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Abstract: With the rapid development of WIFI technology, WIFI-based indoor positioning 

technology has been widely studied for location-based services. To solve the problems 

related to the signal strength database adopted in the widely used fingerprint positioning 

technology, we first introduce a new system framework in this paper, which includes a 

modified AP firmware and some cheap self-made WIFI sensor anchors. The periodically 

scanned reports regarding the neighboring APs and sensor anchors are sent to the 

positioning server and serve as the calibration points. Besides the calculation of 

correlations between the target points and the neighboring calibration points, we take full 

advantage of the important but easily overlooked feature that the signal attenuation model 

varies in different regions in the regression algorithm to get more accurate results. Thus, a 

novel method called RSSI Geography Weighted Regression (RGWR) is proposed to solve 

the fingerprint database construction problem. The average error of all the calibration 

points’ self-localization results will help to make the final decision of whether the database 

is the latest or has to be updated automatically. The effects of anchors on system 

performance are further researched to conclude that the anchors should be deployed at the 

locations that stand for the features of RSSI distributions. The proposed system is convenient 

for the establishment of practical positioning system and extensive experiments have been 

performed to validate that the proposed method is robust and manpower efficient. 
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1. Introduction 

Nowadays people are more and more concerned about their precise location information for the 

wide use of location-based services in daily life. Global Navigation Satellite System (GNSS), as an 

effective way of outdoor positioning, has become a requisite tool for traveling. Unfortunately, for 

indoor scenarios, the satellite signal is disrupted or blocked and a person would be located with poor 

accuracy, or even unable to be located. According to social scientists, indoor positioning is highly 

desirable since 70% of daily life is indoors. Consequently, several indoor positioning technologies 

have emerged, such as infrared-based positioning, ultra-wideband (UWB) positioning, radio frequency 

identification (RFID) positioning, and WIFI positioning, most of which are too costly to be used in 

large areas.  

With the development of wireless networks, a large amount of WIFI APs have been installed, which 

represents a convenient foundation for WIFI positioning methods. In addition to the availability, a 

unique advantage of WIFI positioning technology is that most kinds of mobile devices are already 

equipped with WIFI modules. Among the various WIFI positioning systems, the fingerprint 

technology, in which the user’s location is estimated by matching online received signal strength index 

(RSSI) with values collected offline, is one of the most feasible approaches [1,2].  

In recent years, the WIFI-based localization systems have shown great promise and researchers 

have focused on several key challenges in real-time accuracy fingerprint positioning for practical 

deployment. For example, solutions to deal with the heterogeneity of WIFI devices have been 

addressed in [3,4]. Several studies have investigated noise and multipath distortion to improve the 

accuracy and robustness [5,6]. The radio mismatch problems such as the different user orientations 

have been studied in [7]. Besides the static positioning approach, many researchers have proposed 

methods to combine WIFI positioning systems with sensors for tracking, including gyroscopes, 

accelerometers and magnetometers [8,9]. What’s more, the indoor map matching technology can be 

integrated in the WIFI positioning systems [10].  

However, for practical applications, the biggest issue of WIFI indoor positioning is the construction 

and updating of the radio fingerprint database, which requires professional signal collection, and is 

both time- and labor-consuming, especially in large urban areas. Due to the fluctuating feature of the 

WIFI signals, the database should be updated periodically by workers, even for the same scenario. 

Features of the signal are obviously different between office hours and rush hours, and dramatic 

positioning errors would be generated if the same fingerprint database is adopted. More seriously, the 

signal environment may change, and APs may be displaced or upgraded, which could also greatly 

affect the positioning accuracy. Therefore, the radio map for positioning should be constructed and 

updated adaptively [11]. 

It has been stated in [12] that a reduction of the manual efforts required for this task can be achieved 

by minimizing the sampling time at each reference point (RP) and/or by limiting the number of 

locations to sample from. Nevertheless, this simple idea produces inaccurate radio maps, which 

decrease the accuracy of the location estimation. Consequently, many other attempts have been proposed, 

including the free-calibration methods [13–20], user-aided methods [21,22] and the auto-update 

technologies [23]. 
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In [13], a dynamic radio map is constructed to reduce the cost significantly and the real-time RSSI 

values at reference points are predicted based on the RSSI values at calibration points. Another system, 

QRLoc [14], automatically collects fingerprints when smartphone users scan Quick Response (QR) 

codes attached at known and fixed locations such as signs and posts. This method requires placing the 

QR codes in advance. 

