
Sensors 2015, 15, 9277-9304; doi:10.3390/s150409277
OPEN ACCESS

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

Online Learning Algorithm for Time Series Forecasting Suitable
for Low Cost Wireless Sensor Networks Nodes
Juan Pardo *, Francisco Zamora-Martínez and Paloma Botella-Rocamora

ESAI—Embedded Systems and Artificial Intelligence Group, Escuela Superior de Enseñanzas Técnicas,
Universidad CEU Cardenal Herrera, C/San Bartolomé, 46115 Valencia, Spain;
E-Mails: francisco.zamora@uch.ceu.es (F.Z.-M.); pbotella@uch.ceu.es (P.B.-R.)

* Author to whom correspondence should be addressed; E-Mail: juan.pardo@uch.ceu.es;
Tel.: +34-961-369-000 (ext. 2363).

Academic Editor: Leonhard M. Reindl

Received: 25 February 2015 / Accepted: 16 April 2015 / Published: 21 April 2015

Abstract: Time series forecasting is an important predictive methodology which can be
applied to a wide range of problems. Particularly, forecasting the indoor temperature permits
an improved utilization of the HVAC (Heating, Ventilating and Air Conditioning) systems
in a home and thus a better energy efficiency. With such purpose the paper describes how
to implement an Artificial Neural Network (ANN) algorithm in a low cost system-on-chip
to develop an autonomous intelligent wireless sensor network. The present paper uses a
Wireless Sensor Networks (WSN) to monitor and forecast the indoor temperature in a
smart home, based on low resources and cost microcontroller technology as the 8051MCU.
An on-line learning approach, based on Back-Propagation (BP) algorithm for ANNs, has
been developed for real-time time series learning. It performs the model training with every
new data that arrive to the system, without saving enormous quantities of data to create
a historical database as usual, i.e., without previous knowledge. Consequently to validate
the approach a simulation study through a Bayesian baseline model have been tested in
order to compare with a database of a real application aiming to see the performance and
accuracy. The core of the paper is a new algorithm, based on the BP one, which has been
described in detail, and the challenge was how to implement a computational demanding
algorithm in a simple architecture with very few hardware resources.

Keywords: wireless sensor networks; artificial neural networks; on-line Back-Propagation;
ambient intelligence; energy efficiency

Sensors 2015, 15 9278

1. Introduction

Wireless Sensor Networks (WSNs) have been widely considered as one of the most promising present
and future technologies. In fact, the latest advances in wireless communication technologies have made
it possible to develop tiny, cheap and smart sensors embedded in a small physical area, with wireless
network capabilities, that provides huge opportunities for a vast variety of applications. Some common
examples can be found, such as industrial monitoring processes, machine health monitoring, physical
and environmental conditions monitoring, etc. [1]. However, one of its most promising applications is on
smart homes and ambient intelligence, which makes it feasible to provide scalable intelligent networks
of sensors/actuators according to new home technologies appear on the market. WSNs can be used to
provide more convenient and intelligent living environments for human beings and can be embedded into
a house to develop an autonomous home network. The present paper uses a WSN to monitor and forecast
the indoor temperature in a smart home, based on low resources and low cost microcontroller technology.

Several studies say that in the European Union about 40% of total primary energy demand corresponds
to buildings’ consumption [2]. At home, more than a half of such consumption is produced by HVAC
(Heating, Ventilating and Air Conditioning) systems [3]. The indoor temperature is the most crucial
variable that determines the utilization of such systems and thus has a major effect on the overall energy
expenditure. For that reason, it is still necessary to develop new intelligent systems at home to manage
the demand of energy efficiently, considering a plausible balance between consumption and comfort. To
develop such intelligent systems, artificial intelligence techniques, as forecasting, can be applied. Soft
computing has been widely used in real-life applications [4,5]. Furthermore, the estimation of Artificial
Neural Network (ANN) models by using machine learning techniques have been applied for a wide
range of applications, and are also devoted to developing energy systems [2,6–8]. The problem is that
such techniques normally require high computational resources and historical data, and the traditional
training method is based on batch learning, as for example Back-Propagation (BP) algorithm and its
variants. But for most applications, it could consume from several minutes to some hours and further the
learning parameters must be properly chosen to ensure the convergence (i.e., learning rate, number of
learning epochs, stopping criteria, etc.). In a batch learning system, when new data are received then it is
performed a retraining jointly with its past data, thus consuming a lot of time as it is mentioned in [7,9].

Nevertheless, as an alternative, an on-line learning approach could perform the model training with all
new incoming data. In fact, when it is necessary to learn a model from scratch or to adapt a pre-trained
one in a totally unknown scenario, on-line learning algorithms can be applied successfully [10]. Thus,
we talk with regard to Stochastic Gradient Descent Back-Propagation (SGBP) as a particular variant of
BP for sequential or on-line learning applications. Through sequential or on-line learning methods, the
training observations are sequentially presented to the learning algorithm. Therefore, when new data
arrive at any time, they are observed and learned by the system. In addition, as soon as the learning
procedure is completed the observations are discarded, without having the necessity to store too much
historical information, that also implies less necessity of additional physical storage. In conclusion, the
learning algorithm has no prior knowledge about how many training observations will be presented,
although it is possible to produce a better generalization performance at a very fast learning speed [9]

Sensors 2015, 15 9279

and needs less computing resources that accomplish with our idea of integrating this technology in a low
cost embedded system inside a WSN framework.

The present research group is concerned with regarding the idea of being able to design new
intelligent systems, with few hardware resources, to predict values of strategic variables related to energy
consumption, i.e., low cost and small predictive systems. For that purpose, sequential learning algorithms
have demonstrated their feasibility to achieve such objectives. This also implies having cheap hardware
devices embedding complex artificial intelligence techniques for forecasting in unknown environments,
but also with affordable computing and economical costs. As far as we know, it is usual to employ
WSN as the monitoring system that feeds an ANN implemented in a personal computer, as an ANN
requires some complex calculations and that also means using wide data storage. However, what it is
proposed in this paper is whether or not it is feasible to implement, inside a node of a WSN, an ANN
that performs predictions with an acceptable resolution in its estimations. Consequently, in this paper,
we present a preliminary model able to generate low error predictions over short periods of learning
time. Regarding the innovation of the paper, it has been developed a new on-line learning algorithm,
based on a BP framework, which is able to preprocess real-time continuous input data, incoming in a
non-deterministic way, from a wireless environment, being also feasible to be implemented in devices
with very low hardware resources, i.e., with important hardware constraints.

The paper is organized as follows, in Section 2, we describe the framework in which the present
work have been developed, i.e., a wireless sensor network, describing the hardware of the different
nodes and the network topology in order to slightly describe the experimental setup. In Section 3, we
explain the approach that has been followed to forecast time series using an on-line learning paradigm
based on Back-Propagation (BP) algorithm for Artificial Neural Networks. Section 4 depicts in detail
the algorithm developed to be implemented in a low resources microcontroller as the 8051MCU. Finally,
Sections 5 and 6 the experimental results and the discussion and conclusions explain the present research
and draw some future ideas to continue the present project.

2. Wireless Sensor Network Architecture

Basically, a WSN consists of a large number of low-cost, low-power and multifunctional sensor nodes
that are deployed in an environment devoted for monitoring tasks, but also for controlling as current
networks are bidirectional, where sensor activity can be controlled. Actually, such sensor nodes, small
in size, are equipped with sensors, embedded microprocessors and radio transceivers, and therefore
they have also capabilities for data processing and communication over short distances, via a wireless
medium, in order to collaborate to accomplish a common task [1].

