swarm algorithm (AFSA) is one of the state-of-the-art swarm intelligence 

approaches, which was proposed by Li Xiaolei in 2002 [1]. It is inspired by the autonomous collective 

movement of artificial fishes (AFs) and their various social behaviors. Its characteristics of global search, 

quick convergence rate, and efficient search are based on modern elicitation methods [2,3]. After AFSA 

appeared, it offered new ideas to solve the optimization problems in signal processing [4,5], neural network 

classifiers [6,7], data mining and clustering [8,9], multi-objective optimization [10,11] and PID controller 

parameters optimization [12], etc. 

Nevertheless, the standard AFSA (SAFSA) has not been further considered by researchers, due to  

its complexity in comparison with other swarm intelligence algorithms in this domain, particularly 

particle swarm optimization (PSO), whereas the results of SAFSA are not better than those of PSO [13]. 

PSO is another swarm intelligence algorithm that simulates the natural evolutionary process to solve 

complex optimization problems. It has been successfully utilized in optimization problems, such as the 

multidimensional knapsack problem, the economic and economic statistical designs, the complex 

network reliability problem [14–17], and so on. However, the reasons for SAFSA’s inefficiency are high 

structural and computational complexities, lack of using AFs’ previous experiences, lack of appropriate 

balance between exploration and exploitation to improve the optimization process. Fortunately, the 

optimal AFSA (OAFSA) with improvement on Visual and Step parameters to keep a balance between 

exploration and exploitation, has been utilized in various applications [5,7,18]. More noteworthy is that 

a novel AFSA (NAFSA) was proposed to conquer all weaknesses of SAFSA and first used for data 

clustering by Yazdani in 2013 [19]. In NAFSA, different stages of SAFSA are modified to eliminate the 

demerits, and, thus, improve the efficiency of the algorithm. The modifications include reducing the 

structural complexity as well as the computational complexity of the algorithm, determining a balance 

between the exploration and exploitation during the optimization process, and also adopting the AFs’ 

previous experiences to improve the optimization process.  

On the other hand, the FOG error coefficients recalibration is to identify FOG error parameters accurately 

after operating for a period of time. It is necessary to recalibrate the FOG error coefficients because they 

would be slightly changed by environmental disturbances and the aging of the fiber coils [20,21]. 

Otherwise, the accuracy of FOG-based strapdown inertial navigation system (SINS) would be decreased 

by these uncalibrated error coefficients [22–24]. Therefore, making the recalibration of FOG error 

coefficients during a specific interval according to FOG’s instability is necessary to maintain the accuracy 

of FOG-based SINS. However, the conventional expensive and high-precision turntable calibration 

method and systematic calibration method have the nature of high workload and costs, and the 

observable characteristic of different parameters is not the same [25]. In addition, its reference 



Sensors 2015, 15 10549 

 

 

information is provided from external equipment so that the calibration precision is dependent on the 

accuracy of the external equipment [26]. The high workload and costs of conventional calibration 

method are also not affordable for low costs applications. Therefore, the focus on FOG error parameters’ 

recalibration to eliminate these drawbacks is always a hot research point. 

The OAFSA was utilized for FOG random drift modeling in the navigation applications of AFSA in 

2012 by Wang Tingjun [27]. Meanwhile, the OAFSA also used for the real-time ring laser gyroscope bias 

temperature error compensation in 2014 by Yu Xudong [28]. Moreover, Gao Yanbin has successfully 

adopted the OAFSA to calibrate the error parameters of FOG and verified the feasibility of OAFSA on FOG 

error coefficients recalibration [29,30]. However, OAFSA only balanced the exploration and exploitation 

abilities during the optimization process by the modification on AFs’ Visual and Step parameters. 

Additionally, the secondary initialization method after certain times of OAFSA optimization manually 

increased the non-autonomous property of the OAFSA. But the structural and computational 

complexities of OAFSA remain and the AFs’ previous experiences are not used for improving the 

convergence rate. Therefore, solving these issues and letting the NAFSA recalibrate the FOG error 

coefficients are of great value to improve the overall navigation precision of FOG-based SINS. 

The Monte Carlo simulation (MCS) method is a broad class of computational algorithms that relies 

on repeated random sampling to obtain numerical results [31]. In this research, it is adopted to simulate 

the NAFSA process for increasing the credibility of FOG error coefficients recalibration results; hence, 

the computational results are closer to real conditions. Furthermore, it has the priority of reducing 

workload and costs over conventional expensive and high-precision turntable calibration methods. So 

the overall advantages of the MCS-NAFSA for FOG error parameters identification are (1) that the 

algorithm’s structural and computational complexities are reduced to release the high computational cost; 

(2) that the algorithm’s convergence rate is improved by adopting AFs’ previous experiences during AFs 

optimization process; (3) that no external reference information is introduced into the identification 

process; (4) that the high workload and costs in conventional calibration method are decreased greatly; 

and (5) that the non-autonomous characteristic of OAFSA on FOG error parameters recalibration is 

avoided. Therefore, the hybrid MCS-NAFSA technique that utilized on FOG error parameters 

recalibration is the main contribution of this research. 