In [15], a novel approach, where the training data are obtained by means of finite-difference  

time-domain (FDTD) simulations of the electromagnetic propagation in the considered scenario, is 

presented. The performance of the method is assessed by means of experimental results in a real 

scenario. However, the great number of parameters of the environment as described in [15] should be 

provided for the signal simulations. 

Besides the training signal path loss models [16], the interpolation and regression technologies [17–19] 

have also been widely used. A micro-cell-based map construction method is proposed in [20] to deal 

with the unstable RSSI and build a metropolitan-scale radio map efficiently. However, the proposed 

interpolation algorithm is not accurate since it is only based on the relative distance. 

An autonomous and collaborative RSSI fingerprint collection and localization system based on 

mobile users is proposed in [21], who track their positions with inertial sensors and measure RSSI 

from the surrounding access points. As the intended offline training phase is cut off, the result from the 

inertial sensors may be inaccurate. A motion detector is also used in [22] to determine whether the 

device is being moved or stationary, and the asynchronous interval labeling method is introduced, with 

great scope limits. 

Whereas the paper [23] proposed a WIFI radio map generation and update solution using manifold 

alignment methods based on the available information, including a propagation modeling simulator, a 

limited number of labeled calibration fingerprints, and many crowd-sourced unlabeled measurements. 

Though the manifold alignment has been widely used to transfer the RSSI fingerprints information of 

different devices or different time to improve the system performances, it requires an initial integrated 

and accurate radio map and the environmental change is not taken into account.  

The traditional WIFI positioning system is based on the client-server model, in which the client 

periodically collects the RSSI information of surrounding APs. However, the latest research in [24] 

introduces a novel client/server-based system that modifies the AP firmware to scan the surrounding 

APs and to broadcasts the power pattern recording results over the free information elements of the 

beacon frame defined by the WLAN standards. The centralized computer server will periodically 

receive the information report, including AP’s own Media Access Control (MAC) and AP’s own 

location, neighboring APs’ MACs and RSSIs. The Gauss process regression (GPR) algorithm adopted 

in the paper requires surveying Log-distance model in advance, which is hard to be accurately obtained 

in the whole environment. Another big weakness is that the performance of that positioning system 

may seriously depend on the locations and density of the existing APs. 

Although research involving the fingerprint radio map concept have achieved some progress, an 

effective method for constructing and updating the fingerprint database to improve the applicability of 

WIFI positioning technology is still desirable. Compared with the former papers or systems, our main 

contributions of this paper lie in the following aspects. Firstly, instead of taking the full function 

devices as the anchors in former papers, our proposed sensor anchors are designed with a single 

function to periodically broadcast the standard WIFI beacon frame through uplink to APs, which are 
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very cheap and can work for more than one year with an ordinary battery supply. Secondly, this paper 

proposes novel regression metrics and algorithms for signal fingerprint database construction. We take 

full advantage of the important but easily overlooked feature that the signal attenuation model varies in 

different regions in the regression algorithm to get more accurate results. Thus, a novel method called 

RSSI Geography Weighted Regression (RGWR) is proposed to solve the fingerprint database 

construction problem. Furthermore, the average error of all the calibration points’ self-localization 

results will help to make the final decision of whether the database is latest or to be updated 

automatically. The proposed system is convenient for the establishment of practical positioning system 

and extensive experiments have been performed to validate and verify the robustness and effectiveness. 

The remainder of this paper is organized as follows: the new constructing model together with the 

algorithms is introduced in Section 2. An improved WLAN positioning structure is introduced, 

including a self-made low-power WIFI anchor together with a renovated AP, with the function of 

scanning both of the neighboring APs and the proposed WIFI anchors in the coverage. Besides the 

calculation of correlations between the target points and the neighboring calibration points, we take 

full advantage of the often forgotten feature that the variation of the signal attenuation models in 

different regions in the regression algorithm. Thus, a novel RSSI Geography Weighted Regression 

(RGWR) algorithm for the radio map construction problem is presented in detail. After the discussion 

of the deployment of the WIFI anchors, a new approach to detect and solve the fingerprint database 

updating problems is introduced. Experimental results in actual environments are detailed in Section 3 

and conclusions are given in Section 4. 