A WSN is built of nodes which can vary in number from a few to several hundred or even thousands,
in which each node is connected to one or several sensors. Each sensor network node is typically divided
into several parts: a radio transceiver with an internal antenna or connection to an external one, a
microcontroller, an electronic circuit for interfacing with the sensors and an energy source, usually a
battery or an embedded device for energy harvesting [11]. Furthermore, the cost of sensor nodes is also
variable, ranging from a few to hundreds of Euros, depending on the complexity of the individual sensor
nodes. Additionally, size and cost constraints on sensor nodes also result in the corresponding constraints

Sensors 2015, 15 9280

on resources such as energy, memory, computational speed and communications bandwidth. Finally,
about the topology of the WSNs, this can vary from a simple star network to an advanced multi-hop
wireless mesh network. In addition, the propagation technique between the hops of the network can be
routing or flooding [12,13].

Besides sensor networks have the following unique characteristics and constraints, as it is stated in [1]:

• Dense Node Deployment. The number of sensor nodes can be of several orders of magnitude.
• Battery-Powered Sensor Nodes. Being in some situations difficult or even impossible to change or

recharge their batteries.
• Severe Energy, Computation, and Storage Constraints. Sensor nodes are resource limited. This

work is focused on this constraint.
• Self-Configurable. Sensor nodes configure themselves into a communication network.
• Application Specific. A network is usually designed and deployed for a specific application.
• Unreliable Sensor Nodes. They are prone to physical damages or failures.
• Frequent Topology Change. Network topology changes due to node failure, damage, addition,

energy depletion, or channel fading.
• No Global Identification. It is usually not possible to build a global addressing scheme for a sensor

network because it would introduce a high overhead for the identification maintenance.
• Many-to-One Traffic Pattern. In most sensor network applications, the data sensed by sensor nodes

flow from multiple source sensor nodes to a particular sink.
• Data Redundancy. The data sensed typically have a certain level of correlation or redundancy.

Furthermore, the characteristics of sensor networks and requirements of different applications have
a decisive impact on the network design objectives in terms of network capabilities and network
performance. Thus, typically influential design objectives for sensor networks include the following
several aspects: small node size, low node cost, low power consumption, self-configurability, scalability,
adaptability, reliability, fault tolerance, security, channel utilization and QoS support [1].

Moreover, a typical scheme of a wireless sensor network is composed of a set of nodes that transmits
the information acquired to a sink node. This one is usually devoted to collecting and centralizing all the
information that comes from the network to a Personal Computer (PC), in order to store big quantities of
data in a persistent device. Thus, the information collected can be treated for on-line or later analysis. But
for the purposes of our study, we don’t want to dump the information acquired by the network to a PC.
It is desired to use such information, as it will be described later, to train a neural network, implemented
inside a sink node, trying to develop an autonomous forecasting system.

Figure 1 shows the wireless sensor network scheme designed in the present study. The network is
composed of five nodes, but more nodes can be added in the way the figure displays. There is a sink
node connected to a PC for configuration and validation purposes and four sensor nodes that capture the
temperature inside a room. Sensor nodes can work as repeaters allowing low power transmit modes in
order to extend battery life.

Sensors 2015, 15 9281

Sink

Sensor

Sensor

Sensor

Sensor

Sensor

PC Clock

Sensor

Sensor

Initialization

Internet

Forecast

Figure 1. Wireless sensor network scheme.

2.1. Nodes Description

As mentioned previously, our wireless sensor network consists of two kinds of nodes, four sensor
nodes and one sink node. Both are based on the same technology, although, of course, in charge of
different tasks. All nodes are based on the CC1110F32 microcontroller (Texas Instruments, Dallas, TX,
USA) [14]. The CC1110F32, is a true low-power sub-1 GHz system-on-chip (SoC) designed for low
power wireless applications. It combines the excellent performance of the state-of-the-art RF transceiver
CC1101 with an industry-standard enhanced 8051MCU, up to 32 KB of in-system programmable flash
memory and up to 4 KB of Random Access Memory (RAM), and many other powerful features. The
radio frequency range can be chosen from: 300–348 MHz, 391–464 MHz and 782–928 MHz. Its small
6 × 6 mm package makes it very suited for applications with size limitations. The CC1110F32 is highly
suited for systems where very low power consumption is required. This is ensured by several advanced
low-power operating modes. Additionally, its low power demands (16 mA for transmission at 10 mW
and 18 mA for reception) make it suitable for battery-powered systems.

Sink node (Figure 2): Receives all the wireless information transmitted by the sensor nodes. It is
switchable to a PC through a USB connection for configuration purposes, and it works at a speed of
868 MHz. The USB is also its power connection, its dimensions are 40 × 40 × 90 mm and it is able to
work within a temperature range of –40 to 85 ◦C. 2-FSK, GFSK, MSK, ASK, and OOK modulation
formats are supported and includes a 128-bit AES security coprocessor. Its power transmission is
10 mW and high sensitivity of –110 dBm at 1.2 kBaud. It has an external exchangeable antenna and
programmable data rate up to 500 kBaud. The processor also includes one timer of 16 bits and three
timers of 8 bits and on-chip hardware debugging.

Sensors 2015, 15 9282

CC1110F32 microcontroller

Figure 2. Sink node.

Sensor node (Figure 3): There are four sensor nodes, distributed in a room for the present study,
that constantly send the temperature they pick up from the ambient. All four have been calibrated
with a digital thermometer at the same point and later have been distributed with similar distances to
the sink node. The sensor node is based on the same SoC as the sink node and additionally it has
a temperature sensor, three color leds, two buttons (one reset and another for general purpose) and
an input/output expansion connector to install other sensor/actuators. Its power supply can be through
batteries, USB or electric power. In addition, its antenna, which is integrated in the circuit, can reach
up to 290 m without repeaters. It is possible to connect more sensor nodes, as much as are needed,
depending on the application target. They autonomously connect themselves to the network and start to
send temperatures immediately.

CC1110F32 microcontroller

Figure 3. Sensor node.

Sensors 2015, 15 9283

The hardware of the sensor and sink nodes have been developed by the company Wireless
Sensor Networks Valencia SL for applications of monitoring and controlling of industrial systems,
domotics, security and alarm systems, sensorization, telemetry, etc. In this study, such nodes have
been programmed to deploy the wireless sensor network and to implement an ANN for on-line
learning purposes.

There are other research works developed with more advanced architectures, as with ARM
microcontrollers. Nevertheless, it is true that the Texas Instruments CC1110F32 MCU is highly accepted
in a lot of areas, and a leader in the market as far as we know, for Industrial monitoring and control
applications. Moreover, it is also a true low power SoC, excellent for WSNs. If the application is to
massively deploy such devices, they are cost competitive and really small. These devices accomplish
with the simplest architecture that makes feasible the implementation of our algorithm. The SoC has
been signaled in the pictures to see the size.

3. Time Series and Forecasting

In smart homes is common to measure and monitor environmental variables related to comfort
and energy consumption. This kind of data are recorded over a period of time (every second, every
minute...). Studying the behavior of these variables and forecasting their values in the future allows to
manage energy resources more efficiently.

A collection of data recorded repeatedly over the time represents a time series from the point of view
of an statistical treatment of data. Thus, a time series is a collection of data recorded over a period of
time from any interesting process. They can be formalized as a sequence of scalars from a variable x
obtained as output of the observed process:

xt1 , . . . , xti−1
, xti , xti+1

, . . . (1)

There are several methods that are appropriate to model a time series. Time series data have an internal
structure, such as auto-correlation, trend or seasonal variation and these features should be considered
by the modeling and forecasting methods that can be used.

Several approaches has been widely employed, such as smoothing and curve fitting techniques and
autoregressive and moving average models [15–17]. However, the idea of restricting the storage and
computational structure, of our present study, don’t allow us using them. Other methods framed in
regression models have been implemented to carry out the main purpose of this paper.

In order to simplify as much as possible the forecasting process, in this work, two different low
resource implementable models have been proposed: a linear model (that is, a Perceptron) and a
Multilayer Perceptron (MLP) model with one hidden layer. Both methods have been implemented and
introduced into the sink node.

