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Abstract: Our research approach is to design and develop reliable, efficient, flexible, 

economical, real-time and realistic wellness sensor networks for smart home systems. The 

heterogeneous sensor and actuator nodes based on wireless networking technologies are 

deployed into the home environment. These nodes generate real-time data related to the 

object usage and movement inside the home, to forecast the wellness of an individual. 

Here, wellness stands for how efficiently someone stays fit in the home environment and 

performs his or her daily routine in order to live a long and healthy life. We initiate the 

research with the development of the smart home approach and implement it in different 

home conditions (different houses) to monitor the activity of an inhabitant for wellness 

detection. Additionally, our research extends the smart home system to smart buildings and 

models the design issues related to the smart building environment; these design issues are 

linked with system performance and reliability. This research paper also discusses and 

illustrates the possible mitigation to handle the ISM band interference and attenuation 

losses without compromising optimum system performance. 

Keywords: IOTs; wellness function; behavioral detection; attenuation loss; interference; 

SNR (signal to noise ratio) 
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1. Introduction 

Innovations in technology mostly emerge from the needs of human society. The 21st century is the 

era of prompt advancement in digital technology. Most of this technology is focused on proficiently 

monitoring and controlling different activities. Everywhere from mega-structure building automation 

to small smart homes, big industrial assembly machineries to a kid’s toy, a college research laboratory 

to an international space research center, and even health care service at a desk through wireless 

sensors and networks, wireless sensor networks (WSN) have become fundamental and crucial devices. 

The significant improvement offered by introducing wireless technology is that it reduces the 

complexity to harness wired transmission and facilitates the installation of sensors, controllers, and 

actuators. The cost and installation efforts for a large number of sensors in an urban environment are 

exponentially reduced by wireless technology innovations. There are different wireless communication 

mediums (technology) in which a wireless sensor network can be constructed according to respective 

applications and strengths. 

Home automation and monitoring are the dominant applications of WSNs, where a number of 

heterogeneous sensors are deployed, to determine different activities of inhabitants. Wireless sensors 

can be operated through batteries as well as plugging into the power supply. The selection of power 

source depends on the deployment environment and the availability of power for applications such as 

solar panel based outdoor temperature sensing. In a replaceable battery, the sending power and 

sampling rate of data decide battery life while the energy harvesting applications use the external 

energy source, so they are somewhat free from the battery usage method. Wireless sensors and 

networks are comprised of several nodes prepared through various sensing devices (sensors, 

controllers, and actuators) and RF chips for wireless communication [1–4]. A revolutionary 

development to WSNs is the announcement of IEEE 802.15.4 standard in the year 2003 [5], and it is 

the first major worldwide standard for WSNs. The limitation of IEEE 802.15.4 standard is that, it only 

specifies and defines the RF communication with respect to the lower layers PHY and MAC; it 

provides proposals and does not define the networking techniques for the upper layers. In light of this, 

ZigBee Alliance and its Mesh network along with IPv6 (in recent years) standardized the protocol 

known as ZigBee communication protocol (IEEE 802.15 ZigBee protocol). These upper layer 

improvements offer authentication of network nodes, encryption, and an efficient and modern routing 

that leads to mesh networking topology. Although mesh topology is quite complex, ZigBee is mostly 

preferred by WSNs designers with Mesh topology only. IEEE 802.15.4 ZigBee offers tremendous 

specifications to short range and urban environment wireless sensors networks. IEEE 802.15.4 ZigBee 

standards operate on the license-free industrial, scientific, medical (ISM) frequency band. 

One of the significant developments in WSN-based smart homes is the injection of IOTs (the 

internet of things). The ubiquitous connectivity and distributed intelligence of the IOTs with wireless 

sensing technology are becoming the center point of upbeat remote monitoring and control. In an era 

of IOTs, more devices are linked to the internet as compared to the population—there were over  

12.5 billion devices in 2010. Cisco predicts that 25 billion devices are going to come onboard in 2015 

and there will be 50 billion by 2020. The internet of things from a smart home perspective can be 

described as connecting household objects, especially electronic and electrical appliances and sensors 

and actuators, to the World Wide Web services [6,7]. These objects and devices are smartly and 
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intelligently interlinked to each other to develop new customs and understanding of wireless 

communication between a person and things, and among things themselves. These customs and 

understanding create a prospect for devices nearby in the smart home environment to start the 

interaction and build very different environments. An environment that learns from our daily activity 

and requirements, such as when we get up in the morning, how much time we sleep, and how long we 

watch television, can react to an inhabitant’s behaviour to improve their health and wealth. For example, 

an occupant got up late in the morning and because he or she was in hurry to catch the bus to the office, 

he/she forgot to turn off the electric oven and only noticed this after reaching the office. Now from a 

remote distance, through an IOT-based smart home system, he or she can control the oven.  

The motivations to design and develop the smart home are: independent living; enhancing comfort, 

efficient use of electricity, and safety and security. The word ‘smart home’ is preferred for a home 

environment equipped with advanced technology that allows monitoring and control of its inhabitants, 

and boosts independent living through wellness forecasting based on behavioral pattern generation and 

detection. To identify the difficulties and challenges of the prime performance of smart home 

monitoring, we have to understand recent and ongoing research in this field. A variety of smart home 

systems for ambient assisted living has been proposed and developed, but there are, in fact, relatively 

few houses that apply smart technologies. One of the main reasons for this is that the complexity and 

varied design requirements associated with different domains of homes. These domains are 

communications, control, entertainment, residential and living spaces. AHRI (Aware Home Research 

Initiative) at Georgia Institute of Technology [8], CASAS (The Center for Advanced Studies in 

Adaptive Systems) at Washington State University [9], AgingMo at University of Missouri [10], 

