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Abstract: In exoskeletal robots, the quantification of the user’s muscular effort is important 

to recognize the user’s motion intentions and evaluate motor abilities. In this paper, we 

attempt to estimate users’ muscular efforts accurately using joint torque sensor which 

contains the measurements of dynamic effect of human body such as the inertial, Coriolis, 

and gravitational torques as well as torque by active muscular effort. It is important to extract 

the dynamic effects of the user’s limb accurately from the measured torque. The user’s limb 

dynamics are formulated and a convenient method of identifying user-specific parameters is 

suggested for estimating the user’s muscular torque in robotic exoskeletons. Experiments 

were carried out on a wheelchair-integrated lower limb exoskeleton, EXOwheel, which was 

equipped with torque sensors in the hip and knee joints. The proposed methods were 

evaluated by 10 healthy participants during body weight-supported gait training. The 

experimental results show that the torque sensors are to estimate the muscular torque 

accurately in cases of relaxed and activated muscle conditions. 

Keywords: exoskeletal robot; human-robot interaction; muscular torque; joint torque sensor 

 

1. Introduction 

In recent years, there has been increasing interest in using robotic devices to assist in the 

rehabilitative training of people with motion impairments. Most of the initially developed 
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rehabilitation robots only provide passive-mode training, which moves the user’s limbs along a 

predefined fixed trajectory. In recent years, many researchers have insisted that robotic assistance 

should be adaptive according to the user’s contribution for more effective and optimal training [1,2]. In 

this robotic training paradigm, the quantification of the user’s muscular effort is important to make the 

robot’s behavior adaptive and to inform the user of their contribution to the training [1]. For example, 

in rehabilitative training for neurological disorders (e.g., after stroke or spinal cord injury), the 

patient’s motor performance can be measured and evaluated by the muscular effort estimation. 

There are two widely used methods for quantifying the user’s muscular effort in a rehabilitation 

robot: by measuring electromyography (EMG) using surface electrodes attached to the user’s skin; and 

by estimating muscular torque based on inverse-dynamics analysis. Although measuring EMG signals 

has advantages in terms of detecting user intentions with accurate timing, it has practical limitations. 

For example, the attachment of the electrodes is time-consuming, and complex signal processing is 

required [3,4]. This paper considers inverse-dynamics-based muscular torque estimation for practical use. 

The muscular torque of the human user can be estimated by measuring the applied external torque 

at each joint of the exoskeletal robot, and by removing the inertial, Coriolis, and gravitational torques 

of the user’s limb (referred to as “passive torque” throughout the paper to distinguish it from the torque 

generated by muscle). Computation of the passive torque requires accurate estimates of anthropometric 

and inertial characteristics of the limb segment, such as mass, center of mass location, and moment of 

inertia (often referred to as body segment inertial parameters; BSIPs). In inverse-dynamics analyses of 

human movement, BSIPs are typically estimated from anthropometric models [1,5–7]. Although such 

anthropometric data provide simple solutions for the researcher, they may not match that of the actual 

user because they cannot provide comprehensive solutions for variations in the gender, race, age, and 

body type of users [8,9]. 

In this paper, we present a method for estimating the user’s muscular torque using joint torque 

sensors and its implementation in an actual exoskeletal robot. In particular, we focus on the 

identification of user-specific inertial parameters rather than using typical anthropometric models. This 

approach is important because the isolation of active muscular effort from joint torque measurements 

critically relies on the accuracy of the dynamic model of the user’s limb. The wheelchair-integrated 

lower limb exoskeleton robot EXOwheel was used as a test bed, and 10 subjects participated in the 

experiments. This paper provides a mathematical formulation of the joint torque resulting from the user in 

the exoskeleton and experimental procedures for identifying user-specific parameters. The performance of 

the proposed method was verified by experiments on body-weight-supported gait training. 

2. Mathematical Formulation 

Experiments were performed with an EXOwheel robot [10], shown in Figure 1a. The EXOwheel is 

designed to support exercise and rehabilitative training in the daily lives of individuals with 

disabilities. The exoskeleton provides assistive joint torques via electric motors in the sagittal plane at 

the hip and knee joints. The user is connected to the exoskeleton through three attachment points: the 

thigh, shank, and foot. The length of the thigh and shank in the exoskeleton can be manually adjusted 

to fit the user’s leg length. Figure 1b shows a schematic diagram of an exoskeleton joint. The 

exoskeleton is equipped at each joint with an encoder for the motor’s position and a sensor for the joint 
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torque which is located between the motor and link (“torque sensor” in Figure 1b). The exoskeleton’s 

hip and knee joints have the same configuration. The technical specifications of the torque sensor are: 

sensing range: ±120 Nm, resolution: 0.015 Nm, non-linearity: 0.03% full scale and repeatability: 

0.02% full scale. 