Furthermore, with the purpose of comparison and in order to know the behavior of these two
algorithms, a baseline standard method has been developed in a PC. A linear model (a perceptron)
has been selected and estimated by a standard method: Bayesian estimation. A Baseline model approach
will represent the results of a standard model, estimated with more storage prerequisites and with more
complex computational necessities. It is expected that the results of this baseline model will be better
than those provided by the constrained models. However, this comparison will allow to assess, based

Sensors 2015, 15 9284

on the magnitude of errors obtained, the feasibility of using the algorithms implemented in the device
which has been proposed in this paper.

3.1. Measurements of Average Model-Performance

Measurements of average error or model performance are based on statistical summaries of the
differences between each target value vector y[t] and its predicted vector ŷ[t]. In general, the most used
measure of average model-performance is MAE (Mean Absolute Error):

MAE(t = i) =
1

q

q∑
z=1

|ŷz[t]− yz[t]| (2)

The MAE averaged over several time instants in a data set D will be denoted as MAE?:

MAE∗ =
∑
i

MAE(i)

|D|
(3)

being |D| the number of samples in D.

3.2. On-Line Learning in Time Series Forecasting

An on-line learning approach, as the proposed in this work, is a class of sequential learning
paradigm where data frames income on real-time. The present work deals with data frames that are
not equidistant in time. This enables the WSN to be modified at any time, and it allows that the
failure of any node at any moment was not a critical issue. In Section 4 we explain how the algorithm
preprocesses the raw incoming data frames to compute equidistant and first-order differentiated time
series values. Furthermore, the proposal of having a low hardware resources constraint for the algorithm
implementation, only lets us to store a short buffer of incoming data, forcing the time series forecasting
model to update its parameters with every new value that arrives.

As far as we know, the convergence and behavior of on-line algorithms has been studied, by
machine learning scientists, as well as the well known Stochastic Gradient Descent and its variants, and
particularly the error Back-Propagation (BP) algorithm for Artificial Neural Networks [18]. The on-line
BP is stochastic when the training samples are learned in a random order, probably with replacement.
This randomized update process yields a noisy gradient computation problem, which is usually overcome
by a higher number of model updates, compared with the batch version of the same BP algorithm.
Therefore, in the standard framework for on-line BP, random traversal of the dataset yields better results.

However, this work is focused on a straightforward algorithm for real-time time series learning, that
follows an on-line BP strategy but in a sequential way. Such a problem statement has the advantage
of its possible implementation for low resources devices, but it lacks of the random data traversal of
usual on-line BP approaches, which could be a source of problems in the convergence of the algorithm.
As expected, this problem could be more shocking as more complex the model is.

A possible refitting, out of the purpose of this work, could be the implementation of a random
skip procedure, that allows for ignoring incoming values depending on a probability parameter. Such
a skip procedure introduces a trade-off between the stochastic behavior in gradient computation and

Sensors 2015, 15 9285

the number of samples used to train the model. Additionally, other interesting extensions are possible
for more powerful devices, as a short buffer of input/output samples, selected randomly from the data
stream (known as reservoir sampling), that performs a model update every k random steps. Even more
complicated algorithms are also possible, where the skip decision rule depends on the behavior of the
model with current data samples.

Different variations of on-line BP algorithm can be taken into consideration for real-time fitting. It is
true that Least Mean Squares training have problems when input variables are in different scales. Thus,
Normalized Least Mean Squares [19] training is proposed to tackle with such scale problems. However
the developed system adopt first-order differences of input data and all input variables belong to the
same signal, that is, all input variables have the same scale. Other issue of the on-line training algorithm,
when exists capture error, is the not convergence to a unique value, but to a minimum capture error. This
question could be solved by incorporating dead-zones in the algorithm as stated in [19].

3.3. Baseline Method: Standard Bayesian Linear Model Estimation

In linear regression models, observations consist of a response variable in a vector y and one or more
predictor variables in a matrix X. The response vector has n elements, concerning to n observations, so
the matrix X will have n rows and p columns corresponding to the number of predictors or covariates
(n ≥ p + 1 for non-denerate variance parameter estimation). Additionally, it is usual to introduce an
intercept parameter in the model, thus a column of X is a column completed by number ones. In the
same way, other exogenous variables, which could condition the forecast of the response variable,
could be introduced as additional columns in matrix X. Consequently, the parameters are the regression
coefficients, w, and the error variance of the fitted model, e2. Thus, the linear model could be written in
its matricial form:

y|w, e2,X ∼ N(Xw, e2In) (4)

where In represents the n× n identity matrix.
Occasionally, more than one future value must be predicted, hence the model receives at each moment

as input the p last values in time series and must predict next q values, thus y and w becomes in a n× q
and p×q matrices Y and W. In this framework, at time t it is available one new element of p past values
in the time series ([xt−p+1, ..., xt−1, xt]) that was considered as covariates in the simple linear model to
forecast q further values (xt+1, ..., xt+q) = (y1,, yq). In consequence, it has been built a simple linear
model for each prediction:

Y.i|W.i, e
2
i ,X ∼ N(XW.i, e

2
i I) i = 1, ..., q (5)

where M.i denotes i-column at any M matrix.
This forecasting process needs n + 1 observations to start to generate predictions (X represents a

(n + 1) × p matrix and Y a (n + 1) × q matrix) and q linear models must be estimated (one for each
prediction) in each time step.

Some assumptions must be considered about the classical linear model, such as X should be full rank
(no collinearity among predictors), exogenous predictors and not auto-correlated errors. Using this sort of
models to represent time series, that uses lagged predictors to incorporate feedback over the time, means

Sensors 2015, 15 9286

that some of these assumptions are violated. Autoregressive processes comparable to this one introduce
violations of classical linear model assumptions that lead to biased parameters estimations. Nevertheless,
it could be improved, considering more complex covariance structures. As it has been mentioned before,
a random skip procedure could solve some of these problems. However, in this case, the primary goal
of our work has been focused on building an on-line estimation model process. Moreover, it has to be
able to perform predictions with an acceptable resolution in its estimation, and with low computing and
storage resources.

A Bayesian framework [20] provide a natural way to perform an on-line estimation. Such methods
make it possible to incorporate scientific hypothesis or prior information based on previous data, by
means of the prior distribution. Nevertheless, in the absence of prior information, a Bayesian estimation
of the parameters is made in an objective context, with objective prior distributions for them, that are
estimated with information provided by the data. In addition, when prior information is available or
some scientific hypothesis have been assumed, a Bayesian estimation could be made in a subjective
framework, incorporating prior information into parameter prior distributions.

In the context of this work, the first step is a Bayesian parameter estimation, made by means of a
non-informative prior distribution for the parameters. When the first parameter estimation is available
then the estimated model is used to generate the predictions. The predictive distribution, Ŷ, given a new
set of predictors Xp has mean:

Ŷ.i = XpŴ[0].i i = 1, ..., q (6)

where Ŵ[0] is calculated with first n+ 1 data elements available X and Y as:

Ŵ[0].i = (XᵀX)−1XᵀY.i (7)

Therefore, it demonstrates that it is necessary to solve matrix products and inverse matrices with
dimension (p× p). Inversion matrices could be avoided employing, for example, QR decomposition in
X matrix, but in terms of computational and storage cost remains as an expensive process.

After this first step, the system has prior information available, that must be incorporated in a future
parameters estimation. The way to introduce previous information, with new data to improve such
parameters estimation, is by using informative prior distribution. In the context of this work, linear
regression with an informative prior distribution was used. At time t, previous estimation on parameter
assessment was employed in prior distribution of parameters and new data was utilized to re-estimate
model parameters. Furthermore, if at time t the last parameter estimation is Ŵ[t − 1] and we have
new data X[t] and Y[t], the new appraisal at this point of time can be computed by treating the prior
as additional data points, and then weighting their contribution to the new estimation [20]. To perform
the computations, for each prediction value Y[t].i (i = 1, ..., q) it is necessary to construct a new
vector of observations Y∗.i with new data and last parameters assessment, and predictor matrix X∗, and
weight matrix Σ based on previous variance parameters estimation as follows (more details can be read
at the Appendix):

Y∗.i =

[
Y[t].i

Ŵ[t− 1].i

]
(8)

X∗ =

[
X[t]

Ip

]
(9)

Sensors 2015, 15 9287

where Ip represents a p× p identity matrix. The new parameters appraisal at time t could be written as:

Ŵ[t].i = (X∗ᵀΣ−1X∗)−1X∗ᵀΣ−1Y∗.i i = 1, ..., q (10)

Thus, the predictive distribution, Ŷ, given a new set of predictors Xp has as a mean:

Ŷ.i = XpŴ[t].i i = 1, ..., q (11)

Complexity in second and posterior steps in the assessment process is higher than the first step. The
number of matrix inversions and computational complexity has increased now.