PlaceLab at MIT [11] and Smart home Lab at Iowa State University [12,13], are monitoring the 

activity of daily living, enhancing the comfort, and creating context-aware relative scenarios through 

heterogeneous sensor deployment, and these sensor units include cameras as well. These are academic 

research projects. From a social point of view, the use of the camera is a direct violation of privacy for 

monitoring in a smart home environment. At the same time, the video stream by the camera is 

technically complex. Monitoring and analysis through video stream are simple, but it demands 

significant storage space on the server. The server designed at home is a local home gateway server, 

which has limited storage and collection memory. There are many different industrial big building 

smart home services available; Toyota’s dream house at Japan, e-House by McDonough, in New York, 

House R128 by Intgeniere, W.S at Stuttgart, Germany and Crystal House by Hung, at Taichung, 

Taiwan, which have targeted sustainability and energy conservation goals, and offer convenience and 

comfort through the intelligence of the environment [14]. 

Wearable, implantable, and microsystems that can be deployed over the body area network such as 

the Apple watch are available nowadays. These devices are worn by the individual or embedded in the 

home environment to assist someone for health care. Several projects comprising the application of 

signal assisted wearable devices are ongoing in different research laboratories, SmartShirt [15], 

Senswear Armband by Body Media Inc [16] and LifeShirt by Vivometrics [17], PROETEX project by 

CSEM center [18] are wearable devices to measure ECG. Other research has focused on fall detection 

based on accelerometers using wearable sensors [19–24]. An individual suffering from illness can 

wear these devices as part of a health care strategy, but someone who is fit may not appreciate wearing 
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these devices on their body. Adaptability is a significant concern with wearable sensor devices for 

physiological parameter measurement.  

Other researchers have already implemented smart home systems based on wireless communication 

technology, but integrating wireless with IOTs has extraordinary potential in smart home applications. 

Most research of IOT-based smart homes are in the proposal phase, and very few research studies 

involve practical implementation [25–31]. IOT-based smart systems offer us remote access and 

reactive ambient analysis of home ambience, but they can only perform this when the implementation 

of IOTs is done through dynamic database management [32–35]. Additionally, the majority of smart 

home projects are carried out systematically based on the assumptions from laboratory or test bed 

controlled environments, which may be entirely different from a real environment where an inhabitant 

lives regular life regardless of sensor node installation.  

The smart home environment demands activity recognition of daily living from raw sensor data, and 

these raw data sets are complex and irregular to encode into predefined scenarios. Even after encoding 

this raw data, it is quite difficult to identify deviant behavior because these data sets are on different 

time measures (sampling rate) and sense modalities. These different time and sensor modalities create 

problems during equation formulation. It is quite easy to generate behavioral patterns from single event 

data sets, but it may raise a false alert. In our research, we present a realistic approach to getting the 

optimal performance from a smart home monitoring system. Realistic application for behavioral 

pattern generation for ambient-assisted living raises different challenges. To provide a reliable 

solution, we proposed and implemented a smart home based on an integrated framework to analyze the 

individual’s behavior from the previous data, real-time recently received data and feedback received 

data. To resolve the issues, we apply pattern detection through pipeline processing with filtering, 

characteristic construction, activity detection, and smoothing. We attempt to separate the usual routine 

data from unexpected data, which may put an inhabitant’s health and wealth at risk.  

The system is proposed and implemented on two levels; hardware and software. At the hardware 

level, heterogeneous sensors are deployed for multi-activity and multi-events; these wireless sensor 

nodes are configured with ZigBee Mesh topology and data is received by central coordinator node and 

collected by local home gateway computer. The software modules are subdivided into different levels, 

such as data logging, data extraction, and data storage; but their ultimate task is to forecast the change 

in activity and correlate it with the wellness of inhabitants in real time or near time.  

In the second half of the paper, we have extended the smart home approach to big building 

environments and investigated performance and issues, especially interference and attenuation issues. 

Smart home monitoring is based on the ambient scenario; when extend our research to smart buildings 

we are faced with some new problems that we do not notice or consider in a smart home.  

We can define the intelligent and smart monitoring as an application of automation with integral 

systems of accommodation facilities to boost and progress the everyday life of an occupant. In this 

research, we have designed an XBee series-2 based intelligent monitoring system that operates on the 

ZigBee protocol and uses the features of IOTs. Our idea is to generate a system-level design approach 

to formulating design issues and possible solutions. The remaining parts of this paper are organized as 

follows. We start by presenting the existing system in Section 2 and experimental results and 

performance issues in Section 3. The extensions of a smart home for big building environments are 
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presented in Section 4. Measurements and investigations from big building environment experiments 

are presented in Section 5. Lastly, a conclusion with possible solutions to issues is drawn in Section 6. 

2. Description of the Developed Smart Home Monitoring System  

Smart homes for ambient-assisted living involve the learning patterns of agent behavior from sensor 

data. Deviation from the regular behavior is an array of the data that either does not follow the 

anticipated behavior, which is an anomalous behavior, or follows the certain class of predefined 

irregular behavior. This deviation is an alert for an inhabitant. In our research for behavioral pattern 

generation, we used an advanced approach that is based on combined deviation over time because 

forecasting can be reliable only if we consider more than one event. The wellness forecasting model 

we have designed and proposed is divided into two sections. At the lower section, all the raw sensor 

data from household appliance usage and movement is delivered to the coordinator attached to the 

local home gateway and this local server stores the unstructured data sets for further processing and 

analysis. Raw sensor data collected at the lower information section can only identify which sensor is 

active or inactive and at what time. To discover the optimal activity of daily living for wellness, these 

data sets need to be analyzed by the upper section software logic. Intelligent data recognition and 

classification mechanisms are applied through the software at different levels of data generalization in 

real time, based on the time and order of the sensor usage. 