2. Methodology 

2.1. Proposed Model 

We first introduce an improved WLAN positioning structure in Figure 1, which includes a modified 

firmware and some cheap self-made WIFI anchors. Our AP is equipped with IEEE 802.11 WLAN 

transceiver hardware, so in addition to its default functionality as a wireless connectivity provider; it 

can also perform wireless scanning of both neighboring APs and our self-made WIFI anchors. Scanned 

online radio fingerprint recordings can be sent periodically to the centralized computer server together 

with their timestamps. WIFI anchors and APs are considered as calibration points with the real-time 

WIFI fingerprints and their locations available. 

Note that the modified AP can be replaced by some wireless monitor equipment together with the 

traditional APs, and they are used here just for system prototyping and proof of concept. In the 

commercial implementation, the modified firmware is required to be adopted by an AP manufacturer 

and the power pattern recordings will be carried through the beacon frames to be received and decoded 

by any WIFI-enable device [24]. 

Generally, the user equipment (UE) receives the downlink signal from the APs. Inversely, the 

proposed WIFI anchor, called “uplink anchor”, can periodically broadcast the standard WIFI beacon 

frame through uplink to APs. The periodic dormancy mechanism with a designed duration of working 

and sleeping (e.g., 1 ms of signal transmission within every one second) is adopted, so that the anchor 

power consumption is little and can work for more than one year with the ordinary battery supply. By 
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contrast, the anchor points proposed in [13,25] have to be equipped with a communication module to 

transfer the collecting data to the positioning server, with high cost and intensive system load. 

Although just using APs as calibration points like in [24] can construct and update a good fingerprint 

database, we still recommend using our proposed anchors in the system deployment to enhance the 

performance and robustness of database. APs are always deployed on the high walls with locations 

different from that of user mobile devices, and they are not very accurate to be used as calibration 

points. Our improvement by adding self-made anchors as calibration points is encouraging considering 

its low margin cost for practical deployment.  

 

Figure 1. Improved WIFI positioning structure. 

Based on the above-mentioned novel system framework, two fingerprint information tables can be 

obtained periodically. Table 1 is the online RSSI observation table between APs like the one in [24], 

and Table 2 is for each WIFI anchor.  
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Table 1. Online RSSI Observation between APs.  

 1AP  2AP  NAP  

1APLoc  — (1,2)APRSSI  (1, )AP NRSSI  

2APLoc  (2,1)APRSSI  — (2, )AP NRSSI  

NAPLoc  ( ,1)AP NRSSI  ( ,2)AP NRSSI  — 

Table 2. Online RSSI Observation for each anchor. 

 1AP  2AP  NAP  

1ACLoc  (1,1)ACRSSI  (1,2)ACRSSI  (1, )AC NRSSI  

2ACLoc  (2,1)ACRSSI  (2,2)ACRSSI  (2, )AC NRSSI  

MACLoc  ( ,1)AC MRSSI  ( ,2)AC MRSSI  ( , )AC M MRSSI  

Here ( , )APRSSI i j  is the RSSI fingerprint of iAP  scanning by jAP , and ( , )ACRSSI i j ( nchor ( , )ARSSI i j ) is the 

RSSI fingerprint at the location of iAnchor  scanning by jAP . N is number of the APs（Access Points） and M 

is the number of the anchors. If one AP or WIFI anchor is not in the coverage of jAP , the corresponding 

element in the table would be set to the smallest sensitivity (−92 dbm).  

2.2. RGWR Algorithm  

2.2.1. Constructing Radio Map 

From the proposed system, the WIFI radio map could be constructed based on APRSSI  and ACRSSI . 

Since each AP can be considered independently, the construction process of the radio map for each AP 
is similar. Take ( , )i APi APiAP x y  for example. Given that the RSSI information of the 

APs ( )(1, ), (2, ) ... ( , )AP AP APRSSI i RSSI i RSSI N i  and ( )(1, ), (2, ) ... ( , )AC AC ACRSSI i RSSI i RSSI M i  in 

the coverage of scanning, the question of how to construct the radio map can be transformed into how 

to calculate the signal strength in the whole area based on the calibration points. Many interpolation 

and regression algorithms have been proposed to solve this problem, such as the linear interpolation 

method [26], the Radial Basis Function (RBF) interpolation method [27], the GPR algorithm [24] and 

so on [26–30].  

The traditional path loss models have proven that the attenuation is related to the distance and 

number of walls. Moreover, the research in [16] has demonstrated that the features of signal 

propagation in different regions can vary greatly. Motivated by the exiting research results and 

challenges, the principles we apply for the fingerprint database regression are as follows: 

 The RSSIs among neighboring locations always exhibit some level of correlations.  