Consequently, assuming a simple linear model, with the limitations mentioned before that this type of
models have to model dynamic processes, it represents a computational and storage costs too high to be
implemented in a device with low hardware resources, as we are concerned in this paper. The Bayesian
standard linear model parameters estimation is a simple process but with high computational resource
requirements. Thus, it is necessary to solve some inverses matrices, whose cost is too expensive in the
context of this paper.

In conclusion, this model has been considered as baseline model to compare the results of both
algorithms related with the two ANN models that have been implemented in the sink node.

4. Sequential On-Line Back-Propagation Algorithm for Devices with Low Resources

This section describes the considered implementation of an on-line version of BP algorithm [18]
for devices with very few memory and computing resources, as the 8051 microcontroller included in
the sink node. The BP algorithm is able to train any kind of ANN. As it was stated at Section 3.2, the
present research proposes the utilization of a sequential version of on-line BP, and compares two different
models with previous stated baseline: a linear model (that is, a perceptron) as shown in Equation (12)
and equivalent to the model of Equation (5), and a MLP with one hidden layer as shown in Equation (13):

ŷ = W1 · x + b1 (12)

ŷ = W2 · s(W1 · x + b1) + b2 (13)

being Wj weight matrices, bj bias vectors, x the input and ŷ the output of the ANN. The Appendix B
describes the derivation of BP algorithm to train any kind of ANN, from perceptrons to MLPs with
any number of hidden layers. Moreover, the input vector x can also be extended with other exogenous
variables that could influence the output response variable. BP is a kind of first order gradient descent
algorithm, therefore it needs the computation of partial derivatives over Wj and bj . BP algorithm has
been chosen because of its simplicity, it depends in algebra operations as dot products, matrix-vector
products and component-wise products. The proposed MLP has the logistic activation function in the
hidden layer and the activation function can be implemented by means of an exponential one. Such
operations are available by hardware and/or software libraries in 8051 microcontroller, and the memory
requirements to implement these operations depend on the complexity of the ANN developed:

• In the case of the perceptron, it needs a weights matrix W1 of size p × q, a bias vector with
q elements, input and output vectors with size p and q, and an output gradients vector with q

elements. The BP algorithm would need p× q+ p+ 3q real numbers in memory to work with the
perceptron, lets consider p = q = 8. Thus, it would need 96 real numbers.

Sensors 2015, 15 9288

• In case of MLP with one hidden layer of length h, it needs two weights matrices W1 and W2. The
first one with size p × h, the second one with h × q; two bias vector, the first one with h and the
second one with q elements; the input, hidden and output vectors, with size p, h and q respectively;
and the output and hidden gradients vector with q and h elements also correspondingly. The BP
algorithm needs p× h+ h× q + 2p+ 3h+ 2q real numbers, lets consider p = h = q = 8. Thus,
it would need 184 real numbers in memory.

Using 32 bit precision for real numbers, the memory resources of BP algorithm for one hidden layer
MLP when p = h = q = 8 are 184× 4 = 736 bytes.

A BP algorithm has been introduced into the source code that has been implemented for the sink node.
This algorithm has been split in three parts and basically computes differences in mean temperature
every quarter (15 min), and handles these data to learn the ANN model. The memory requirements of
this algorithm and its characteristics in detail will be described in the next sections. For the sensor nodes,
the source code is not described as they only send data to the sink node, the temperature.

4.1. Main Loop Algorithm

The experimental setup consisted of the equidistant placement of four sensor nodes in the living room
of a solar house. They send continuously the temperature to a sink node that is in charge of predicting the
mean temperature for the next hours. The sink node is connected to a PC, mainly for some configurations
and power reasons, and it was placed at a small work place in the living room. The sink node sends the
temperature predictions to the home’s central control. It is an application that was developed by the
present group to monitor and control all the energy systems for the purpose of the Solar Decathlon
competition [21]. Its name is CAES (Computer-Aided Energy Saving System) system [8].

The main loop procedure implemented in the sink device is shown in Algorithm 1. Before the main
loop, the sink node starts with some initializations, as the board support package, the minimal radio
frequency (RF) interface and the rest of issues corresponding to the wireless network. To do that, it
has been compiled the SimpliciTI protocol from Texas Instruments, that is a simple low-power RF
network protocol aimed at small RF networks. All of those aspects correspond to the INITIALIZEWSN()
function. After that, the weights initialization, required by the ANN, are established through the function
INITIALIZEWEIGHTS(). This can be done in a random way, thus the ANN starts from scratch or it can
be also done reading such weights from the computer, in this way the system starts with a pre-trained
ANN. It was decided to define the parameters randomly.

The core of the main loop first receives from each sensor node a data frame (v), which corresponds
to the WAITFORDATAFRAME() procedure. It includes the temperature and some information to identify
the node sender. Sensor nodes send the temperature constantly, and as they are equidistant placed in a
medium size room, the difference in temperature among them is minimum, thus it can be considered
redundant for the present application. Although the most important for our study is to be able to
process continuous messages coming from different wireless nodes to perform an on-line learning
as stated before. When a data frame is received, its time stamp (t) is collected through the function
ASKFORCURRENTTIMESTAMP() and then it is called the subroutine PROCESSSAMPLEONLINE(v, t).
Such a function receives a time stamp and a temperature value, and computes averages of quarters

Sensors 2015, 15 9289

(15 min) feeding these averages to the ANN. Such averages are computed as the integration between
previous (time, temperature) pair and the current one. When a quarter is ready, it is given to the ANN as
described later.

This main loop has negligible memory requirements; it only uses static variables to pass the data
between the different subroutines. The memory consumption due to the wireless communication protocol
will be ignored in this paper, it is not the focus of the presented work. Nevertheless, depending on the data
frames nature and the implementation of PROCESSFORECASTOUTPUT(o) function, the whole algorithm
can be used for different applications. In the present work, the goal is to predict the indoor temperature,
and thus every data frame is a temperature value given by a wireless node.

Algorithm 1 Main procedure for sink node.
1: INITIALIZEWSN()
2: INITIALIZEWEIGHTS()
3: while true do
4: v = WAITFORDATAFRAME()

5: t = ASKFORCURRENTTIMESTAMP()

6: o = PROCESSSAMPLEONLINE(v, t)

7: PROCESSFORECASTOUTPUT(o)

8: end while

4.2. On-Line Sample Processing

The subroutine PROCESSSAMPLEONLINE(v, t) is displayed at Algorithm 2. This subroutine receives
a pair of temperature frame v and the timestamp t in seconds, and executes one iteration of the on-line
algorithm. This algorithm is responsible for the computation of mean values of temperature every Q
seconds. Once a mean value is available (which happens every Q seconds), the algorithm calls the
procedure TRAINANDFORECAST(vq) which computes the first order differentiation of these means and
adjusts the model weights. At the presented work,Q = 900 s (15 min, a quarter) because it is a reasonable
value for temperatures.

During temperature mean computation, due to the non deterministic nature of the WSN, the data
frames maybe are not equidistant in time. This algorithm considers this issue implementing an procedure
of aggregation for the mean temperature computation (For this aggregation, it is assumed that every
node is sensing similar temperatures, so their readings can be mixed-up without problems.). Every pair
of consecutive input data, which belongs to the same time quarter, are integrated and aggregated to an
accumulator variable (see line 18 at Algorithm 2) following this equation:

A(ti, vi, ti+1, vi+1) =
ti+1 − ti

Q
· 1
2
(vi + vi+1) (14)

where 〈ti, vi〉 and 〈ti+1, vi+1〉 are the pair of input data. The Figure 4 shows a graphical illustration of
this process for the case when the pair of data are into the same quarter.