 

Figure 1. (a) Prototype of the EXOwheel robot; (b) Schematic diagram of the exoskeleton 

knee joint in the frontal plane. 

For a human lower extremity wearing an exoskeletal robot, we considered a two-segmental model in 

the sagittal plane as illustrated in Figure 2. Several assumptions are made to simplify the calculations: 

(1) The human leg consists of rigid segments, and each segment is connected with a fixed hinge joint. 

(2) The human leg is rigidly linked to the exoskeletal robot, and both systems have the same kinematics. 

(3) The model only considers motion in the sagittal plane. 

(4) The shank and foot are treated as one rigid segment (i.e., lower leg). 
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Figure 2. Schematic diagram of the link-segment model of a human lower limb wearing  

an exoskeleton. 

The model consists of two rigid segments (thigh and lower leg) and two pin joints (hip and knee). 

Each segment of the model is defined by five parameters: length (L), mass (m), position of center of 

mass in the directions parallel and perpendicular to the link (a and b, respectively), and moment of inertia 

(Iz). θ is the joint angle, and positive values of θ represent counter-clockwise rotation. Subscript 1 refers 

to variables of the thigh segment and hip joint, whereas subscript 2 refers to the lower leg segment and 

knee joint. 

The equation of motion for the human lower limb model is expressed as [11]: 

H( ) ( , ) ( ) ( )H H M EXT= +M θ θ+V θ θ +G θ + P θ τ τ   (1)

where 2, , ∈ℜθ θ θ   are the vector of the joint angle, angular velocity, and angular acceleration, 

respectively. 2 2
H ( ) ×∈ ℜM θ  is the symmetric positive definite inertial matrix of the human limb, 

2( )H ∈ ℜV θ,θ  is the vector of the centrifugal and Coriolis torques of the human limb, 2( )H ∈ ℜG θ  is 

the vector of gravitational torques of the human limb, 2( )∈ℜP θ  is the vector of passive elastic 

torques of the human limb, 2
M ∈ ℜτ  is the vector of muscular torques, and 2

EXT ∈ ℜτ  is the vector of 

external torques from the environment. 

As shown in Equation (1), there are two types of user torque that are applied to the exoskeleton: 

“passive” torque (motion-dependent torque; i.e., H( ) ( , ) ( ) ( )H HM θ θ+V θ θ +G θ + P θ  ) and “active” 

torque (muscular torque; i.e., τM). The external torque, τEXT, is the applied torque from the environment. 

In the EXOwheel, the external torque can be expressed by subtracting the torque needed to move the 

exoskeleton from the torque generated by the robot’s actuator: 

( )R ( ) ( , ) ( )EXT R R R= − Mτ τ θ θ +V θ θ + G θ   (2)
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where 2
R ∈ ℜτ  is the vector of the actuator torque applied at the joint, 2 2

R ( ) ×∈ ℜM θ  is the symmetric 

positive definite inertial matrix of the exoskeleton, 2( )R ∈ ℜV θ,θ  is the vector of Coriolis and 

centrifugal torques of the exoskeleton, and 2( )R ∈ ℜG θ  is the vector of gravitational torques of the 

exoskeleton. Substituting Equation (2) into Equation (1) yields the following equation of motion for 

the combined human-exoskeleton system: 

HR ( ) ( , ) ( ) ( )HR HR M R+ = +M θ θ+V θ θ +G θ P θ τ τ   (3)

where the index HR represents the combined human-exoskeleton system, i.e., MHR = MH + MR,  

VHR = VH + VR, GHR = GH + GR. 

In Equation (3), MHR, VHR, and GHR are characterized by the segment inertial parameters: the mass 

(mi), the moment of inertia (Izi), and two elements of the center of mass location (ai and bi). For the  

least-squares identification, the unknown parameters J, X, and Y are defined in their linear combinations 

as follows: 

( ) ( ) ( )2 2 2 2 2 2 2
1 1 2 1 1 1 2 2 2 2 1 2 2 2 2 2

1 1 1 2 1 2 2 2

1 1 1 2 2 2

,

,

,

z z zJ I I m a b m a b m L J I m a b

X m a m L X m a

Y m b Y m b

= + + + + + + = + +

= + =
= =

 

(4)

Indexes H, R, and HR are omitted in Equation (4) for brevity. Then, the equations of MHR, VHR, and 

GHR can be written in terms of J, X, and Y: 

( )
( )

HR,11 HR,12
HR

HR,21 HR,22

HR,11 1 1 2 2 2 2

HR,12 HR,21 2 1 2 2 2 2

,22 2

( )

2 cos sin

cos sin

HR HR HR

HR HR HR

HR HR

M M

M M

M J L X Y

M M J L X Y

M J

θ θ
θ θ

 
=  
 

= + −

= = + −
=

M θ

 (5)