There are various ZigBee RF modules available in the wireless industry. For our research 

application, we pick Digi XBee Series-2 RF. The XBee module facilitates various features such as 

different sampling rate, baud rate and sleep rate associated with two types of operating modes. The 

first is an application programming interface (API), and the other is application transparent (AT). 

2.1. Topology and Device Configuration  

Each ZigBee based wireless sensor networks has a ZigBee Coordinator (ZC). There is precisely one 

coordinator in every single network, and ZC is the device that takes the network establishment 

responsibility. ZC stores the network information including security keys (such as personal area 

network identification number). This coordinator is the transceiver RF module that not only receives 

the data from respective sensor nodes belonging to it, but also looks after remote configuration and 

fault detection of other associated sensor nodes in the network. In the tree and mesh topologies, the 

ZigBee routers (ZRs) is applied to extend the network coverage area for wireless communication. In 

addition to ZC and ZRs, there are two more types of ZigBee devices. The ZigBee device can be 

configured (programmed) as ZigBee end device (ZED) and ZigBee end device plus router (ZEDR). 

ZED is usually low power as well as small battery power devices. They transfer their data directly to 

the parent (ZC), and the parent may be the coordinator or another router node. The ZED cannot relay 

data from other nodes. The ZRs relay the packet of their neighbor to designated path while the ZEDR 

node can relay its data and other neighbors’ data as well in the network. The ZR and ZEDR nodes both 

have the same power option as ZED. The ZigBee nodes are scattered at different distances in the urban 

area of the home environment, and data is sent over the network to the coordinator. 
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2.2. Forming a Network 

ZigBee based Digi XBee Series 2 is used as RF module in our smart and intelligent home 

monitoring system. The system contains heterogeneous sensors, which include PIR, temperature, force 

and electrical and electronic appliances usage monitoring sensors. The ZC has the authority to select a 

channel, PAN ID (16-bit personal area network unique identification number that only belongs to 

particular ZigBee WSN), security policy, and stack profile for the network. Each time to establish 

communication, ZC starts with the proper channel and executes a series of scans (energy scan or PAN 

scan) to realize any RF activity on various channels of ZED, ZR and ZEDR. This energy scan can only 

register the wireless sensor nodes (ZED, ZR & ZEDR ) which are registered with corresponding PAN 

ID to the ZC. 

2.3. Channel Selection and Operation Mode  

It is the duty of ZC to select the best channel for network operation. To do this, it performs energy 

scans on every possible frequency channel (ZigBee 16 channels) to detect the strongest available 

channel. Channels at excessive energy levels are discarded from potential channel lists to start on. The 

type of operation mode depends on the individual’s requirements. It can be configured by the RF 

module through XCTU software [36].  

2.4. Present System Description  

The present home monitoring system has been continuously running since May 2013 without any 

significant complexity and maintenance, except minor problems related to sensor physical damage and 

power supply. Figure 1 represents the image of the real smart home where a monitoring system is 

running, and inhabitants are living their ordinary daily life. This house was built in 1938, so it is an old 

home, but it has been converted to a smart home with the help of sensing technology. The layout of the 

smart home with sensor location and placement is shown in Figure 2. This figure displays the genuine 

home environment where one stays alone and has smart sensing placement to improve wellness of 

individual, i.e., Ambient Assisted Living (AAL), and it shows different sensing units for monitoring of 

ambient parameters and different domestic objects. As we can see in the present system, it contains a 

network of heterogeneous sensors, These heterogeneous sensors are temperature, force, PIR and 

electronic and electrical (E & E appliances sensing) appliances monitoring units; Brief description of 

each sensing unit are given as follows: 

 

Figure 1. Image of real house where smart home monitoring and a control system are installed. 
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Figure 2. Layout structure of the house with sensor deployment and household objects. 

2.4.1. Electronics and Electrical Appliance Monitoring Unit  

This power usage monitoring and control unit, contains transformer and other circuit components. 

The transformer block comprises of voltage and current transformers. The step down voltage 

transformer is used to transform the mains from 220 V to 10 V signal, and the current transformer 

ASM010 is used to link the current in the line wire to the load through the current transformer circuit. 

For signal amplification, operational amplifier LM324 is applied  associated with other components 

such as a rectifier, capacitors and gain resistors of  specific parameters. The analog sensor signal 

output is supplied to the analog channel of radio communication chip for wireless transmission.  

Figure 3a,b presents the designed unit, and Figure 3c–h shows the utilization of the unit with different 

household appliances. This data is helpful to analyze the appliance usage pattern [37].  

2.4.2. Force Sensing Unit 

The flexiforce sensor is a Piezoresistive sensor A301 used to calculate the amount of pressure given 

on any object. When any pressure is given to the sensor, the resistance of the sensor decreases. As a 

result, the output voltage increases. The range of resistance varies in force sensor found in different 

types of sensors. The pressure is ideally given in the central circular part of the sensor on both sides. 

The sensor is kept beneath the objects to sleep and sit upon. The sensor is connected to a conditioning 

circuit with the 9 V power supply. Figure 3i shows the force sensing unit and (j) to (l) display the 

deployment of this unit to measure force. This force measurement is linked and analyzed to identify 

the occupancy pattern [38,39]. 

2.4.3. Contact Sensing Unit for Domestic Objects  

For the purpose of domestic objects usage monitoring such as self-grooming table and office desk, 

we fabricated wireless contact sensing systems and connected them. Figure 3m,n shows the fabricated 

contact sensing unit connected to a grooming table to identify the frequency of usage, and these objects 

usage are monitored at local home gateway server by ON/OFF values [39].  
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Figure 3. (a,b) represent the electronic and electrical appliance usage monitoring and 

control unit and (c–h) represent the monitoring and control of household appliances 

through this unit; (i) represents the force sensing unit and (j–l) deployment of the unit for 

different sitting as well as sleeping objects; (m,n) represent the contact sensing unit 

arrangement [39]. 