The rest of this paper is organized as follows. In Section 2, the SAFSA and its disadvantages on FOG 

error parameters recalibration are first presented. Then, the OAFSA and the corresponding secondary 

initialization method on FOG error parameters recalibration are briefly dedicated. Finally, the NAFSA and 

its advantages on FOG error parameters recalibration are described with details. Section 3 indicates the 

FOG error parameters MCS-NAFSA implementation procedures. After that, the MCS-NAFSA FOG error 

parameters simulation is conducted, and the results are discussed in Section 4. Next, Section 5 demonstrates 

the FOG-based SINS navigation experiments and discussion with FOG error parameters recalibrated by 

NAFSA. Section 6 concludes this article. 
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2. Artificial Fish Swarm Algorithm 

2.1. SAFSA and Its Demerits on FOG Error Coefficients Recalibration 

Generally, fish move to the areas that have more food by their individual or swarm search. The AFs 

model is depicted by prey, swarm, free moving, and following behaviors [1–3]. The AFs food 

consistency degree in specific areas is the AFSA objective function as well as the AFs approach to the 

maximum food density point. The state of AF i is denoted as vector X = (x1, x2, …, xn), and xi(i = 1, 2, …, 

n) are the optimization variables. The current food consistency degree of AF i in position X can be 

expressed as objective function Y = f(Xi). Visual is the sight field of AFs and Step represents the 

maximum length of each movement. The distance between two AFs in Xi and Xj positions is shown by 

Euclidean Distance Disi,j = |Xi − Xj|. Moreover, the best AFs position is loaded in bulletin and crowd 

factor δ(0 < δ < 1) represents the AFs crowd degree within its Visual range. 

According to the characteristics of SAFSA, there are some demerits for its application on the recalibration 

of FOG error parameters [29,30]. The first one is the AFs lack of the application of previous experiences, 

which would lead the AFs falling into local extremes during the optimization process. For FOG error 

parameters identification, this demerit would lead the FOG error parameters to non-optimum values. The 

second one is that AFs lack the balance between exploration and exploitation during the optimization 

process, which deteriorates the convergence rate and accuracy of AFs optimization. So the FOG error 

parameters optimization process would require more time to implement the optimum results. The last 

demerit is that the structural and computational complexities of SAFSA are high, which will cost more 

memory loads during optimization process. So it is unsuitable for FOG-based SINS with high real-time 

computational requirements. Therefore, these demerits should be eliminated before the SAFSA is applied 

to FOG error coefficients identification. 

2.2. OAFSA and Its Shortcomings on FOG Error Coefficients Recalibration 

Usually, the varied Visual and Step parameters are used to improve the algorithm’s precision and 

convergence rate [5,7,18]. Furthermore, the secondary initialization method is also utilized for higher 

precision FOG error parameters recalibration [29,30]. When the initialization value of parameters Visual 

and Step are relatively large, the exploration ability of AFSA is enhanced while the exploitation ability is 

weakened. Conversely, if the Visual and Step parameters are relatively small, AFSA’s exploration ability 

is weakened and the exploitation ability is enhanced. Therefore, a varied Visual and Step parameters are 

adopted as [27]: 

minVisual Visual Visual    (1) 

minStep Step Step    (2) 

maxexp( 3 ( ))G G     (3) 

where, G and Gmax denote the current iteration times and the preset maximum iteration times, λ denotes 

the attenuation function, which could balance the exploration and exploitation abilities during the overall 

optimization process. 
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Moreover, after dozens of iterations, the indicator function may present a divergence tendency because 

the AFs fall into the local extreme by unsuccessful prey behavior [29,30]. The former AFs parameters and 

the optimized FOG error parameters have reached their limits to implement higher precision. In this case, 

the secondary initialization method is utilized to the AFs swarm and the related FOG error parameters 

recalibration procedures. Firstly, the variation tendency of indicator function is observed until it presents 

divergence tendency, and the AFs parameters and FOG error coefficients are stored in the lowest indicator 

function point. Secondly, the changed AFs parameters are reloaded and the former saved FOG error 

coefficients are reloaded manually, which is obtained from the former optimization process. Finally, the 

AFSA optimization process is executed again to reach higher optimization precision. 

However, when OAFSA is used for FOG error parameters identification, only the second drawback 

of SAFSA is eliminated, but the other two drawbacks are not avoided during the optimization process. 

Moreover, by inducing the secondary initialization method, the lowest indicator function point  

selection at first stage is artificially aided. The reload process of AFs parameters and FOG  

error coefficients are completed manually. This means the method is non-autonomous during the 

optimization process. Therefore, there are also some shortcomings when OAFSA is applied to FOG error 

parameters identification. 

2.3. NAFSA and Its Advantages for FOG Error Parameters Recalibration 

NAFSA was first proposed and used in data clustering by Yazdani in 2013 [19]. It solved these mentioned 

disadvantages by improving AFSA’s functional behaviors and overall procedures with some AFs parameters 

eliminated and several supplementary parameters added. More details on the improvements of AFSA 

are shown in the following NAFSA parameters and behaviors introduction parts. 