 Signal attenuation models vary in different regions. 

The first principal is adopted by most weighted regression algorithms. The second one, however, is 

always neglected. 

In this paper, the RSSI Geography Weighed Regression (RGWR) method is proposed to construct 

the WIFI radio map for positioning, considering its characteristics fit our two principles well. The 

Geography Weighted Regression (GWR) is a special form of the vary-coefficient regression method, 

which considers that the regression coefficients are not only affected by the known anchors surrounding, 
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but also vary as the distance from anchors and the located regions change [31]. GWR is used in the 

construction and updating of the fingerprint database for the first time as the authors’ knowledge.  

To apply the RGWR method, available information includes the coordinate of each reference point, 

both of the AP and WIFI anchors, the distance between each anchor and the AP, and the signal 

strength received by each AP from Tables 1 and 2.  
The logarithmic-distance path loss model log( )d  has been used for the received signal strength 

calculation. In addition, the transmission loss along a path accumulates as more walls are encountered, 

and the number of such walls tends to be proportional to the path length. Thus, the path loss model is 

improved in Equation (1), which adopts a third least-square fitting parameter [32]: 

0 0log( / ) exp(log( / ) / log )PL A B d d C d d e S= + + +  (1)

where A , B , C  are the parameters of the mean path loss PL  of a certain point; and S is the variation 

of the mean and often referred to as shadow fading. d  is the distance between the point and AP, 

0 1 d m=  is the reference distance.  

The following Equation (2) is the basic relationship, in which iY  stands for the RSSI value in the 

point i: 

0 1 1 2 2( , )+ ( , ) ( , )i i i i i i i i i iRSSI x y x y X x y X= β β + β + ε  (2)

( )1 0

2 0

=log /

exp(log( / ) / log )
i i

i i

X d d

X d d e=
 (3)

0 ( , )i ix yβ , 1( , )i ix yβ  and 2 ( , )i ix yβ  are the path loss coefficients. id  is the distance between the ith 

point and the AP. iε  is the measurement error of the ith point. e  is the natural logarithm constant. 

The estimator for this model is similar to the weighted least squares (WLS) model except that the 
weights are conditioned on the location ( , )m mx y  relative to the calibration anchors in the database and 

hence change for each location. The weights themselves are computed from a weighting scheme that is 

also known as a kernel. Many kinds of kernels are possible and a typical one has the Gaussian shape is 

adopted, which has been widely used to handle the WIFI RSSI [27]: 
2

2 2( - ) ( ) )
0.5

( , ) 1, 2,...,

m j m jx x y y
h

j m mw x y e j R

 + − −
 
 = =  

(4)

1 2( , ) ( ( , ), ( , ),..., ( , ))
Rm m m m m m m mW x y Diag w x y w x y w x y=  (5)

where ( , )j m mw x y  is the geographical weight of the thj  calibration point in the dataset relative to the 

location ( , )m mx y . h  is a parameter known as the width. ( , )j jx y  is the location of the thj calibration 

points. R  is the total number of the calibration points, including the surrounding APs and WIFI 
anchors. Then, ( , )m mW x y  is the weight matrix formed by the R  points. Then, the regression 

coefficients ( , )m mx yβ  at sample location ( , )m mx y  can be obtained by the least mean-square error rule: 

0 1 2

1

( , ) ( , ) ( , ) ( , )

( ( , ) ) ( , )

T
m m m m m m m m

T T
all m m all all m m all

x y x y x y x y

X W x y X X W x y RSSI−

β β β β

=

=( , , )
 (6)
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jRSSI  is the RSSI value from ( , )APRSSI i j  or nchor ( , )ARSSI i j . 

Therefore, the RSSI ( , )m mRSSI x y  at location ( , )m mx y  can be obtained in Equation (9). mX  is the 

parameter matrix at location m: 

0

2 2

[1 log( / ) exp(log( / ) / log ) ]

( ) ( )

m m o m

m m APi m APi

X d d d d e

d x x y y

=

= − + −
 (8)

( , ) ( , )m m m m mRSSI x y X x y= β  (9)

Since the RGWR belongs to the Nadaraya-Watson estimating method, the boundary effect is huge, 

which will make the coefficient function heavily distorted in the boundary area and lead to poor 
results. Therefore we propose two virtual anchors for each AP. AAnchor  is one meter from the AP and 

can be measured in advance as 0P , while BAnchor  is at the edge of the AP coverage and the RSSI  at 

BAnchor  is set as −92 dBm, which is the detection sensitivity of the AP in our system. 