2.4.4. Temperature Monitoring Unit 

To design temperature sensing unit the LM35 IC is connected to conditioning circuit for ambient 

temperature monitoring. Figure 4a,b represents the outdoor temperature monitoring and Figure 4c 

shows the indoor room temperature monitoring.  

2.4.5. Movement Monitoring Unit  

The passive infra-red (PIR) movement monitoring unit is designed to detect the motion within the 

coverage range of the sensing system. This PIR sensing unit is compact, power-efficient, flexible and 

durable. These sensing units are also known as “IR motion detector”. It operates on 5 V–12 V supply. 

These are binary mode sensors, and they are interfaced with RF XBee modules. Figure 4d shows the 

fabricated movement monitoring unit deployed in the smart home at the door. 
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Figure 4. (a,b) represent the outside temperature monitoring unit based on  

renewable solar energy; (c) inside temperature monitoring unit and (d) PIR sensor for 

activity monitoring. 

The sensors are scattered in such a manner so that the systems get every essential value from every 

corner of the ambient environment that is applicable to wellness determination of an individual who 

stays there. Figures 3 and 4 show the sensor units’ placement in the smart home. These sensing units 

transmit their data to RF module XBee series-2 end-device/router to XBee Coordinator connected 

(XBee coordinator connected to the laptop through USB connection) to home gateway server laptop. 

Figure 5 represents the local home gateway server laptop located in the smart home. The data from 

local MySQL server is raw data, from this raw data information is extracted through software. The 

software is designed according to the individual requirement of data extraction. The Visual Studio C# 

graphical user interface is designed to upload raw data to MySQL server. From the local server, that 

data will be analyzed and uploaded to the website with the help of the internet [40,41]. 

 

Figure 5. Local home gateway server computer. 
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Figure 6 represents the movements of a subject on a particular day. The collected passive infrared 

motion sensor data files were processed and analyzed by sensor activity pattern generation software. 

The aim of this process was to track the movement of an elderly person and infer the top sequence of 

movement sensing unit at a particular time (a day or hour of the day). We had restricted the number of 

movement sensing units, and it was a beneficial approach to identifying the physical location of the 

person in real-time. We had placed the movement sensing unit exactly at the entry or exit door so that 

we could quickly identify the physical location of a subject. 

 

Figure 6. Online smart home monitoring website [39]. 

2.5. Design of ADLs’ Recognition System 

The ADLs’ recognition system design comprises the native element of the appropriate statistics of 

the ADLs.  

Sensor Event Level 0: This level covers a variety of sensing units deployed in the AAL 

environment. These are primarily used to produce vital data to the superior level. It transports the 

heterogeneous sensor data related to the subject statistics and directs the data to the contextual 

recognition level for classification. 
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Context Recognition Level 1: This level takes out the information from raw data and, depending on 

the AAL set-up’s principal values of location (S), time (T) and context (C), the contingent information 

is derived from the identification of Basic ADLs.  

ADLs Recognition Level 2: Classification for the Basic-ADLs will be achieved depending on the 

contextual information and the status of the sensor stream. 

At the lower section Level 0, all the raw sensor data from household appliance usage and movement 

is delivered to the coordinator attached to local home gateway and this local server stores the 

unstructured data sets for further processing and analysis. Raw sensor data collected at the lower 

information section can only identify which sensor is active or inactive and at what time. To discover 

the activity of daily living for wellness, these data sets need to be analyzed by the upper section 

software logic. The context (Level 1) is intended for recognizing the context at which the sensor value 

is generated. This level extracts the information from the sensor data and depending on the AAL set-up 

is the basic values of location, time and context, the situational information are derived from the 

identification of the respective ADL. The ADL (Level 2) is meant for recognizing the activity based on 

the context and sensor value, and the labeling for the basic ADL recognition will be performed at this 

level. Figure 7 shows the recognition of ADLs. It involves a Sensor Event Level, Context Recognition 

Level, and ADL Recognition Level [39]. 

 

Figure 7. Activity recognition divided into three different levels [39]. 

2.6. Wellness Functions 

Wellness functions are introduced to provide a mathematical expression and to ascertain the 

wellness of an individual under the ambient-assisted real-time monitoring environment. The two 

wellness functions β1 and β2 define the wellness of an inhabitant based on the usage of household 

appliances. The rationale for the wellness functions is to determine “how well” the inhabitant is using 

daily objects. The first function β1 is obtained from the non-usage as well as the inactive duration of 

the appliances. While the second function β2 is generated from the over-usage of few specific 
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appliances. The wellness index shows the behavior of the person with respect to the daily object usages 

in real-time. 

Figure 8 shows the functional description of the wellness-based smart home monitoring [37–41]. 

The smart home systems have been developed to observe the wellness of elderly people living 

independently in their own at home. The smart home system developed is capable of simultaneously 

monitoring the general physical activities of an inhabitant as well as physiological and ambient 

entities. It is a multi-model, unobtrusive, non-invasive novel sensing system deployed at central 

locations in the home environment. The continuous in-home monitoring can be achieved with single 

local home gateway server computer. The developed analysis and decision-making algorithm software 

modules execute in a Windows software working environment. Through the internet connection, we 

can access the wellness information from a remote location.  

 

Figure 8. Functional description of the developed smart home monitoring system [39]. 