2.3.1. Parameters of NAFSA 

Suppose there are N AFs in D-dimensional space, the position of AF i could be denoted as vector  

Xi = (xi,1, xi,2, …, xi,D). AFs Visual could be expressed as vector Visual = (v1, v2, …, vD), the Visual dimensions 

are determined by the inner coverage of searching space. Therefore, NAFSA could use different Visual in 

various space ranges. The components of vector Visual are divided into many parts that make the AFs have 

better global optimization ability. So NAFSA has higher precision in global extreme optimal ranges. 

Moreover, the Contraction Factor (CF) parameter is utilized to substitute Step and crowd factor parameters. 

It is introduced to NAFSA for choosing different Visual values in different optimal process, and CF is an 

integer less than 1, whether a constant or a function. Previously, the inertial weight parameter was applied 

in PSO for balancing the exploration and exploitation abilities during optimization process [32]. The CF 

in NAFSA has the similar function to inertial weight in PSO. Here, random function is adopted to generate 

CF in all iteration process: 

min max min( ) Rand(0,1)CF CF CF CF     (4) 

The above equation generates a random CF in [CFmin, CFmax]. Therefore, the ith element of vector 

Visual in next iteration could be expressed as: 

( 1) ( )Visual t Visual t CF    (5) 
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Next, the NAFSA behaviors will be discussed. 

2.3.2. Behaviors of NAFSA 

Individual Behavior 

Individual behavior is made up of prey and free moving behaviors. The AF i in position Xi(t) tries 

several times of movement to better position. In each iteration process, AF i will occupy the position Xj(t) 

by prey behavior, and then evaluate their food density. If f(Xi) ≥ f(Xj), then the next position is expressed as: 

( 1)i jX t X   (6) 

Because the position Xj(t) is within the Visual range of AF i, the move distance of AF i would be less 

or equal to Visual vector in the same dimension. If f(Xi) ≥ f(Xj), the AF i will move to a better position 

with several iterations by Equation (6) or by prey behavior and Equation (6). However, if f(Xi) < f(Xj), the 

AF i would not move towards Xj(t) and it will find a better position from its previous position. Therefore, 

for single individual behavior, the AF could find better position by trying several times. Otherwise, if 

AF i could not find a better position after all attempts, the AF could move one Step randomly within its 

Visual range: 

( 1) ( ) ( 1,1)i iX t X t Visual Rand      (7) 

In NAFSA, each AF moves towards better position by individual behavior. But when an individual 

fails, it will perform random behavior in its Visual range and may discard its previous position, which may 

find a worse position in the searching space. Nevertheless, in order to keep the AFs swarm diversity and 

find better position in later optimal behavior, performing the random behavior is necessary for the AFs 

swarm. Moreover, the AFs position search through random behavior would not be used as best AFs 

position, so the best AFs position would not be lost even if AFs could not find a better position. In this 

case, the best AFs position is what has been searched previously. Therefore, in NAFSA, the current AFs 

position is the best position, so the bulletin parameter in SAFSA is no longer a necessity. 

Group Behavior 

Group behavior performs instead of following and swarm behaviors. Keeping all AFs swarm 

characteristics and making AFs movement in the best position are two main targets in group behavior. 

The center position of AFs swarm is obtained by swarm behavior. If f(XCenter) > f(Xi), then the next position 

of AF i is: 

 
,

( )
( 1) ( ) (0,1)Center i

i i

i Center

X X t
X t X t Visual Rand

Dis


      (8) 

If f(XCenter) ≤ f(Xi), AF i could not move towards the center position, while moving towards the best 

position in the searching space: 

 
,

( )
( 1) ( ) (0,1)Best i

i i

i Best

X X t
X t X t Visual Rand

Dis


      (9) 
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Therefore, the AFs in a worse position would move towards center position by comparing with the 

center position. When the position is better than center position, it will move towards the best AFs swarm 

position. Therefore, all the AFs will reach the best position by performing group behavior. Consequently, 

in NAFSA, the best position searched by fish swarm would be adopted to accelerate the convergence 

rate with all AFs movement. So the group behavior is used to maintain the fish swarm characteristics 

and avoid reducing swarm diversity. 

In group behavior, the center AFs position may have better food density (indicator function) than the 

best AFs position. AFs move towards center position by Equation (8), but a worse position may exist 

between the current position and center position. The AFs position may then get worse or even lose their 

best position by executing Equation (8). Therefore, if the indicator function of center position is better 

than the best AFs position, the best AFs position is determined by the following equation: 

( 1)Best CenterX t X   (10) 

The above equation executes only when f(XCenter) < f(XBest), while the other AFs movement by  

Equation (8) helps to maintain the diversity of fish swarm. 