Sensors 2015, 15 9290

Algorithm 2 PROCESSSAMPLEONLINE(v,t)
Require: v, t are real numbers with data value and timestamp in seconds. v′, t′, q′t, vq are static variables

initialized with invalid values, and used by the algorithm to store the data value, the time and quarter
number in previous function call, and in the end to aggregate the data value for current time quarter
(the algorithm computes the mean every quarter.) The constant Q = 900 is the number of seconds in
a quarter. The algorithm interpolates quarter mean values when they are missing, up to a maximum
of M = 4 quarters.

Ensure: A prediction vector, in case it is possible to be computed, otherwise it returns a NULL value.

1: qt = b
t

Q
c

2: if t′ is not a valid value then
3: vq ← v · (t mod Q)

Q
// Initializes accumulated data for aggregation

4: else
5: if qt − q′t > M then // Quarter change limit exceeded
6: RESET()

7: else
8: 〈m, b〉 = L(t′, v′, t, v) // Interpolates line vi = m · ti + b using Equation (15)
9: ti = Q · (q′t + 1)

10: while ti ≤ t do
11: vti = ti ·m+ b

12: vq ← vq + A(t′, v′, ti, vti) // Aggregates data change following Equation (14)
13: oti = TRAINANDFORECAST(vq) // Last oti is stored to be returned at function end
14: vq ← 0.0; v′ ← vti ; t

′ ← ti

15: ti ← ti +Q

16: end while
17: if t′ < t then
18: vq ← vq + A(t′, v′, t, v) // Aggregates last data change following Equation (14)
19: end if
20: end if
21: end if
22: t′ ← t; v′ ← v; q′t ← qt

23: return oti if available, otherwise NULL

This aggregation has two boundary cases: when two consecutive pairs are in a different but
consecutive time quarters (see Figure 5); or when two consecutive pairs are in different and non
consecutive quarters due to the lost of a large number of frames (see Figure 6). In both situations,
besides the case when a quarter is fully processed, are solved at the loop at line 10. Before the loop,
it is interpolated a line equation which follows the temperature slope between the pair of available input
data, computed with the next slope-intercept linear equation:

L(ti, vi, ti+1, vi+1) = 〈m =
vi+1 − vi
ti+1 − vi

, b = vi −m · ti〉 (15)

Sensors 2015, 15 9291

The loop begins at the start point, and traverses the line segment byQ seconds increments, computing
the mean temperature of every possible quarter between both input pairs. When a quarter is completed,
its mean value is given to the subroutine TRAINANDFORECAST(vq). In the extreme case of losing a
huge number of frames, the whole system is reset at line 6 of Algorithm 2, starting the process again
but without initializing the model weights (This reset procedure also initializes the static variables of
Algorithm 3).

The memory requirement for subroutine PROCESSSAMPLEONLINE(v, t) is again negligible. It uses
only a few static variables to aggregate the data values and/or interpolate the lost quarter values. For
temperature, data values are in ◦C.

 0

12:00 12:15 12:30 12:45 13:00 13:15

In
pu

t
da

ta
 d

om
ai

n

Time

Figure 4. Illustration about the integration process of previous and current input data pairs.

 0

12:00 12:15 12:30 12:45 13:00 13:15

In
pu

t
da

ta
 d

om
ai

n

Time

Figure 5. Illustration about the integration process of previous and current input data pairs
when both are in different but in consecutive quarters. In green color has been shown the
interpolation computed until 13:00, ending a quarter mean value computation. In gray color
has been depicted the interpolation that would be aggregated to the quarter ending at 13:15.

Sensors 2015, 15 9292

 0

12:00 12:15 12:30 12:45 13:00 13:15 13:30 13:45 14:00

In
pu

t
da

ta
 d

om
ai

n

Time

Figure 6. Illustration about the interpolation and integration of previous and current input
data pairs when they are in non consecutive quarters. In green color has been depicted the
interpolation of the computed quarters that end at 13:15, 13:30 and 13:45. In gray color has
been shown the interpolation aggregated to the following quarter that would end at 14:00.

4.3. On-Line Training and Forecast using Back-Propagation

The last subroutine is depicted at Algorithm 3. It computes the difference between two consecutive
quarter means, and stores them into an auxiliary circular buffer B with length p+ q. A counter k is used
to control the number of items in the buffer, controlling if it is possible to produce a forecast, and/or
when it is feasible to perform one training step of the model. In particular, the forecast condition is true
when the buffer counter k is greater or equal to the model’s input size p. On the other hand, the train
condition is true, when the buffer counter k is greater or equal to the sum of model’s input p and output
q sizes.

The algorithm uses a static variable v′ where the value given at previous function call is stored. Thus,
in the first call, the if statement at line 1 is not executed. In the following calls, the first order
differentiation is computed at line 2 and the counter of elements is increased by one unit. The training
condition is checked at line 4, and in case of success the input/output mapping is taken from the circular
buffer B and the model is updated following BP Equations (B1)–(B8). The forecast condition is checked
at line 13, and in case of success the input is taken from the last p items of the buffer B, then the forecast
is produced following Equations (B1)–(B3). Finally, the output vector is dedifferentiated by computing
the cumulative sum of the model output and adding it up with all the vector components and the input
data value of current quarter.

Note that the reset call at line 6 of Algorithm 2 also initializes the static variables of this one. This
algorithm has more critical memory requirements, due to the circular buffer B. The length of such buffer
is p + q, and in the experimentation these values are p = q = 8, therefore, this algorithm needs 16 real
numbers, that using 32 bit real numbers, corresponds to 64 bytes. Thus the total memory consumption
needed by the whole algorithm (BP + on-line control) in the worst case adds up to 64+736 = 800 bytes.

Sensors 2015, 15 9293

Algorithm 3 TRAINANDFORECAST(vq)

Require: vq is a real number with the value at current quarter. v′q and k = 0 are static variables, the
first one stores a quarter value given in previous function call and it is initialized with an invalid
value. The second one is a counter initialized with 0 needed to access the auxiliary buffer B. p,
q are constants with the input size, output size and buffer size respectively. B is a static circular
buffer with p + q length. For simplicity, B is indexed with any integer value i ≥ 0, assuming that i
mod (p+ q) is needed to access to valid positions. B buffer stores the value difference between two
time quarters. The forecast starts when the counter k is p, and the training starts when the counter
k is at least p + q. The weight matrices Wj and bj (both randomly initialized at start), activation
vectors hj and error gradients δj are global variables, used by FORWARD, BACKPROP and UPDATE

functions. η0 is the initial learning rate, γ is the learning rate decay value, and ε is the weight decay,
all of them are constants. These last three parameters have been set after a grid search optimization
is done, with different values depending on the model. α = 0 is another static variable which is the
number of performed learning iterations.

Ensure: The algorithm trains the model using functions FORWARD, BACKPROP and UPDATE, and
returns the forecast at current time quarter, or NULL if it cannot be computed.

1: if v′q is a valid value then
2: B[k] = vq − v′q
3: k ← k + 1

4: if k >= p+ q then // Train when buffer B is full
5: x = B[(k − p− q) : (k − q − 1)]

6: y = B[(k − q) : (k − 1)]

7: ŷ = FORWARD(x) // Following Equations (B1)–(B3)
8: BACKPROP(ŷ,y) // Following Equations (B4)–(B6)
9: η =

η0

(1 + α · η0)γ
10: UPDATE(η, ε) // Following Equations (B7)–(B8)
11: α← α+ 1

12: end if
13: if k >= p then // Compute forecast
14: x = B[(k − p) : (k − 1)]

15: ŷ = FORWARD(x) // Following Equations (B1)–(B3)
16: o = CUMSUM(ŷ) + vq // The outputs vector ŷ is dedifferentiated by computing the cumulative

sum of the vector and adding-up current quarter value to all vector components
17: end if
18: end if
19: v′q ← vq

20: return o if available, otherwise NULL

In this algorithm the training and forecasting procedures are delayed by q iterations (q time quarters).
Thus the algorithm produces forecasts using a model trained with data of q quarters in the past.