Wellness function #1, designated as (β1) is defined by the following equation:  ઺૚ = ܜି܍ ൗ܂  (1)

where: βଵ,୒ୣ୵ = Wellness index of the elderly person based on the measurement of inactive duration of 

household objects; t = Time of Inactive duration of all appliances, i.e., duration time no objects are 

used; T = Maximum inactive duration when no objects were used in the past. 

Wellness function #2, designated as (β2) is defined by the following equation ઺૛ = ܖ܂൯܉܂షܖ܂൫܍  (2)

where: β2, new = Wellness function of the elderly person based on excess usage measurement of 

household object; Ta = Actual (current) usage duration of the household object; Tn= Maximum usage 

duration use of household object in normal situation of the past [39]. 
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Seasonal Decomposition: 

The seasonal (cyclic) decomposition by Brockwell and Davis in 2001 was developed for predicting 

the near future values. It has been applied as a primary tool to analyze trends. It is also useful for 

determining seasonal patterns, which improves the forecasting process. Trend component can assess 

using the principle of moving average.  

The initial Exponential Moving Average considered in the analysis is given by the equation below: 

MAt+1 = αXt + (1 − α) MAt (3)

where: 

MAt+1—Moving average prediction;  

MAt—Previous Moving average;  

α—Smoothing Constant;  

Xt—Observed quantity at time ‘t’. 

The smoothing constant (‘α’), is derived from the number of sensor observations, and these 

observations contain the initial value from the start of the system to the recently observed value. The 

essential features of trend and seasonality are described in a time series by its degree. After assessing 

the internal components such as trend and seasonality of a time series, errors’ estimation is extracted 

by the de-trending process. Smoothed Trend Curve (STC) for various household usage durations is 

derived by applying Equation (3). 

The seasonal decomposition is suitable for data revealing a cyclical pattern as well as a trend. In the 

present research task, a one-week activity duration series is considered as one cycle or season to 

recognize the weekly activity pattern of an individual. It has also categorized the periodic components 

in the historical data and used them in a forecasting model [39]. 

Driving Trend using Modified Double Exponential Smoothing Process:  

To smooth the trends, a modified double exponent smoothing strategy (Brockwell strategy) is 

applied for forecasting. The advantage of this strategy is to minimize the mean deviation and capture 

the local (latest seasonal) trend of the series.  ߬ = ܶ = ௧ܮ)ߜ − (௧ିଵܮ + (1 − (ߜ ௧ܶିଵ (4)ܮ௧ = ௧ݔ)ߙ − ܵ௧ି௦) + (1 − ௧ିଵܮ)(ߙ + ௧ܶିଵ) (5)ܵ௧ = ௧ݔ)ߛ − (௧ܮ + (1 − ௧ି௦ (6)ܵ(ߛ

where: 

Tt: trend (or slope) of the entire duration, Lt: local level seasonal slope, St: change in seasonal 

factor, xt is the observation at the current time, s is the number of periods in one cycle (i.e., s = 7 in our 

case), α, δ, γ is the smoothing parameters ranging from 0 to 1, selected by minimizing mean  

square errors. 

Starting values are: Lt = (1/s)(x1 + x2 + x3 +…..xs); Tt = (1/s)((xs+1 − x1)/s+ (xs+2 − x2)/s +….  

(x2s − xs)/s); St= xk − Ls, where k = 1, 2….s. 

A forecast of the activity duration is extrapolated by using the seasonal pattern in Equations (3)–(5): 

Ft+m = Lt + Ttm + St−s+m (7)
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m is the required forecast period [39]. 

3. Experiment and Analysis of Smart Home  

The wellness trends and pattern generation for the activity of daily living are based on the real 

system running continuously in the real smart home since May 2013. The sensor data is collected into 

local home gateway computer and analyzed through the wellness function’s mathematical formula in 

Equations (1)–(7). 

In the forecasting process, the most appropriate fitted curve is computed by adding smoothed trend 

curve and seasonally adjusted factors. For illustration, the non-electrical appliances usage durations 

and their corresponding trends are considered in the forecasting process. This would reveal the precise 

behavior of an individual in utilizing the household appliances. Some of the electrical appliances such 

as water kettle, microwave, and laundry machines are pre-programmed and auto control; hence, they 

may not appropriately run the forecasting method. The non-electrical appliances usage duration and 

their corresponding trends are plotted. Figure 9 shows bed usage activity durations and its 

corresponding trend for eight weeks at the smart home where an inhabitant lives their regular life 

(green color: trend; blue color: actual observations) [37–42]. The trend we generated from our wellness 

model fitted to the actual observations. With these trends, we can predict the bed usage of the next 

couple of weeks to generate wellness information.  

 

Figure 9. Bed usage durations and trend. 

Figure 10 shows the toilet usage activity durations and the corresponding trend for 11 weeks at a 

smart home where an inhabitant lives (green color: trend; blue color: actual observations). The trend 

we had generated from our wellness model was close enough to the actual observations.  
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Figure 10. Toilet usage durations and trend. 

Figure 11 shows the dining chair usage activity durations and the corresponding trend for 11 weeks 

at an elderly person’s house where he lives alone. The trend we had generated from our wellness 

model was close enough to the actual observations.  

 

Figure 11. Dining chair usage activity durations trend. 

A snapshot of the ninth week’s (Friday) estimated values based on the recorded eight weeks is 

given in Table 1. Considering the statistical inference of 95% confidence interval, the residuals in the 

fitted (predicted) curve is computed by twice the standard deviation. Accordingly, the forecast ranges 

with maximum and minimum durations are computed according to Equations (1)–(7).  
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Table 1. Wellness function indices of household appliances and forecast of the ADLs [39]. 