2.3.3. Advantages of NAFSA for FOG Error Parameters Recalibration 

According to the introduction of NAFSA, there are three main advantages for its applications with 

FOG error parameters recalibration. The first one is that the parameters reduction and behavioral 

simplification of NAFSA reduced the structural and computational complexities, which means the NAFSA 

will cost less memory loads when it is used in FOG error parameters recalibration. The second one is that 

the choice of CF parameter can balance the exploitation and exploration abilities during AFs 

optimization process. Additionally, CF parameters could avoid the local extreme during the AFs 

optimization process, so the NAFSA could neglect the secondary initialization method in OAFSA and 

implement the autonomous characteristic when it is adopted in FOG error parameters recalibration. The 

third one is that the CF parameters would reveal the application of AFs previous experiences, which 

equates to a faster convergence rate during the AFs optimization process. It could implement the FOG 

error parameters identification with less time and higher precision. Therefore, the NAFSA is more suitable 

for FOG error parameters recalibration when it is compared with the previous OAFSA. 

3. FOG Error Coefficients Recalibration by NAFSA 

In this section, the tri-axial FOG static error model will be provided at first. And then the optimization 

indicator function derivation process is presented. Finally, the FOG error coefficients identification 

procedures by NAFSA will be demonstrated specifically. 

3.1. FOG Static Error Model 

The purpose of error coefficients recalibration is to identify the FOG error parameters accurately, 

quickly and steadily. There are various recalibration methodologies for FOG error parameters [33–35]. 

The static error model of tri-axial FOG is shown [35]: 
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 

       
       

        
             

 (11) 

where, Kgi(i = x, y, z) denote the FOG scale factors; Egij(i, j = x, y, z; i ≠ j) denote the FOG misalignment 

errors during installation; Ngi(i = x, y, z) denote the FOG output data; ωi(i = x, y, z) denote the turntable 

alignment axis input angular rate; ωio(i = x, y, z) denote the FOG biases. Therefore, there are 12 static 

error parameters for tri-axial FOG to be identified in total.  

3.2. Derivation of the Optimization Indicator Function 

The NAFSA is terminated in one of three conditions. The first is when the maximum number of 

iterations is reached. The second condition is when the optimization indicator function is below a  

pre-defined threshold during the optimization process. The third condition is that when performing the 

next iteration, the deviation of the current iteration result and the next iteration result is within an 

acceptable range. The optimization indicator is a key factor for the terminate condition during the NAFSA 

optimization process. The following part presents an optimization indicator function for FOG error 

parameters identification based on NAFSA. 

Theoretically, when the static tri-axial FOG at arbitrary space position, the FOG measured angular 

rate information would satisfy the following equation: 

2 2 2 2

x y z ie       (12) 

where, ωi(i = x, y, z) are tri-axial FOG theoretical input angular rates; ωie = 15.0411°/h denotes the Earth 

rotation angular rate, which is a constant vector along the Earth rotation axis.  

Actually, because of the errors caused by FOG itself, the calculated angular rates are different from 

theoretical values. Therefore, the angular rate mode square error (MSE) is adopted to represent the 

deviation, which is derived from Equation (12) and expressed as: 

2 2 2 2ˆ ˆ ˆ
x y z ie         (13) 

where, ˆ ( , , )i i x y z   denote the angular rates calculated from Equation (11) with the stored FOG output 

data Ngi(i = x, y, z). 

The target of identifying the steady FOG error coefficients is to make the angular rate MSE as  

stable as possible. So the standard deviation function is utilized to evaluate the discrete degree of FOG 

error coefficients: 

 
2

2 2 2 2

1

ˆ ˆ ˆ

1

M

xj yj zj ie

j

M

   




  





 

(14) 

In Equation (14), M denotes the number of positions during optimization process. 
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3.3. MCS-NAFSA Implementation Procedures 

The implementation procedures of FOG error coefficients identification are demonstrated in this 

section. Two main steps are indicated to illustrate the NAFSA optimization process. At the beginning, the 

variation characteristics of the 12 total error coefficients in the tri-axial FOG are discussed and a clustering 

process is described with different parameters. After that, the specific MCS-NAFSA FOG error 

coefficients identification procedures are presented step by step. 

3.3.1. FOG Error Coefficients Clustering 

In the identification of 12 tri-axial FOG error coefficients, different error coefficients have different 

influences on the angular rate MSE, and also the NAFSA requires all the AFs to have similar characteristics 

during the optimization process. Therefore, FOG error coefficients clustering is a necessity before the 

FOG error coefficients can be optimized by NAFSA. 

Thinking about the different error coefficients’ influences on angular rate MSE and based on our 

previous experiences, the FOG scale factors have the highest impacts on angular rate MSE, followed by 

the biases, and the last parameters are FOG misalignment errors, so the FOG error coefficients are 

divided into three categories. They are: three FOG scale factors Kgi(i = x, y, z) as category one, three 

FOG biases ωio(i = x, y, z) as category two, and six FOG misalignment errors Egij(i, j = x, y, z; i ≠ j) as 

category three. Therefore, when adopting MCS-NAFSA to identify the FOG error parameters, there are 

three main steps of optimization process should be conducted to implement the highest precision. 

3.3.2. MCS-NAFSA FOG Procedures 

Through the analysis in Section 3.3.1, within NAFSA FOG procedures, the FOG error coefficients 

identified by NAFSA are mutually independent in different categories. Hence, three phases of optimization 

process pseudo-code is shown in the algorithm FOG NAFSA. 