2.2.2. Deployment of the WIFI Anchors 

As the fingerprint map is constructed largely based on the information from WIFI anchors, their 

deployment features, such as the number and location, will seriously affect the system performance.  

If the required positioning accuracy is the same in the whole area, the WIFI anchors can be 

deployed uniformly. Otherwise, the deployment density in the interesting area should be higher. 

However, at least three calibration points, including APs and WIFI anchors should be in the coverage 

of each AP to perform RGWR algorithm well. 

In the indoor scenario, the WIFI signal propagating character will change seriously when 

encountering a corner or a larger barrier. The basic mathematics calculation will result in a large error 

unless an additional WIFI anchor is deployed to indicate the signal profile in the area.  

According to the sampling and interpolation theory, the more accurate samples we have for our 

system, the more reliable the regression performance is. However, we should find the minimum but 

appropriate number of WIFI anchors for practical use. One method is to ensure that the WIFI anchor 

can be received by more APs. Consequently, one anchor can be used for the signal regression of 

several APs.  

2.2.3. Updating Radio Map 

The initial radio map can be constructed by the RGWR algorithm proposed in Section 2.2.1 for the 

deployed system. Afterward, the radio map should be self-updated to ensure the positioning 

performance along with the environment or time changes. As the renovated APs and low-power WIFI 

anchors exist, the positioning server can monitor the signal changes effectively. The situations of 

updating database have been divided into the following cases: 



Sensors 2015, 15 8366 

 

 

Case 1: The change caused over time. The time-varying feature of WIFI signal requires revising the 

database at different time even in the same scenario, such as the office hours and rush hours.  

Case 2: The change caused over environments, such as the moving of furniture, the adding of walls 

and so on. As the fingerprint positioning method uses the radio feature collected in offline stage for 

online positioning, the signal propagation model is assumed to be stable.  

Case 3: The change caused by APs, that including the AP locations and working status. If one AP is 

moved, the signal feature in the corresponding areas will change and make the radio database out of 

date. On the other hand, the breakdown AP would make the fingerprint matching confused. 

 

Figure 2. Pseudo-codes algorithm for updating the database. 
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The three cases of changes above could be dealt with through this proposed system. The positioning 

server runs the dynamic online-calibrated radio map construction and updating process automatically. 

The signal features can be obtained in short periods, such as 1 s, and the updating process is triggered. The 

radio map database updating process is triggered to start, which includes “temporary updating” for time 

changes, APs’ breakdown, and “permanent updating” for environment changes or APs’ location changes.  

The scheme for detecting and triggering the database updating are proposed in pseudo-codes  
(see Figure 2). T

APRSSI  and T
anchorRSSI  stand for the RSSI vector of each AP and anchor in time T 

respectively. All the calibration points’ position results locPos , i.e., the available APs and WIFI 

anchors will compare to the real locations ( )realPos i  to find the average positioning error _error ave  

to decide finally whether the database is the latest or needs to be updated based on the reference 
positioning error. If the average RSSI difference in the calibration point _ _AP rssi difference  is 

smaller than _RSSI Threshold , the locations of APs are considered not changed and the RGWR 

algorithm is used for the real time database construction directly. Otherwise, its new position should be 

recalculated by pattern matching first.  
Simultaneously the RSSI of each anchor at time T nchor

T
ARSSI  is compared to 0

nchorARSSI  stored in the 

database to find whether the environment near that grid changes. The threshold _Error Threshold  is 

set as 6 m and _RSSI Threshold  is set as 15 dBm in our systems, both of which can be reconfigured 

based on the environment or the requirements. _RSSI Threshold  stands for a tolerance variation range 

of RSSI. The value is set based on the WIFI fluctuation variance and the estimated error. 
_Error Threshold  stands for the tolerance threshold of the system. The value is set based on the WIFI 

fluctuation variance and the inherent positioning error. 