SUB Activity Sensor_ID β1 β2 

Forecasting for 9th Weeks (Friday) 
Actual-Duration 

(s) 
Status Max-Time 

(s) 

Min-Time 

(s) 
α δ Γ 

#1 

Sleeping Bed 

0.715 

0.829 28,456 20,405 0.120 0.170 0.650 22,505 Regular 

Dining Chair 0.865 1208 845 0.020 0.110 0.210 1150 Regular 

Toilet Toilet 0.785 1444 1028 0.140 0.0900 0.350 1353 Regular 

Relax Couch 0.889 1457 840 0.150 0.130 0.540 1104 Regular 

Watching TV TV 0.915 2806 2205 0.030 0.140 0.100 2608 Regular 

#2 

Sleeping Bed 

0.829 

0.727 30,258 23,450 0.200 0.180 0.480 27,268 Regular 

Dining Chair 0.504 14,545 10,425 0.140 0.170 0.300 15,580 Irregular 

Toilet Toilet 0.576 1838 1426 0.160 0.130 0.200 1718 Regular 

Relax Couch 0.614 2018 1487 0.150 0.040 0.250 1645 Regular 

Watching TV TV 0.813 3804 2807 0.020 0.050 0.060 3045 Regular 

#3 

Sleeping Bed 

0.604 

0.816 27,545 21,408 0.030 0.560 0.605 26,258 Regular 

Dining Chair 0.713 16,250 12,350 0.400 0.600 0.010 15,145 Regular 

Toilet Toilet 0.883 1628 1245 0.300 0.450 0.500 1465 Regular 

Relax Couch 0.615 1845 1423 0.205 0.300 0.150 1628 Regular 

Watching TV TV 0.715 4055 3605 0.100 0.650 0.750 3810 Regular 

#4 

Sleeping Bed 

0.758 

0.445 28,235 22,035 0.205 0.600 0.700 29,701 Irregular 

Dining Chair 0.914 1340 950 0.400 0.250 0.010 1205 Regular 

Toilet Toilet 0.818 1123 885 0.100 0.200 0.650 1060 Regular 

Relax Couch 0.756 1630 1245 0.300 0.200 0.250 1420 Regular 

Watching TV TV 0.828 4838 4210 0.040 0.100 0.200 4506 Regular 

It was observed that two instances of irregularity at different subject houses were rightly predicted. 

These were related to the over-usage of the appliances. In reality, the subject was using a chair for a 

longer time because he was sitting and talking with a guest on that day. In another instance, the 

duration of bed use shows an over-usage because it was occupied by the elderly person for a long 

duration as he was unwell. The forecasting procedure has indicated the active durations of the bed and 

chair were outside the forecast ranges. Accordingly, the behavioral detection process set the status of 

the corresponding activities as irregular. 

4. Extension to Smart Building 

After successful implementation of the smart home, we aim to design and discover the issues 

related to the smart home monitoring system for building apartment where many people live 

individually. With the existing methodology of the smart home, we installed the sensing system in a 

big building apartment, although presently we are covering just one floor that has 35 rooms. The 

heterogeneous sensing systems scattered across the building with layout is shown in Figure 12.  
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Figure 12. Building layout representing sensors’ placement. 

Figure 13 presents the overview of building monitoring system setup. The home gateway system 

that is connected to the coordinator receives the data from heterogeneous sensors scattered in the home 

environment under various obstructions. Figure 14 shows the smart building experimental setup to 

evaluate the attenuation loss effect on WSNs.  

 

Figure 13. Monitoring system with various types of obstacles. 

 

Figure 14. Experimental setup to evaluate the attenuation caused by different building 

materials in the smart building environment. 
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The optimum performance in service is only possible with the best reliability. So, for the best 

reliability user data should be transmitted, received and analyzed within acceptable and defined time 

duration, in near real time with best precision value and least error. 

In WSN-based smart building, explaining the reliability with the system performance perspective is 

not straightforward, because in the radio communication we find a number of variables that have a 

negative impact on reliability. The most common explanation of reliability is data reliability; data 

transmission, reception, measured error and delay. The data transmission and reception are the 

function of the communication medium between sensor nodes. The quality of this radio 

communication link enhances the chances of reliable data delivery. Although the design consideration 

of the sensor node also decides the performance, they are the sources of data, and if data from the 

source is corrupted then the system cannot achieve the reasonable accuracy. Most of the time, even 

with good RF link quality and best sensor node design consideration we get less accuracy. The reason 

of this is improper routing selection and obstruction in the home environment. The urban environment 

is full of obstacles, so it causes loss of data. Improper routing and topology increase this data loss 

more, such as when an end device node does not find the nearby router node and that data would be 

lost. The signal transmission takes place with the speed of light, so the delay is very small or 

negligible, although we need to consider this latency because in smart home designing we are focusing 

on real-time intelligence. The combined delay at the sink will be good enough to affect the near  

real-time streaming. 

We can better understand this by the packet reliability terms of ZigBee based WSNs. Packet 

delivery ratio (PDR), packet success rate (PSR), packet loss rate (PLR), packet error rate (PER), 

received signal strength, Signal to noise ratio and received packet delay are some of the parameters 

that define system reliability and performance. In order to evaluate these parameters in IEEE 802.15.4 

ZigBee based wireless sensor and networks, the smart building setup is developed and implemented in 

real-time to get control and monitoring applications without any time delay. The results show that the 

distance, deployment environment and positioning of sensor nodes are essential parameters that decide 

the reliability of wireless sensor and networks. 

To understand these results, we have to formulate and understand the packet reliability parameters. 

Packet delivery parameters:  

The packet sent from the source node must be received at sink node without any distortion and 

manipulation that affect the accuracy. This is usually determined by the number of messages sent from 

the source and received at the destination. PDR, PSR, PER, and PLR are closely linked to the packet 

reliability and system performance, and they represent the packet accuracy at a different level. 