In the first phase, FOG scale factor Kgi(i = x, y, z) identification is optimized by NAFSA. Firstly, the AFs 

parameters, category two parameters ωio(i = x, y, z) and category three parameters Egij(i, j = x, y, z; i ≠ j) 

are all initialized. After that, each AF i performs Individual behavior and moves to a better position based 

on the outcome. Subsequently, each AF i executes Group behavior with respect to their new position. 

Finally, this process is repeated for N times, and we could calculate the mean value Kgi_m(i = x, y, z) as FOG 

scale factors. 

In the second phase, FOG bias ωio(i = x, y, z) identification is indicated by NAFSA. At the beginning, 

the AFs parameters, category three parameters Egij(i, j = x, y, z; i ≠ j) and optimized FOG scale factors 

Kgi_m(i = x, y, z) are all loaded. Next, all the AFs execute Individual behavior and Group behavior 

respectively. At last, this process is repeated for N times, and we could obtain the mean value  

ωio_m(i = x, y, z) as FOG biases. 

In the third phase, FOG misalignment error Egij(i, j = x, y, z; i ≠ j) identification is demonstrated by 

NAFSA. At first, the AFs parameters, optimized FOG scale factors Kgi_m(i = x, y, z) and biases ωio_m(i = x, 

y, z) are all loaded in initialization process. Second, all the AFs execute Individual behavior and Group 

behavior, respectively. Finally, this process is repeated for N times, and we could acquire the mean value 

Egij_m(i, j = x, y, z; i ≠ j) as FOG misalignment errors.  
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Finally, the three stages above are repeated until the FOG error coefficients meet the terminate 

conditions, when optimization indicator reaches σ < 10−8, or the number of iterations reaches a certain 

preset number. 

Algorithm: FOG NAFSA. 

Begin 

for each AF i do 

initialize AFs parameters, category two and category three FOG error parameters 

end 

bulletin = arg min f(xi) repeat 

for each AF i do 

Perform Individual behavior 

end 

for each AF i do 

Perform Group behavior 

end 

Update Visual by Equation (5) 

for each AF i do 

initialize AFs and category three FOG error parameters, optimized category one FOG  

error parameters 

end 

bulletin = arg min f(xi) repeat 

for each AF i do 

Perform Individual behavior 

end 

for each AF i do 

Perform Group behavior 

end 

Update Visual by Equation (5) 

for each AF i do 

initialize AFs parameters, optimized category one and category two FOG error parameters 

end 

bulletin = arg min f(xi) repeat 

for each AF i do 

Perform Individual behavior 

end 

for each AF i do 

Perform Group behavior 

end 

Update Visual by Equation (5) 

Until terminate condition meet 

End 



Sensors 2015, 15 10557 

 

 

4. Simulation and Discussion 

In this section, the FOG error coefficients simulation is conducted by MCS-NAFSA. Before the 

simulation, the AFs parameters and the non-optimized FOG error parameters at each phase should be 

preset. Subsequently, the simulation on FOG error parameters is shown by MCS-NAFSA. 

4.1. Simulation Parameters Preset 

The Section 2.3.1 described all the AFs parameters during optimization process. All the preset AFs 

parameters of tri-axial FOG before the FOG error parameters optimized are listed in Table 1. 

Table 1. Novel artificial fish swarm algorithm (NAFSA) tri-axial fiber optic gyroscope 

(FOG) preset artificial fishes (AFs) parameters. 

FOG Parameters 

Types 

NAFSA AFs Parameters 

Visual AFs Numbers Iteration Times CFmin CFmax 

Kgi (5.0000, 2.0000, 0.1000) 50 60 0.000001 0.999999 

ωio (0.0050, 0.0020, 0.0001) 50 60 0.000001 0.999999 

Egij 
(0.0005, 0.0002, 0.00001, 

0.000005, 0.000002, 0.000001) 
50 60 0.000001 0.999999 

Meanwhile, in Section 3.3.2, when one category of FOG error parameters are identified by NAFSA, 

the other two categories’ parameters also have impacts on angular rate MSE. Therefore, the preset FOG 

error coefficients are shown in Table 2. 

Table 2. Preset FOG error coefficients. 

Parameters Types Preset Parameters 

( , , )giK i x y z

  /bit h  
 643.50373651  645.62852456 645.17583651  

( , , , ; )gijE i j x y z i j 

   

1 0.00099183 0.00010717

 0.00037044 1 0.00014048

0.00010505 0.00041586 1

 
 
 




  

 

( , , )io i x y z   / h   0.01562779 0.03213767 0.02793626  

It is worth noting that, in each of iteration, the dimensions of vector Visual listed in Table 1 are equal 

to the FOG parameter number. So the vector Visual dimensions on FOG misalignment errors are different 

from FOG scale factors and FOG biases. CF is a positive number <1, so that its minimum value and 

maximum value are preset as 0.000001 and 0.999999, respectively. In Table 2, in order to reduce the other 

two categories’ FOG parameter influences on angular rate MSE during one category of the FOG error 

parameters optimization process, the preset FOG error parameters are based on the conventional  

24-position calibration method [36,37], which is aided by expensive and high-precision turntable in  

indoor environment. 