Sensors 2015, 15 9294

4.4. Last Remarks

As has been stated before, following an on-line method, this algorithm trains an ANN model for time
series forecasting. In order to improve the model performance, the input data is aggregated and filtered
by computing its mean every Q seconds. After that, first order differentiation of the data is computed,
and the model is trained to predict the differentiated series. Figure 7 shows an illustration of input data,
its transformation into means every Q seconds, and the differentiated series used to train the system.
Mean and differentiated series have been plotted in the mid-point of every Q window.

 0

12:00 12:15 12:30 12:45 13:00 13:15 13:30 13:45 14:00

In
pu

t
da

ta
 d

om
ai

n

Time

Input data
Quarter means

First order diff

Figure 7. Illustration of input data, means and first order differentiated result.

This algorithm has been proposed to receive as input a fixed number of delayed past values. This limits
the model ability to learn and forecast variables which are conditioned to exogenous data (For instance,
in case of indoor air temperature prediction, HVAC operations and other related variables should be
taken into account to ensure good model performance). Nevertheless, it is straightforward to extend the
algorithm to receive additional data as input, which would be passed directly to the model as covariates.

5. Results and Discussion

For the study of the proposed algorithm, two case studies have been completed. The first one is a
simulation using artificially generated data, with a very large number of iterations in order to have a
baseline to compare model behavior and accuracy estimate. The second one is a real application for
indoor temperature forecasting, using the dataset SML2010 DataSet [22] at UCI Machine Learning
repository [23]. The SML2010 DataSet has been created by the ESAI research team (the authors of the
present paper) at the Universidad CEU Cardenal Herrera, monitoring the data captured from a solar
domotic house that participated in the Solar Decathlon Europe 2010, a world competition of energy
efficiency. Such a dataset has been employed as it is tidy, i.e., it has been cleaned and structured, and it
is ready for analysis.

Sensors 2015, 15 9295

5.1. A Simulation Study

A simulation study has been carried out to deeply explore the algorithm behavior. The simulated
dataset contains 106 data, based on a sinus function in different time points along 8500 h, with centigrade
degree values between 10 and 30 (more variability than real temperature values). Furthermore, the
distance between two consecutive values was randomly taken from a range of [20, 40] s. Sin values
have also been randomly modified with noise in a range of [−1.5, 1.5]. The original dataset was on-line
preprocessed by the mean in order to obtain one value of temperature every 15 minutes. Moreover, in
order to increase model generalization, first differences on preprocessed data were calculated, obtaining
the final dataset that was modeled. Note that the proposed on-line BP algorithm computes the mean and
first order differences on-the-fly during the training process. This dataset is shown in Figure 8.

0 1000 2000 3000 4000 5000

10
15

20
25

30

Time (minutes)

S
im

ul
at

ed
 d

at
a

0 1000 2000 3000 4000 5000

−
2

0
1

2

Time (minutes)

S
im

ul
at

ed
 d

at
a

(f
irs

t d
iff

.)

Figure 8. First 5000 simulated time series data and first differences.

Figures 9 and 10 show the MAE and MAE? behavior. First, the Figure 9 illustrates how the errors
evolve with the number of steps-ahead. The first 15,000 observations have not been considered in this
calculation, because they belong to the period in which the convergence of the algorithms had not been
reached. Second, the Figure 10 shows the smoothed MAE? behavior, calculated by 10 values window
length to avoid randomness noise over the time and the Table 1 depicts the MAE summarized obtained
from the dataset for the baseline Bayesian model and the implementable ANN models. The input/output
structure was defined choosing 8 values as input and 8 future values as output. Thus, the model receives
at each moment as input, the last eight values in time series and it must predict next eight values (next
two hours by steps of 15 min).

Sensors 2015, 15 9296

1 2 3 4 5 6 7 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Steps−ahead

M
A

E

●
●

●

●

●

●

●

●

●

ANNs mlp
ANNs lin
Bayes lin

Figure 9. MAE of each step-ahead for last 15,000 for sin data.

0 5000 10000 15000 20000 25000 30000

0.
5

1.
0

1.
5

2.
0

Simulated data

t

M
A

E
*

ANNs mlp
ANNs lin
Bayes lin

Figure 10. Smoothed MAE?—sin data.

Figure 10 and Table 1 demonstrate the comparison between the Bayesian baseline and the
performance obtained by the linear and MLP models. It is possible to observe how the Bayesian baseline
is able to obtain low errors almost from the first iteration, because of its better utilization of the available
information. The structure employed in this baseline model is higher than the other two methods. The
baseline model operates in each iteration with a n × p matrix X, with n = p + 1, and a vector n × 1

vector Y.i. However, ANN models handles only a 1× p vector x and a vector 1× 1 vector y. Regarding
ANN models it is observed that the linear model learns faster than MLP, nevertheless MLP achieves
better error in the long-term. As expected, the more complex the model is the more difficult the learning
process, but it achieves similar results to the Bayesian baseline in the long run.

Table 1. Comparison between Bayesian baseline and ANNs models. Both methods has a
p = 8 inputs and q = 8 outputs. The MLP has a hidden layer with h = 8 neurons.

Method Min. Q1 Q2 Mean Q3 Max.

Baseline (Bayesian standard) 0.047 0.248 0.442 0.528 0.720 4.227
Lin 0.036 0.368 0.632 0.648 0.877 2.991

MLP 0.046 0.323 0.553 0.662 0.871 3.708

Sensors 2015, 15 9297

5.2. Real Application: Temperature Forecasting in a Solar House

As was mentioned before, the School of Technical Sciences at the University CEU Cardenal
Herrera (CEU-UCH) participated in 2010 and 2012 at Solar Decathlon Europe competition building
two solar-powered houses known as SMLhouse and SMLSystem respectively (Figure 11). One of the
technologies integrated in that houses was a monitoring system developed to collect all the data related
with energy consumption and other variables as indoor/outdoor temperature, CO2, etc. A tidy database
was created and it has been exploited to develop different ANN models for prediction purposes in
previous research projects.

Figure 11. Solar-powered houses: SMLhouse (left) and SMLsystem (right).

As stated before, a tidy dataset, with 673 h (28 days) of real temperature data, recorded every 15 min
is available (2688 equally spaced temperature data) and it has been utilized to study the performance of
the overall system. This dataset and its first difference is shown in Figure 12.

0 500 1000 1500 2000 2500

12
16

20
24

Time (minutes)

S
M

Lh
ou

se
 te

m
pe

ra
tu

re
 d

at
a

0 500 1000 1500 2000 2500

−
0.

2
0.

0
0.

2
0.

4

Time (minutes)

S
M

L
ho

us
e

te
m

pe
ra

tu
re

 d
at

a
(f

irs
t d

iff
.)

Figure 12. SMLhouse time series data.

Sensors 2015, 15 9298

In the same way as the study of the simulated data, Figures 13 and 14 show de MAE and MAE?

behavior. Figure 13 illustrates how the errors evolve with the number of steps-ahead and Figure 14
visualizes the smoothed MAE? behavior, calculated by 10 values window length to avoid randomness
noise over the time. Table 2 shows the summarized MAE obtained with the dataset for the baseline
Bayesian model and the implementable ANN models. The input/output structure was defined choosing
8 values as input and 8 future values as output. Furthermore, the model receives at each moment as
input the last eight values in time series and must predict the next eight ones (next two hours by step
of 15 min), as it has been described for the baseline before. Because of the short observation period,
compared to the observation period of simulated data, ANNs models do not converge to the baseline
model results. However, as it has been demonstrated in the simulation study, it is expected that as the
time evolves, the errors tend to be equal. Anyway, although it can be observed how the Bayesian baseline
is able to obtain low errors again, nevertheless the absolute differences between this method and ANN
models is negligible in practical terms.