2.3. Positioning 

There are two schemes for online positioning. Most traditional WIFI positioning systems are  

UE-based [33], which require the UE to locate itself or to send the RSSI report to the positioning 

server for matching after scanning the surrounding APs. Due to the lack of standardization for 

hardware and software, different WIFI chipsets, antennas, and encapsulation materials, the RSSI 

fingerprints collected by different devices may change a lot, which is known as the device diversity 

problem [33,34]. On the other hand, in the AP-based method the APs can scan all the devices with 

WIFI modules. Most of the APs in the public areas, such as markets and hospitals, are deployed by the 

network operator and they have the same model. Moreover, the transmitting power of mobile devices 

is almost the same, which provides advantages for positioning with AP-based method. However, in the 

case of applying UE-based method, the transmitting power of APs may change adaptively due to 

power control, which could be barriers for WIFI positioning. Therefore we adopt the AP-based scheme 
in our system. The signal attenuation formula is shown in Equation (10), where rP  is the signal 

strength obtained by the AP and DP  strands for the factor of WIFI detected module. The transmitting 

power TP  is the same from WIFI devices: 

+r T Antenna PathLoss DP P P P P= − + + φ  (10)
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Thus, the RSSI from each device will only be affected by the random variable φ  and the antennas 

of mobile phones AntennaP . In order to avoid unexpected positioning process, only after the mobile 

device sending a positioning request to the server, the positioning calculation would be performed. The 

widely used K nearest neighbors (KNN) algorithms is used to evaluate the system performance. 

3. Experiments Section 

3.1. Experimental Setup 

The physical experiments are performed in two scenarios. The first one is the Beijing Tian Chuang 

Technology office building (Beijing, China). It is approximately 55 m by 10 m (see Figure 3). The 

environment was deployed by the present authors with four renovated IEEE 802.11WLAN APs (2.4 

GHz). In the experiments, MI 2A is used as the test mobile terminal, with Android 4.1.1 system. The 

system frameworks together with the proposed algorithms are evaluated in the experiments. 

 

Figure 3. Experiment area (scenario one). 

3.2. RSSI Estimation Accuracy 

To assess the RSSI estimation accuracy, a total of 52 reference locations are selected in the testing 

areas (see red dark circles in Figure 3). As the signal attenuates insignificantly with the distance 

between neighboring grids along the corridor, the area of the virtual grids is set as 3 m × 3 m. We 

deployed three WIFI anchors, one in the center of the corridor, another one is in the meeting room and 

last one in the R&D room. Both the information from the APs and WIFI anchors are used in the 

algorithms. The comparison results are presented in Figure 4, showing that most of the RSSI error 

between observed RSSI and estimated RSSI is smaller than 10 dBm. The overall results are 
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summarized in Table 3. It is noted that the RSSI estimation accuracy is encouraging, with average 

error of 3.76 dBm. 
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Figure 4. Cont. 
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Figure 4. Estimated RSSI errors for testing points in scenario one. (a) Estimated Results 

for AP1; (b) Estimated Results for AP2; (c) Estimated Results for AP3; (d) Estimated 

Results for AP4 

Table 3. RSSI Errors (dBm) in Testing Points in Scenario one. 

 AP1 AP2 AP3 AP4 Average 

Scenario one 3.48 4.12 3.66 3.79 3.76 



Sensors 2015, 15 8371 

 

 

3.3. Location Estimation Accuracy 

Static Test and Dynamic Test 

In the static test, the tester stands on the reference point and the observed RSSI values are sent to 

the positioning server, which uses the recently constructed radio map to provide a location for each 

reference point. For each reference point in the area, 30 positioning results are obtained and the average 

error is given in Figure 5, which shows that the average error is 2.4 m with the proposed radio map.  
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Figure 5. Static Test positioning errors in scenario one with the proposed radio map. 

These results are very similar or even slightly better than the results reported in the former  

papers [13,16–19]. Our approach has the advantage of not depending on offline training data, which 

enables it to automatically constructed the positioning system and dynamically model the changes in 

the environment. 

During the dynamic test, a WLAN-enabled mobile device (MI 2A) moves around the experiment 

area along the known waypoints. The AP scans the signal transmitted by the device and sends the 

RSSI to the positioning server. At the known waypoints, we stopped and recorded the reference 

location for positioning error calculation purpose. 

The average positioning errors of 25 tracks in both scenarios are given in Figure 6, which shows 

good performance both in the static test and dynamic test with the advantage of removing the  

time-consuming offline surveying work. Our results can achieve the accuracy level of grid size. 
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Figure 6. Walking Test positioning errors on Floor 12 with the proposed Radio map. 
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We deploy the WIFI anchors in our experiments above based on the basic principle that at least 

three calibration points, including APs and WIFI anchors should be in the coverage of each AP to 

execute the RWGR algorithms. In addition, the corners and interesting rooms are the candidate 

locations. Take the test points on the 12th floor in scenario one for example, the estimated error of the 

test points in the meeting room increase to 15 dBm when the WIFI anchor in the room is removed. 