  



Sensors 2015, 15 10558 

 

 

4.2. Simulation Results and Discussion 

After the presetting of all the parameters (i.e., the initialization process) is completed, all AFs start to 

execute the NAFSA optimization procedures. In order to increase the FOG error parameters’ degrees of 

credibility during the NAFSA optimization process, the random factors are introduced by conducting MCS 

100 times after the single NAFSA optimization. Figure 1 shows the three FOG scale factor NAFSA 

identification curves during the 100 times of MCS. Meanwhile, Figure 2 demonstrates the three FOG 

bias NAFSA identification curves with 100 times of MCS. Figure 3 presents the six FOG misalignment 

error NAFSA identification curves with 100 times of MCS. 

 

Figure 1. FOG scale factors MCS-NAFSA curves. 

 

Figure 2. FOG biases MCS-NAFSA curves. 
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Figure 3. FOG misalignment errors MCS-NAFSA curves. 

From Figures 1 to 3, all the FOG error parameters fluctuate during the MCS process within a relatively 

small range, and the results revealed that the FOG error parameters are influenced by their usage 

environments. Moreover, the precision of simulation results is also likely to be deteriorated by random 

factors, such as algorithmic error and computer error, which are easily being neglected and unable to be 

eliminated during a single NAFSA optimization. So, in this phase, in order to reduce the effects of 

random factors, the data smoothing method is adopted to calculate the mean value of the MCS results. 

After being processed by the data smoothing method, all FOG error parameters simulation results are listed 

in Table 3. 

Table 3. FOG error parameters MCS-NAFSA identification results. 

Parameters Preset Value MCS-NAFSA Identification Result Relative Error Standard Deviation 

gxK (bit·h/°)  643.50373651 643.50374138 0.00912194 0.01464 

gyK (bit·h/°) 645.62852456 645.62855074 0.04054963 0.01458 

gzK (bit·h/°)  645.17583651 645.17586147 0.03868713 0.01422 

gxzE (°) 0.00099183 0.00099161 0.00021812 2.792 × 10−5 

gxyE (°) 0.00010717 0.00010730 0.00121303 3.155 × 10−5 

gyzE (°) −0.00037044 −0.00037021 0.00062088 3.069 × 10−5 

gyxE (°) 0.00014048 0.00014061 0.00092540 2.924 × 10−5 

gzyE (°) 0.00010505 0.00010533 0.00247501 3.026 × 10−5 

gzxE (°) −0.00041586 −0.00041614 0.00067330 3.176 × 10−5 

xo (°/ h) 0.01562779 0.01565329 0.001633171 0.001632 

yo (°/ h) 0.03213767 0.03217083 0.001031810 0.001369 

zo (°/ h) 0.02793626 0.02790215 0.001222490 0.001780 
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Through the comparison between the preset FOG error parameters and the NAFSA identification 

results in Table 3, we can summarize that the relative error amplitudes of each parameter are substantially 

small and the credibility of identification results is enough for the FOG-based SINS navigation requirements. 

FOG scale factors Kgi(i = x, y, z) relative error magnitudes are small enough at 10−2~10−3 ppm, to meet the 

high-precision navigation requirements completely. The relative errors of FOG biases ωio(i = x, y, z) and 

misalignment errors Egij(i, j = x, y, z; i ≠ j) could also reach 10−3~10−4 in magnitudes which are also 

completely enough to satisfy the FOG-based SINS precision demands. However, in OAFSA, the FOG 

scale factors relative error magnitudes are 10−1~10−2 ppm and the FOG biases and misalignment errors’ 

relative error magnitudes are 10−2~10−3 [29,30]. Therefore, theoretically, the precision of NAFSA 

identification results is an order of magnitude higher than OAFSA in FOG error parameters identification. 

Moreover, the standard deviations of the estimates are indicators to show the stability of the  

estimates [38,39]. In Table 3, the standard deviations of the FOG scale factors Kgi(i = x, y, z) are 

0.01464(bit·h/°), 0.01458(bit·h/°) and 0.01422(bit·h/°), respectively. The standard deviations of the  

FOG misalignment errors Egij(i, j = x, y, z; i ≠ j) are 2.792 × 10−5 (°), 3.155 × 10−5 (°), 3.069 × 10−5 (°), 

2.924 × 10−5 (°), 3.026 × 10−5 (°) and 3.176 × 10−5 (°). Moreover, the standard deviations for the FOG 

biases errors ωio(i = x, y, z) are 0.001632(°/h), 0.001369(°/h) and 0.001780(°/h) on each axis. From the 

standard deviations of these three categories of FOG error parameters, the standard deviations of FOG 

scale factors are greater than FOG biases, and the standard deviations of FOG biases are also greater 

than FOG misalignment errors. This phenomenon corresponds to the FOG error coefficients clustering 

principle in the Section 3.3.1. More importantly, the estimated FOG error parameters could satisfy the 

preset optimization indicator in Equation (14). 