• PDR: Packet delivery ratio is the number of packets received at coordinator to number of 

packets sent from the transmitter; it is represented in percentage.  

PDR(%) =
୒౨୒౩ × 100 (8)N୰	= Total number of packet received by a coordinator from an end device. Nୱ	= Total number of the packet sent by the end device.  

The higher the PDR value, the better the system performance and packet reliability. 
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• PSR: Packet success rate is the number of packets successfully received without any error to 

number of packets received at coordinator; it is represented in percentage. 

PSR(%) =
୒౭౛୒౨ × 100 (9)N୰	= Total number of packet received by a coordinator from an end device. N୵ୣ	= Total number of packet received by coordinator without error from an end device. 

The higher the PSR value, the better the system performance and packet reliability. 

• PER: Packet error rate is the function of number of packets successfully received and the 

number of packets received at coordinator; it is represented in percentage.  

PER(%) =
୒౨ ି ୒౭౛୒౨ × 100 (10)N୰	= Total number of packet received by a coordinator from an end device. N୵ୣ	= Total number of packet received by coordinator without error from an end device. 

The lower the PER value, the better the system performance and packet reliability. 

• PLR: Packet loss rate is the function of number of packets received at coordinator and number 

of the packet sent from the transmitter; it is represented in percentage. 

PLR(%) =
୒౩ ି ୒౨୒౩ × 100 (11)N୰	= Total number of packet received by a coordinator from an end device. Nୱ	= Total number of the packet sent by the end device. 

The lower PLR value offers the better system performance and packet reliability. 

We recognized that other than the distance the location of the end-device in the urban environment 

affects a lot the performance of the system. The quality of the link is highly degraded by urban 

environmental obstacles such as door, wall, chair etc., followed by ISM band interference and  

traffic load.  

One of the key issues that affect the reliability and performance of WSN-based smart home is  

intra-network interference that affects packet delivery. Electromagnetic interference is the disruption 

that upsets desired node signal processing through the electromagnetic radiation emitted from an 

external source. ZigBee based sensor nodes operate in the 2.4 GHz ISM spectrum. This intra-network 

interference becomes more critical in unregulated free ISM band of the frequency spectrum. The 

disturbance sources in this frequency band include: 

• Bluetooth (IEEE 802.15.1) 

• Wireless USB version 2 (IEEE 802.15.3) 

• Wi-Fi (IEEE 802.11) 

• Microwave ovens 

• Other sources, like some cordless phones and RF motion detectors [43]. 

We used MetaGeek Spectrum Analysis Wi-Spy DBx & Chanalyzer 5 device as a frequency 

spectrum analyzer, and configured it for a particular application requirement [43,44]. We are using 
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density and waterfall graphs to model the interference and loss caused by other RF device in ISM 

band; these graphs represent the RSSI values at different ZigBee channels.  

The density view plot represents the signal activities in the selected spectrum to recognize the 

devices; it shows the signal intensity and how often these devices are transmitting. The height of the 

graph shows the amplitude of the signal, and the color in the plot represents how often the signals are 

occurring. The more concentrated the color, the more often the frequency is in use; this is called 

utilization. A blue spike or profile shows a short signal, like a clap. A red spike or shape  

shows a long, unbroken signal, like an air horn. Colors and their significance are as follows: blue—less 

than 10% utilization; green—20% utilization; yellow—40% utilization; red—over 50% utilization. 

The waterfall view graphs represent amplitude over time for all frequencies in the selected band; 

much like a seismometer graphs earthquakes. This view is useful for watching the spectrum over time. 

Unlike the density view, which uses color by utilization, the intensity of the color in the waterfall view 

shows amplitude. Blue indicates low-amplitude signals while red indicates high-amplitude signals. 

Figure 15 shows the interference caused by other wireless technologies to smart home monitoring 

ZigBee channel. Our ZigBee based WSNs are functioning at channel 2.425 GHz. The sensor nodes are 

deployed in Mesh topology into a smart building with spacing between nodes is maximum up to  

7 m and the Wi-Fi, Bluetooth and microwave sources are placed at 2 m distance from receiver 

(coordinator). Figure 15a shows the density and waterfall view of XBee smart building system that is 

operating at frequency 2.425 MHz  under least interference condition. Figure 15b shows the Bluetooth 

functioning over the same frequency 2.425 MHz, which degraded the XBee RF link quality.  

Figure 15c shows the Wi-Fi operation that affected the XBee operation badly. Figure 15d shows that 

microwave oven signals are dissipated across the whole ZigBee spectrum. We can better understand 

this interference effect by the packet reliability parameters shown in Table 2. The packet reliability 

metrics are most affected by the microwave oven followed by Wi-Fi, and then Bluetooth.  

Table 2. Packet reliability parameters affected by different types of ISM band interference sources. 

Title PDR % PLR % PSR % PER % 

(a) Least Interference  100 0 99.56 0.44 
(b) Bluetooth Interference 99.50 0.50 99.31 0.69 
(c) Wi-Fi Interference 97.85 2.15 99.05 0.95 
(d) Microwave oven Interference 90 10 96 4 



Sensors 2015, 15 10370 

 

 

 
(a) 

 
(b) 

Figure 15. Cont. 
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(c) 

 
(d) 

Figure 15. (a) shows the that the XBee smart building system is operating at frequency 

2.425 MHz; (b) shows the Bluetooth functioning over the same frequency 2.425 MHz, 

which degraded the XBee RF link quality; (c) shows the Wi-Fi operation that affected the 

XBee operation badly; (d) Microwave oven distributed all ZigBee channels, and the 

microwave signal are dissipated across the whole ZigBee spectrum. 
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In the smart home monitoring system, most of the time the radio signal does not find the line of 

sight communication, and it has to travel through multiple obstacles to reach the receiver end.  In real 

conditions, a radio signal usually comes across different kinds of objects in its transmission path and 

suffers from attenuation, relying on the absorption characteristics of the obstructions. These objects are 

of different types—such as mobile and static—and absorb the desired RF signal power and attenuate it. 