( )
( )

,1

,2

2
,1 1 2 2 2 2 2 1 2

2
,2 1 2 2 2 2 1

( , )

sin cos ( 2 )

sin cos

HR
HR

HR

HR HR HR

HR HR HR

V

V

V L X Y

V L X Y

θ θ θ θ θ

θ θ θ

 
=  
 

= − + +

= +

V θ θ

  


 

(6)

( )

,1

,2

,1 1 1 1 1 2 12 2 12

,2 2 12 2 12

( )

( sin cos sin cos )

sin cos

HR
HR

HR

HR HR HR HR HR

HR HR HR

G

G

G g X Y X Y

G g X Y

θ θ θ θ
θ θ

 
=  
 

= + + +

= +

G θ

 
(7)

where g is gravitational acceleration, θ12 = θ1 + θ2, JHR = JH + JR, XHR = XH + XR , and YHR = YH + YR. 

From the location of the torque sensor (between the actuator and link; see Figure 1b), the measured 

torque can be described as: 
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( )HR ( ) ( , ) ( ) ( )

S R

M HR HR

= −

= − +M

τ τ

τ θ θ +V θ θ + G θ P θ   (8)

where τS is the torque measured by the exoskeleton’s torque sensor. The active muscular torque of the 

human user can be estimated from the measured torque τS as follows: 

ˆ ˆM S PAS= −τ τ τ  (9)

where 

( )HR
ˆˆ ˆ ˆˆ ( ) ( , ) ( ) ( )PAS HR HR= − +Mτ θ θ +V θ θ + G θ P θ   (10)

and “hats” are placed on the parameters to denote the estimated values. As shown in  

Equations (9) and (10), it is important to extract the dynamic effects of the human body and exoskeleton 

accurately from the measured torque for estimating user’s active muscular torque. 

The user’s BISP values in Equation (4) (mH,i, aH,i, and IzH,i) are typically estimated from the 

literature. Table 1 shows three widely used BSIP estimation models: two models derived from  

cadaver studies [12,13] and one model derived from the gamma-ray scanning of living subjects [14].  

In the table, each segment’s mass (M) is described as a ratio of the total weight, whereas the center of 

mass location (CM) and radius of gyration (RG) are described as segment length ratios: 

,H i im W M= × , ,H i i ia L CM= × , ( )2

, ,zH i H i i iI m L RG= × ×  (11)

where W is the subject’s weight. The BSIPs estimated from Table 1 are not identical to those of actual 

users; in this study, the BISPs are not only estimated from the literature but also measured and 

validated with actual human subjects in the following sections. 

Table 1. BSIP estimation models. 

Studies N a Method 
Thigh Shank Foot 

M b CM c RG d M CM RG M CM RG 

Dempster [12] 7 Cadaver 9.7 43.3 32.3 4.5 43.3 30.2 1.4 43.8 47.5 
Clauser [13] 13 Cadaver 10.3 37.2 - 4.3 37.1 - 1.5 44.9 - 
De Leva [14] 100 γ-ray 14.2 45.5 32.9 4.3 40.5 25.5 1.4 55.9 25.7 

a N: sample size; b M(%): percentage of body segment mass relative to total body mass; c CM(%): center of 

mass location as a percentage of the segment length from the proximal end; d RG(%): radius of gyration at 

CM for the sagittal axis as a percentage of segment length. 

Passive elastic torque, P(θ), is a torque generated by the mechanisms of the joint surface, ligaments, 

and connective tissue. This torque is weak relative to the gravitational and inertial torques, but it 

becomes significant at the end range of motion [15]. A model for estimating passive elastic torque is 

based on Riener’s double-exponential equations [16]. 
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1

2

1 2 1 2 1

2 2 1 2 1 2

ˆ
ˆ( )

ˆ

ˆ exp(1.47 0.19 4.29 ) exp(1.34 1.30 1.75 ) 8.07

ˆ exp(1.80 2.02 1.24 ) exp( 3.97 0.73 0.0128 ) exp(2.22 8.60 ) 4.82

P

P

P

P

θ θ θ θ

θ θ θ θ θ

 
=  
  

= − − − + − + −

= − − + + − + − − − +

P θ

 
(12)

The unit of the angle is radians and the unit of torque is Nm. 

3. Identification of Body Segment Parameters 

3.1. Experimental Procedure 

To improve the accuracy of the BSIPs, we identified certain parameters from the series of 

experiments. All experiments were performed on 10 healthy subjects (Table 2). The experimental 

procedure was approved by the Ethics Committee of Sogang University (approval number:  

Sogang-IRB-2014-08), and written informed consent was obtained from all participants. 