Furthermore, the variation tendencies of indicator functions among the SAFSA, OAFSA and NAFSA, 

when they are used for identifying the FOG scale factors, are demonstrated in Figure 4. 

 

Figure 4. Indicator functions of SAFSA, OAFSA and NAFSA. 
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24 iterations, with the indicator function reaching 0.002584(°/h)2. However, the OAFSA’s indicator 

function with the blue star curve has a faster convergence rate than SAFSA, but the indicator function 

begins to diverge after 20 iterations. The secondary initialization method is adopted in 30 iterations to 

decrease the indicator function and to improve the convergence precision. For comparison, the NAFSA 

optimization indicator function is shown with the black plus curve in Figure 4. We can conclude that the 

NAFSA has a better convergence rate than the OAFSA and SAFSA because of the reduction of the 

algorithm’s structural and computational complexities. Moreover, it is evident that the NAFSA indicator 

function is always convergent during the optimization progress, which is due to the usage of the previous 

experience of AF. Therefore, the NAFSA has better performance in convergence rates and reliability of 

the optimized results compared to SAFSA and OAFSA. 

5. Experiments and Discussion 

To validate the feasibility and priorities of the NAFSA on FOG error parameters optimization, the 

static and dynamic navigation experiments were conducted, respectively. Before these two experiments, 

the FOG error parameters were calibrated by using a turntable with 24-position method. The navigation 

information output results are also based on the FOG error parameters that are calibrated by this  

24-position method. Additionally, for comparison with OAFSA and NAFSA in navigation experiments, the 

stored experimental data were also used for navigation mechanization with FOG error parameters 

identified by OAFSA and NAFSA. 

For both experiments, the FOG-based SINS was developed by Inertial Navigation and Measurement & 

Control Technology Institute at Harbin Engineering University. The main performance indicators of FOG 

are demonstrated in Table 4. Figure 5 shows the FOG and the FOG-based SINS in experiments. 

Table 4. FOG performance indicators. 

Parameter Items Performance Indicators 

FOG dynamic range (°/s) −800–+800 

FOG scale factor stability (ppm) 10 

FOG bias instability (°/h) 0.005 

FOG angular random walk (°/h1/2) 0.0005 

 

Figure 5. The FOG and FOG-based SINS. 
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5.1. Static Navigation Experiment and Discussion 

5.1.1. Experimental Procedures and Data Processing 

In this section, a static navigation experiment is carried out. At the beginning, the FOG-based SINS 

and the corresponding monitor are installed on the marble benchmark that is used to eliminate external 

disturbances on system positioning precision. Then, the SINS is started, the turntable calibrated FOG 

error parameters and the initial navigation information (initial position and velocity) are loaded. After 

that, both the inertial measurement unit (IMU) output and the navigation information for 24 h are stored 

after the SINS completes the initial alignment process. 

After obtaining the stored 24 h IMU output and navigation information, we first used the FOG data to 

recalibrate the FOG error parameters by OAFSA and NAFSA, respectively. Second, the navigation 

mechanization process was conducted again with the FOG error parameters optimized by OAFSA and 

NAFSA, respectively. Finally, the positioning error curves were plotted and the positioning error 

numerical results were obtained with the three methods introduced. 

The positioning error is calculated by [40,41]: 

2 2 2 2

0 0( ) ( ) ( cos( ))

1851.8518
error

lat lat R long long R lat
P

     
  (15) 

where, long0 and lat0 are the initial longitude and latitude of the SINS, and long and lat are the calculated 

longitude and latitude. R denotes the radius of Earth. 

5.1.2. Experimental Results and Discussion 

Figure 6 shows a comparison of positioning errors in 24 h static navigation experiment when the FOG 

error parameters are identified by the conventional calibration method, OAFSA and NAFSA, respectively. 

The red dotted positioning error curve represents the OAFSA FOG error parameters identification results. 

Additionally, the blue dotted curve represents the positioning error curve with FOG calibrated by 

conventional high-precision turntable method. Both curves present positioning precision of 4.5 nautical 

miles in 24 h static navigation, which shows that the OAFSA could substitute the conventional 

calibration method without using high-precision turntable [29,30]. Moreover, it is worth noting that the 

black solid curve in Figure 6 denotes positioning precision of the NAFSA on FOG error parameters 

identification. The curve’s tendency demonstrated that after 5 h of navigation, the positioning error is 

lower than the other two methods and the precision is about 0.3 nautical miles better than the OAFSA 

in one day of navigation. 

The corresponding numerical results of static positioning errors with the three different methods are 

shown in Table 5. Both the conventional calibrated and the OAFSA recalibrated FOG-based SINS have 

about 4.5 nautical miles positioning error in 24 h. Meanwhile, the NAFSA recalibrated FOG-based SINS 

has 4.255 nautical miles of positioning error. Therefore, the static navigation experiment demonstrates that 

the NAFSA recalibrated FOG-based SINS is superior to that of the conventional calibrated and the OAFSA 

recalibrated FOG-based SINS. 
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Table 5. Static positioning results of three different methods. 

Methods 
Conventional 

Calibration Method 

OAFSA Identification 

Method 

NAFSA Identification 

Method 

24 h positioning error 

(nautical mile) 
4.4895 4.4988 4.2550 

 

Figure 6. The comparison of positioning error with three methods. 