In the same way to the free space propagation loss, higher frequencies cause greater losses by 

attenuation [36,45].  

The experimental setup arranged for this was a realistic, smart building environment as already 

represented in Figures 13 and 14 above. In the building environment, we usually find different 

architectures and various obstructions such as chairs, tables, and other household equipment, but we 

chose an empty room as well as a hall where we did not find any household stuffs to get a precise 

measurement of the attenuation caused by the material. Although in the realistic scenario there are 

different objects and household equipment, these objects add extra attenuation and multipath 

propagation that affects the measurement. This setup is made to get the fully controlled environment to 

examine the attenuation effect on system performance. The transmitter and receiver are separated by a 

particular type of material and the distance to evaluate attenuation loss was defined.  

Initially, with a line of sight path, the RSSI values were recorded and compared with an individual 

type of obstruction. The attenuation loss by different material types is presented in Figue 16. While the 

plywood wall does not cause significant attenuation loss, the steel panels used as interior wall in the 

building causes major attenuation loss.  

	
Figure 16. Attenuation loss caused by different materials in the smart building, measured 

between transmitter and receiver. 

Human bodies are made of about 70% water; they attenuate RF signals. The attenuation caused by 

the human body in ISM band is about 3 dB and in the 5 GHz band it is about 5 dB [36,45]. 

So, to evaluate how a densely populated area affects the system performance, we considered two 

scenarios, the first was the regular days at home and the second during a party with a group of people 

celebrating. As shown in Figure 17, the packet reliability in the regular population was slightly better 

than densely-populated party condition.  
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Figure 17. Attenuation loss caused by two different scenarios; one is regular, and other is 

in a densely populated smart building, measured between transmitter and receiver. 

From Figure 17, we can easily identify that there is a marginal improvement in system performance 

and packet reliability but even this matters. In smart home applications, each and every packet has 

importance, so even this marginal improvement plays a significant role during any emergency 

assistance support request. 

5. Interference and Attenuation Issues and Mitigation  

Digi XBee ZigBee RF device is based on the CSMA-CA but even with that it is not able to mitigate 

the interference sufficiently. To investigate the characteristics of interference affecting smart building 

network, we have set up a controlled noise environment. The controlled noise of different noise levels 

was applied, and the effect at the receiver end was measured [46]. 

The center frequency of smart building network operation is 2425 MHz. In the smart building 

environment usually we find the microwave oven, Wi-Fi, Bluetooth and Ham Radio, which operate 

under ISM spectrum. As shown in Figure 18, to produce controlled noise, we used  

ROHDE & SCHWARZ 835.8011.58 with different types of antennas, and spectrum analyzer Anritsu 

MS2127A were used for interference measurement. We did not consider antenna orientation; we only 

considered the noise source range and frequency band. 
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Figure 18. Controlled noise setup to investigate the interference characteristics of the 

smart building environment; (a) External noise generated by planner antenna; (b) External 

noise generated by directional antenna; (c) External noise generated by isotropic antenna 

and (d) External noise generated by small planner antenna. 

In obtaining Figure 19, the microwave signal of amplitude 60 dBm occupying the ISM band 

frequency was applied. Initially, this microwave signal was applied at 2400 MHz, and the 

corresponding SNR value for ZigBee network was measured, but as the microwave signal operating 

frequency was moving close to ZigBee network operating frequency, the SNR value was degrading. 

When it reached the 2425 ± 14 MHz, it had disturbed the whole signal, as we can see by Figure 19, 

and packet reception became zero. With a similar approach for Wi-Fi, Ham Radio, and Bluetooth, the 

disturbance regions were identified at 2425 ± 11 MHz and 2425 ± 12 MHz, respectively, whereas 

Bluetooth did not affect SNR significantly.  
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(a) 

 
(b) 

Figure 19. (a) SNR vs. operating frequency of different RF sources in ISM band; and  

(b) PDR vs. operating frequency of different RF sources in ISM band to investigate effect 

of interferences on ZigBee smart building network. 

One of the best ways is to check the noise level in the ISM band and identify the frequency where 

the interference is least each time before smart system installation, and select that particular channel 

for smart building operation. The channel frequency selection is made possible by XBee boot settings. 

Attenuation Mitigation 

In the household environment, people usually place different types of material here and there 

regardless of sensor nodes. When the household stuff is placed near to sensor nodes, it becomes an 

obstruction for wireless communication. So, the placement of sensor nodes should be done in such a 

way where it gets least affected by household stuff, and the inhabitants should be made aware to avoid 

the placement of household stuff near sensor nodes. Changing the building material to reduce the 

attenuation is not an option for the researcher, but the appropriate placement of sensor nodes in the 

household environment can reduce the attenuation loss to a significant extent. 

6. Conclusions 

Wireless Sensor Networks and Internet of Things-based smart home is becoming an important 

ambient-assisted living environment for individuals, where necessary care can be provided at the time 
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of need, and wellness can be measured and predicted. An old home built in 1938 had been converted 

into a smart home with the help of sensing technology and was in operation since May 2013. The 

expertise and knowledge of smart home have been explored to extend it to an intelligent building. ISM 

band interference and attenuation issues have been considered to observe the effectiveness of wireless 

communication and placement of wireless nodes. More results will be reported in our future works.  
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