That illustrates the importance of the WIFI anchors in the rooms.  

As shown in Figures 5 and 6, the RSSI error is comparable lower at the points near the WIFI 

anchors. Consequently, the positioning error is also smaller near the anchors. It is concluded that the 

WIFI anchors provide positive effect for the neighboring area. 

To find out the relationship between the anchor number and the average positioning error, we 

decrease the number of WIFI anchors one by one in scenario one. The results are shown in Table 4, 

which indicates that the WIFI anchors are significant for the positioning performance. The more WIFI 

anchors, the smaller the average positioning error in our experiments. The detailed principles for the 

WIFI anchors deployment are shown in the following scenario. 

Table 4. Average positioning error vs. Anchor number in scenario one (MI 2A). 

Number of Anchors 0 1 2 3 

Static Test(m) 8.3 m 5.3 m 4.0 m 2.4 m 
Walking Test(m) 9.2 m 6.8 m 5.9 m 4.2 m 

3.4. Solution for the Changes Caused by Time and Environment  

The radio map changes caused by time are always a serious problem in WIFI positioning systems. 

Though several specific radio maps created at different times could be stored in the positioning server, 

such as 8 a.m., 11 a.m., and 5 p.m., the cost is too large. In addition, most existing algorithms cannot 

solve the RSSI changes due to the environment. 

Four mobile phones are placed uniformly in fixed locations on the 12th floor in scenario one. 

During every hour between 8:00 and 18:00, we can obtain 20 positioning results for each mobile phone 

using the manual database and the newly developed database with our proposed method, respectively. 

The manual database is collected at 9:00 and remains unchanged. The average positioning errors are 

show in Figure 7. In the common work time, the performance of the traditional database is a little 

better than our proposed method. However, the traditional method cannot manage the situation, when 

many people walk in the corridor and the WIFI signal is affected seriously during the rest time at 

around 11:00. Moreover, when we move the AP3 to another place at 17:00, the positioning error 

obtained from the manual database increases greatly and the superiority of our method is obvious.  

To verify the self-updating function of our database, an iron door near the 18th reference points was 

opened and closed to simulate an environment change (see Figure 3) in scenario one. AP1 will be 

triggered by our proposed algorithm and switches the AP_flag from True to False before the updating 

process is completed. Compared the manual database with the updated database in Figure 8, the 

difference caused by the closed door is 15–25 dB and the updating process are accurate and essential. 

Consequently, the results in Figure 9 show that the positioning performance can be guaranteed with the 

database updated by the propose method when the door is closed. Additionally, if one of the APs is 
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broken down, the system will also detect the accident immediately by the RSSI matrix APRSSI  and switch 

the flag of that AP from True to False. Then, only the APs with True flag are used in the positioning. 
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Figure 7. Comparison between the manual database and proposed method at different time. 
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Figure 8. Estimated RSSI for AP1 with door closed. 
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Figure 9. Comparison between the static database and updated database for positioning 

error with door closed. 

3.5. Further Evaluation 
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Figure 10. Experiment area (scenario two). 

To further evaluate our proposed GWR algorithms, another experiment with a bigger and more 

complicated environment is performed. The second environment is 25 m by 115 m on the second floor 
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in the Zhong Guan Cun shopping center in Beijing (see Figure 10). There are 20 traditional IEEE 

802.11WLAN APs (2.4 GHz) units deployed by the shopping center which already existed in the 

environment. As our proposed system constructing frameworks has been validated in scenario one, this 

experiment is performed to further evaluate the proposed GWR algorithm and analyze how the anchors 

affect the system performance. We divide the area into 163 small areas of 1.5 m × 1.5 m with one 

reference point in each small area, the same as the size of floor tiles. Eight anchors with the function of 

receiving RSSIs from APs are uniformly deployed in the locations shown in Figure 10. 

As shown in Figure 11, there are 20 cumulative distribution function curves which stand for the 

estimated RSSI errors of each AP at all the reference points, and 30 RSSI results are obtained for every 

reference point. 90% of the estimated errors are smaller than 12 dBm of all the APs and the average 

estimated error of each AP are between 3.18 dBm and 6.3 dBm. 
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Figure 11. Estimated RSSI errors for testing points in scenario two. 