5.2. Dynamic Navigation Experiment and Discussion 

5.2.1. Experimental Procedures and Data Processing 

In order to validate the feasibility and priorities of the NAFSA in real application conditions, a lake 

navigation experiment was also conducted in Qiandao Lake for a period of time. Firstly, the FOG-based 

SINS and the reference system, the difference global positioning system (DGPS) receiver, were installed 

in a ship. Secondly, after the FOG-based SINS finished the mooring alignment process at the starting 

point, the ship sailed successively with speed change, heading change, manoeuvres, etc. At the same time, 

the reference DGPS information, IMU data and the self-developed FOG-based SINS navigation 

information were all collected and saved. Finally, the data was processed the same way as Section 5.1.1. 

The trajectories of the lake experiment with GPS and the SINS when FOG parameters are identified by 

three different ways are all demonstrated in Figure 7. Moreover, the numerical results of the system 

positioning errors in both the North and East directions are calculated and listed in Table 6. 

Table 6. Dynamic positioning errors of three different methods. 

Methods 
Conventional 

Calibration Method 

OAFSA 

Identification Method 

NAFSA Identification 

Method 

North direction positioning error (m) 5.1154 5.2131 5.0134 

East direction positioning error (m) 20.0253 20.3580 8.1689 
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Figure 7. Trajectory comparison between different methods. 

5.2.2. Experimental Results and Discussion 

On one hand, Figure 7, shows that the conventional calibration method, the OAFSA identification 

method and the NAFSA identification method on FOG error parameters all have the ability to implement the 

FOG error parameters calculation and reach different degrees of positioning precision in the lake experiment. 

On the other hand, the green curve shows that the NAFSA recalibration method is superior, such as better 

robustness when speed and heading change, better tracking capability during the whole navigation process, 

which means higher positioning precision. Moreover, by utilizing the NAFSA on FOG error parameters 

identification, some lower precision SINS would have better performance for parameters identification 

after a specific period of navigation. 

The lake experiment positioning errors compared with reference solution at the end of the navigation 

are listed in Table 6. We found that the conventional calibration method and the OAFSA identification 

method have almost the same positioning errors. The conventional calibration method has a North direction 

positioning error around 5.1154 m and East direction error about 20.0253 m. The OAFSA identification 

method has a North direction positioning error around 5.2131 m and an East direction error about  

20.3580 m. While the NAFSA identification method has better performance in terms of positioning error, 

with a North direction positioning error of 5.0134 m, and East direction error of 8.1689 m. By comparing 

the North direction positioning errors with these three methods, the NAFSA method has only a slightly 

smaller positioning error. Furthermore, the NAFSA recalibration method could improve the East direction 

positioning error of the conventional calibration and OAFSA recalibration methods from about 20 m to  

8.169 m, which could clearly demonstrate the priorities of the NAFSA recalibration method. Therefore, the 

NAFSA recalibration method is a more powerful choice in its engineering application for FOG error 

parameters recalibration. 

All in all, in both experiments, the NAFSA recalibration method has advantages in workload and costs 

compared to the conventional calibration method. However, it presents better performance in long-term 

navigation precision and is more acceptable for actual engineering applications than previous OAFSA 
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recalibration methods, which is mainly due to the lower structural and computational complexities and 

faster convergence rate of the NAFSA recalibration method. 

6. Conclusions 

After the FOG-based SINS operated for a period of time, the FOG would be vulnerable to the working 

environmental disturbances, such as gravitational field, magnetic field and thermal field, which cause 

nonreciprocal phase shifts except for the rotary movement by the vehicle itself. These exterior disturbances 

could influence the FOG error parameters’ stability directly or indirectly. Even though some advanced 

measures are taken to eliminate these effects, high-precision navigation application is far from enough. 

This research work is based on one of the swarm intelligence algorithms, NAFSA, focusing mainly 

on its combination with MCS and utilization in FOG error parameters identification. The NAFSA has the 

advantages of lower structural and computational complexities and higher convergence rates than the 

previous OAFSA recalibration method during the optimization process. It also has lesser workload and 

costs requirements than the conventional FOG error parameters calibration methods. Furthermore, the 

non-autonomous property could be avoided when compared with the previous OAFSA recalibration 

method. Therefore, the NAFSA FOG error parameters recalibration method could implement longer 

recalibration interval time with higher precision in some harness application environments. 

When the FOG-based SINS applied in navigation conditions, NAFSA-identified FOG error parameters 

could realize the SINS navigation process rapidly and accurately. Moreover, the NAFSA-identified FOG 

error parameters have better environmental adaptive ability, which means higher positioning accuracy 

and better tracking performance. Therefore, the NAFSA recalibration method has better ability than the 

conventional calibration method and the previous OAFSA in FOG error parameters recalibration application. 

However, the AFSA on FOG error parameters recalibration is only in an exploratory phase and all 

the navigation experiments are based on the stored data. Thus, our work for the next stage is to realize 

the algorithm in real-time navigation. 
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