1 2 3 4 5 6 7 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

steps−ahead

M
A

E

●

●

●

●

●

●

●

●

●

ANNs mlp
ANNs lin
Bayes lin

Figure 13. MAE of each step-ahead for SML house forecasts.

0 500 1000 1500 2000 2500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SML house temperature

t

M
A

E
*

ANNs mlp
ANNs lin
Bayes lin

Figure 14. Smoothed MAE ?—SML house.

The experimental results obtained seem very promising, as we were able to implement a complex
algorithm in a simple hardware device to predict time series accurately. In previous research, published in
the journal Energy and Buildings [24] this kind of algorithms, in analogous situations but with additional
variables, were able to obtain superior predictions and converge to low errors in lower periods of time.

Sensors 2015, 15 9299

Such issue makes us to consider dealing with the possibility of using the present algorithm and the
same ideas to develop a new one that will employ similar variables, as the previous work, but to be
implemented in hardware devices with higher resources, keeping the restrictions of using cheap and
small-sized microcontrollers.

Table 2. Comparison between Bayesian baseline and ANNs models. Both methods has a
p = 8 inputs and q = 8 outputs.

Method Min. Q1 Q2 Mean Q3 Max.

Baseline (Bayesian standard) 0.008 0.087 0.141 0.184 0.222 4.295
Lin ANN 0.011 0.213 0.309 0.373 0.432 1.978

MLP ANN 0.013 0.233 0.466 0.527 0.734 2.109

6. Conclusions

This paper describes how to implement an artificial neural network in a low cost system-on-chip to
develop an autonomous intelligent wireless sensor network. The model is able to produce predictions of
temperature coming from four sensor nodes based on an on-line learning approach. The idea behind this
project is to evaluate if it is possible to develop, in a system with very few resources as the MCU 8051,
the necessary source code to integrate a neural network that learns a time series in an on-line strategy,
i.e., without any historical database. It is obvious that all kind of problems cannot be afforded with this
technology/approach. Nevertheless, on some physical measurements, represented as a stationary time
series, it is possible to apply an on-line learning paradigm. And it makes attainable to generate predictions
of time series in feasible temporal windows, in the present case study in few days. That means that it is
conceivable to place a low cost and small intelligent system in a totally unknown environment to learn
its dynamics very rapid and with a wireless technology.

The on-line learning approach is suboptimal in terms of the model accuracy. The proposed algorithm
is able to learn accurate forecast models, but as stated at Section 3.2, learning in a sequential way
could harm the model learning. Stochastic gradient descent algorithms are based on random sampling
of training dataset, and minor changes in the proposed algorithm can be performed to allow some class
of random sampling in the real-time data stream. The implementation of these ideas in more complex
devices would allow to increase model and of course algorithm complexity, in time and space, improving
the experimental results shown in this work. An idea for the future is to scale this project to architectures
more complex but starting with an efficient algorithm as a baseline.

Finally, some issues would arise when using the proposed models to predict the temperature of a
room where HVAC system is operating. Air temperature would be affected by HVAC operations, among
other exogenous variables, thus forecasting only with a fixed number of past delayed values would be not
enough. However, this problem can be tackled by extending the model with additional input information
regarding the operations performed by the HVAC system and other exogenous variables that determine
the room temperature.

Sensors 2015, 15 9300

Acknowledgments

This work has been supported by Consolidación de indicadores CEU-UCH2014-15 program of
the Vicerrectorado de Investigación at Universidad CEU-Cardenal Herrera. The authors wants to
acknowledge the valuable comments and suggestions provided by the reviewers, and the valuable work
done by the edition team.

Author Contributions

Juan Pardo has been contributed with WSN programming and nodes configuration, besides leading
this research. Francisco Zamora-Martínez has been contributed with design and development of
on-line learning algorithm and he has run experiments with ANNs. Paloma Botella-Rocamora has
been contributed with Bayesian baseline experiments besides discussions and ideas. All of them have
contributed to the writing, discussions and preparation of the manuscript.

Appendix

A. Standard Bayesian Linear Model Estimation

This section describes some aspects of the standard bayesian estimation for regression linear model
parameters in which our work is based.

A.1. Non-Informative Prior Distributions

The linear model could be written:

y|w, e2,X ∼ N(Xw, e2I) (A1)

The non-informative prior distribution most commonly used for linear regression is:

P (w|e2) ∝ 1

e2
(A2)

The posterior distribution of w given e2 and the marginal posterior distribution of e2 could be obtained
analytically as follows:

w|e2, Y ∼ Normal(w, Vwe
2) (A3)

e2|Y ∼ Inverseχ2(n− p, s2) (A4)

The parameters estimation of these distributions could be calculated as follows:

ŵ = (XᵀX)−1Xᵀy (A5)

Vw = (XᵀX)−1 (A6)

s2 =
(y −Xŵ)ᵀ(y −Xŵ)

n− p
(A7)

The symbol ᵀ denotes matrix transposition. It would be needed n > p for carry out parameters
estimation and n = p+ 1 has been considered in the process estimation (p× (p+ 1) data).

Sensors 2015, 15 9301

If q must be predicted in each time step, q linear models must be estimated. Thus, q estimations of
vector w (wi for i = 1, ...q) could be represented as W matrix, that contains in each of its q columns the
estimated parameter vector wi for each prediction.

W.i = wi

In the same way, vector of predictions y becomes in a matrix Y with q columns. Vector column W.i

corresponds with parameter vector in the linear model with response vector Y.i. Each of these models
has the same predictor matrix X.

At time t = p+ p+1 a first estimation W[0] is available and can be used to make predictions at time
t+ 1. The predictive distribution, Ŷ, given a new set of predictors Xp has mean:

Ŷ.i = XpŴ[0].i i = 1, ..., q (A8)

With variance for this estimation:

var(Ŷ.i|e2
.i, Y) = (I + XpVwX

ᵀ

p)e
2
.i (A9)

It is necessary to solve matrix products and inverse matrices with dimension (p× p).

A.2. Informative Prior Distribution

Furthermore, in the following time points t, if last parameter estimation is Ŵ[t − 1], s2[t − 1] and
VW[t − 1] and we have new data X[t] and Y[t], new parameters estimation at this point of time can
be computed by treating the prior as additional data points, and then weighting their contribution to the
new estimation [20]. To perform the computations, for each prediction value Y[t].i (i = 1, ..., q) it is
necessary to construct a new vector of observations Y∗.i with new data and last parameter estimations, and
predictor matrix X∗, and weight matrix Σ based on previous variance parameters estimation as follows:

Y∗.i =

[
Y[t].i

Ŵ[t− 1].i

]
(A10)

X∗ =

[
X[t]

Ip

]
(A11)

Σ =

[
In 0
0 VW [t− 1]s2i [t− 1]

]
(A12)

New parameters estimation at time t could be written as:

Ŵ[t].i = (X∗
ᵀ
Σ−1X∗)−1X∗

ᵀ
Σ−1Y∗.i i = 1, ..., q (A13)

VW [t] = (X∗
ᵀ
Σ−1X∗)−1 (A14)

s2i [t] =
n0s

2
0i + n1s

2
1i

n0 + n1

(A15)

where

s21i =
(Y[t].i −X[t]Ŵ[t].i)

ᵀ(Y[t].i −X[t]Ŵ[t].i)

n1 − p
(A16)

Sensors 2015, 15 9302

moreover, s20 is the variance estimation at time t−1 and n0 is its degrees of freedom, and n1 is the degrees
of freedom in the new data variance estimation. Computational cost is higher than first step, with more
matricial products and more inverse matrices calculus. The Bayesian standard parameters estimation is
a simple process but with high resources requirements.