To evaluate our proposed GWR algorithm, the RBF based aggregation algorithm [27] is also run for 

comparison of the performance of average estimated RSSI errors together with the RSSI 

discrimination at different reference points. 

The results in Table 5 show that GWR is much better than RBF in the average RSSI errors. Because 

there are 163 RPs in scenario two, the improvement of average RSSI errors of 1–2 dBm is 

encouraging. Furthermore, the signal variance of all the RPs of each AP in Figure 12 shows that the 

RSSIs estimated by the RBF lost much signal discrimination compared to the true RSSIs, while the 

performance of the results estimated by GWR just degrades a little. Higher signal discrimination of 

RPs would result in better positioning results. The cumulative distribution function curves of the 

walking positioning error in Figure 13 show that the proposed GWR obtains much better positioning 

results, with an average error of 5.1 m.  
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Table 5. Comparison of average RSSI Errors (dBm) between RBF and GWR in scenario two. 

AP Index 1 2 3 4 5 6 7 8 9 10 

RBF 4.5 3.9 4.3 4.7 3.8 3.9 5.9 5.7 6.1 4.5 
GWR 3.1 3.6 3.6 4.0 3.3 3.4 4.9 5.0 4.2 3.4 

AP index 11 12 13 14 15 16 17 18 19 20 
RBF 5.9 7.2 5.2 5.1 5.7 7.5 6.3 4.9 5.6 5.2 
GWR 4.6 6.0 5.4 5.2 5.2 6.3 5.6 5.2 4.1 3.9 
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Figure 12. Signal discrimination for RPs in scenario two. 
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Figure 13. Positioning error based on GWR and RBF in scenario two. 
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Figure 14. Impact of the anchors in four cases. 

To evaluate the impact of anchors, we deploy the anchors in the four cases shown in Figure 14. The 

RSSI profiles of one AP are demonstrated for the real observed RSSI, the results estimated by GWR 

and that by RBF. There are eight anchors in case 1, case 2 and case 3, and the results obtained by 

GWR all show good accuracy. However, the performance of RBF degrades greatly when the anchors 

in location 64 and 90 of case 1 are moved in case 2, as anchors located just around the characteristic 

points of the distribution are of the most important. In case 4, only those five anchors in case 1 are 

retained, both of the two estimating algorithms obtain good RSSI profiles, with just a small increase in 

the average RSSI error compared with case 1 of eight anchors. A conclusion from the above results 

can be drawn that the performance of our proposed GWR algorithm is more robust under the 

conditions of approximately uniform and full coverage deployments. Furthermore, the anchors should 

be deployed on the locations that stand for the features of RSSI profiles, such as the nearby area of AP 

(normally the point of larger RSSI), the corner of the blocked area and the far away area from the AP, 

to obtain better performance.  

As our proposed algorithm can also be used to obtain the full WIFI database if the data of manual 

sampling are treated as the data from the anchors, the conclusion is also important. Then, only a few 

manual samples are required as virtual anchors. 
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4. Conclusions 

In this paper, a novel method RGWR for the calibration of WIFI fingerprint databases is proposed. 

The basic advantage of the proposed method is that it uses the online RSSI information from the new 

renovated WLAN AP and anchors to dynamically construct a fine radio map that accurately models 

the signal power distribution over the whole environment without time-consuming offline surveys. The 

system can also deal with the changes caused by time and environment together with the detection and 

updating scheme as proposed. The proposed algorithms provide better performance over the RBF 

algorithm in the average estimated RSSI error, the RSSI discrimination of reference points and the 

average positioning error. The effects of anchors on system performance are further researched. A 

conclusion can be drawn that the anchors should be deployed on the locations that stand for the 

features of RSSI profiles to obtain better performance. 

The positioning error of our newly constructed system is 2–3 m and 4–5 m for static and walking 

scenarios, respectively, and it is among the most accurate results currently obtained by systems with 

little human intervention. The accuracy of our system is acceptable for most indoor applications. 

What’s more, the proposed system is easy to be established and maintain for wide deployment. If 

higher accuracy is required, we can place more WIFI anchors or collect some fingerprints manually in 

sparse grids as additional input to the RGWR algorithm. In the future, we will perform further research 

and experiments on the deployment of the WIFI anchors, and potential applications for scenarios like 

airports and markets. 
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