B. On-Line Back-Propagation Derivation for ANN Models

This section mathematically formalizes the BP algorithm, which is widely known in ANN related
literature. These equations are described for completeness and to help the understanding of memory
requirements stated at Section 4.

For any ANN model, with zero or more hidden layers, the procedure of computing its output ŷ given
its inputs x is known as forward step. The following equations show the computation needed during
forward step:

h0 = x (B1)

hj = s(Wj · hj−1 + bj) , for 1 ≤ j < N (B2)

ŷ = WN · hN−1 + bN (B3)

being s(z) = 1
1+exp(−z) the logistic function and N the number of layers in the network, that is, the

number of hidden layers plus one because of the output layer. With forward step, all hidden hj and
output layer ŷ activations are computed. Following the forward step, it is possible to compute the loss
L(ŷ,y) of the ANN output respect to the given desired output y by using the mean square error. The
derivation of this loss function respect to every output and hidden layer is computed by the backprop
step by means of the next equations:

L(ŷ,y) =
1

2
‖ŷ − y‖22 +

ε

2

N∑
j=1

∑
ω∈Wj

ω2 (B4)

δN =
∂L(x,y)

∂ŷ
= ŷ − y (B5)

δj =
∂L(x,y)

∂hj

= h′j ◦ (Wᵀ
j+1 · δj+1) , for 1 ≤ j < N (B6)

being A ◦ B the component-wise product between two vectors and h′j the derivative of the logistic
function, that corresponds to h′j ◦

(
1− h′j

)
. After the forward and backprop steps, all activations and

hidden and output layer error gradients δj are available. Thus, the gradient of the loss function respect
to the weight matrices and bias vectors can be computed. Following this gradient, all weights and biases
are updated. Such phase is denoted by update step, and its equations are:

W
(e+1)
j = W

(e)
j − η

∂L(x,y)

∂W
(e)
j

= W
(e)
j − η ·

(
δj ⊗ hj−1 + εW

(e)
j

)
, for 1 ≤ j ≤ N (B7)

b
(e+1)
j = b

(e)
j − η

∂L(x,y)

∂b
(e)
j

= b
(e)
j − η · δj , for 1 ≤ j ≤ N (B8)

being A⊗B the outer product between two vectors.

Sensors 2015, 15 9303

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Zheng, J.; Jamalipour, A. Wireless Sensor Networks: A Networking Perspective;
John Wiley & Sons: New York, NY, USA, 2009.

2. Ferreira, P.; Ruano, A.; Silva, S.; Conceição, E. Neural networks based predictive control for
thermal comfort and energy savings in public buildings. Energy Build. 2012, 55, 238–251.

3. Álvarez, J.; Redondo, J.; Camponogara, E.; Normey-Rico, J.; Berenguel, M.; Ortigosa, P.
Optimizing building comfort temperature regulation via model predictive control. Energy Build.
2012, 57, 361–372.

4. Wu, C.L.; Chau, K.W.; Li, Y.S. Predicting monthly streamflow using data-driven models coupled
with data-preprocessing techniques. Water Resour. Res. 2009, 45, doi:10.1029/2007WR006737.

5. Taormina, R.; wing Chau, K.; Sethi, R. Artificial neural network simulation of hourly groundwater
levels in a coastal aquifer system of the Venice lagoon. Eng. Appl. AI 2012, 25, 1670–1676.

6. Karatasou, S.; Santamouris, M.; Geros, V. Modeling and predicting building’s energy use with
artificial neural networks: Methods and results. Energy Build. 2006, 38, 949–958.

7. Ruano, A.; Crispim, E.; Conceição, E.; Lúcio, M. Prediction of building’s temperature using neural
networks models. Energy Build. 2006, 38, 682–694.

8. Zamora-Martínez, F.; Romeu, P.; Botella-Rocamora, P.; Pardo, J. Towards Energy Efficiency:
Forecasting Indoor Temperature via Multivariate Analysis. Energies 2013, 6, 4639–4659.

9. Cho, S.; Zaheer-uddin, M. Predictive control of intermittently operated radiant floor heating
systems. Energy Convers. Manag. 2003, 44, 1333–1342.

10. Frandina, S.; Gori, M.; Lippi, M.; Maggini, M.; Melacci, S. Variational Foundations of Online
Backpropagation. In Artificial Neural Networks and Machine Learning—ICANN 2013; Springer:
Sofia, Bulgaria, 2013; Volume 8131, pp. 82–89.

11. Calvet, S.; Campelo, J.C.; Estellés, F.; Perles, A.; Mercado, R.; Serrano, J.J. Suitability Evaluation
of Multipoint Simultaneous CO2 Sampling Wireless Sensors for Livestock Buildings. Sensors
2014, 14, 10479–10496.

12. Dargie, W.; Poellabauer, C. Fundamentals of Wireless Sensor Networks: Theory and Practice;
John Wiley & Sons: New York, NY, USA, 2010.

13. Sohraby, K.; Minoli, D.; Znati, T. Wireless Sensor Networks: Technology, Protocols, and
Applications; John Wiley & Sons: New York, NY, USA, 2007.

14. Texas Instruments. CC1110F32. Low-Power SoC (System-on-Chip) with MCU, Memory, Sub-1
GHz RF Transceiver, and USB Controller. Available online: http://www.ti.com/product/cc1110f32
(accessed on 9 April 2015).

15. Chatfield, C. The Analysis of Time Series: An Introduction; CRC Press: Boca Raton, FL,
USA, 2013.

16. Anderson, T.W. The Statistical Analysis of Time Series; John Wiley & Sons: New York, NY, USA,
2011; Volume 19.

http://www.ti.com/product/cc1110f32

Sensors 2015, 15 9304

17. Montgomery, D.C.; Jennings, C.L.; Kulahci, M. Introduction to Time Series Analysis and
Forecasting; John Wiley & Sons: New York, NY, USA, 2011; Volume 526.

18. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Neurocomputing: Foundations of Research; Chapter
Learning Representations by Back-Propagating Errors; Nature: San Francisco, CA, USA, 1988;
pp. 696–699.

19. Brown, M.; Harris, C. Neurofuzzy Adaptive Modelling and Control; Prentice Hall International
(UK) Ltd.: Hertfordshire, UK, 1994.

20. Gelman, A.; Carlin, J.B.; Stern, H.S.; Dunson, D.B.; Vehtari, A.; Rubin, D.B. Bayesian Data
Analysis; CRC Press: Boca Raton, FL, USA, 2013.

21. Solar Decathlon Europe 2012. Available online: http://www.sdeurope.org/ (accessed on
17 April 2015).

22. Zamora-Martínez, F.; Romeu-Guallart, P.; Pardo, J. SML2010 Data Set. Available online:
https://archive.ics.uci.edu/ml/datasets/SML2010 (accessed on 17 April 2015).

23. Bache, K.; Lichman, M. UCI Machine Learning Repository. Available online: http://archive.ics.
uci.edu/ml/ (accessed on 17 April 2015).

24. Zamora-Martínez, F.; Romeu, P.; Botella-Rocamora, P.; Pardo, J. On-line learning of indoor
temperature forecasting models towards energy efficiency. Energy Build. 2014, 83, 162–172.

c© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

http://www.sdeurope.org/
http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/

	Introduction
	Wireless Sensor Network Architecture
	Nodes Description

	Time Series and Forecasting
	Measurements of Average Model-Performance
	On-Line Learning in Time Series Forecasting
	Baseline Method: Standard Bayesian Linear Model Estimation

	Sequential On-Line Back-Propagation Algorithm for Devices with Low Resources
	Main Loop Algorithm
	On-Line Sample Processing
	On-Line Training and Forecast using Back-Propagation
	Last Remarks

	Results and Discussion
	A Simulation Study
	Real Application: Temperature Forecasting in a Solar House

	Conclusions
	Appendix
	Standard Bayesian Linear Model Estimation
	Non-Informative Prior Distributions
	Informative Prior Distribution

	On-Line Back-Propagation Derivation for ANN Models