Table 2. Subject characteristics. 

Subjects Age (years) Height (m) Weight (kg) BMI a (kg/m2) L1 (m) L2 (m)

S1 29 1.76 75.2 24.3 0.41 0.53 
S2 25 1.78 71.1 22.6 0.42 0.55 
S3 24 1.78 74.3 23.5 0.43 0.55 
S4 25 1.70 67.6 23.4 0.40 0.52 
S5 27 1.78 75.1 23.7 0.42 0.55 
S6 24 1.72 65.7 22.2 0.41 0.53 
S7 24 1.66 62.8 22.8 0.40 0.52 
S8 22 1.72 56.8 19.2 0.40 0.53 
S9 23 1.73 65.8 22.0 0.42 0.53 
S10 27 1.69 64.6 22.6 0.40 0.51 

Mean 25.0 1.73 68.0 22.7 0.41 0.53 
SD 2.2 0.04 5.7 1.3 0.01 0.01 

a BMI: Body mass index. 

Figure 3 shows the experimental setup for parameter identification. The subjects were placed in the 

EXOwheel, and the exoskeleton was connected to their legs. Two experimental configurations were 

used for parameter identification. 

(1) Identification for the lower leg (Figure 3a): The subject sat on the wheelchair seat, which 

allowed the lower leg to swing. During the experiment, the hip was fixed at 90° flexion, and the 

knee was moved with a sinusoidal trajectory. 

(2) Identification for the thigh (Figure 3b): The subject was in the standing position, which allowed 

the entire leg to swing. During the experiment, the hip was moved with a sinusoidal trajectory, 

and the knee was fixed at 90° flexion. 

In each experiment, the hip and knee angles were imposed by the exoskeleton, and the subject was 

asked to fully relax his leg to allow the leg to move passively against the torque imposed by the 
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exoskeleton. Each experiment was carried out five times for 40 s. A conventional proportional 

derivative (PD) controller was applied at each joint of the exoskeleton to track the desired position. 

The exciting trajectories were selected as a sum of harmonic sine and cosine functions within the 

frequency range during the gait training (0.3–1.5 Hz). After the experiments on the subjects were 

completed, experiments on the exoskeleton only (i.e., exoskeleton not worn by a human subject) were 

performed in the same configuration to separate the parameters of the exoskeleton and human limb. 

 

Figure 3. Experimental setup for parameter identification. (a) Identification of the lower leg 

parameters; (b) Identification of the thigh parameters. 

3.2. Data Analysis and Parameter Identification 

The measured joint angles and torques were recorded during the experiment. The angular velocity 

and acceleration were obtained off-line from the joint angle using a zero-phase digital low-pass filter 

(Butterworth, second-order, cut-off frequency of 20 Hz). To detect the user’s actual muscular effort 

during the experiment, EMG data were measured by surface electrodes attached to five major muscles 

of the right leg in all subjects (Figure 3b): gluteus maximus (GMAX), vastus medialis (VM), rectus 

femoris (RF), semitendinosus (ST), and gastrocnemius (GAS). The raw EMG signals collected from 

the electrodes were amplified by a BagnoliTM 8-channel system (Delsys Inc.) to a gain of 1000 and 

then band-pass filtered (Butterworth, fourth-order, cut-off frequency of 20–450 Hz). All signals were 

collected at a sample rate of 1 kHz. 

Based on the measured EMG data, muscle activation, Ach, is classified into two states: “activated” 

and “inactivated”. The single-threshold method is used as the classification rule: 

1 (activated), if ( )
( )

0 (in activated), otherwise       
ch ch

ch

k Z
A k

χ ≥
= 


 (13)

where χch(k) is the amplified, band-pass filtered, and full-wave rectified EMG signal of each channel 

(e.g., GMAX, VL, RF, ST, and GAS) at a discrete time instant k. Zch is the threshold value, which was 

set to mean plus three standard deviations (Mean + 3SD) of χch when the muscle is relaxed. 
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The parameters J, X, and Y of the exoskeleton and human limb were estimated using the off-line  

least-squares method. For the human limb parameters, data that satisfy passive conditions (i.e., Ach = 0 

for all EMG channels) were used. The estimation procedures are shown schematically in Figure 4. The 

procedures were split into two parts: identification of the exoskeleton parameters (Step 1: R2 segment; 

Step 2: R1 segment) and identification of the human limb parameters with the exoskeleton’s 

parameters assumed to be known (Step 3: H2 segment; Step 4: H1 segment). 

 

Figure 4. Estimation procedure of the least-squares method. In the figure, HM and EXO 

represent the human user and the exoskeleton, respectively. 

From Equations (3)–(7), the relation between the measured signals, input u and output y, are 

expressed as: 

Step 1 (R2 segment; τM = 0, θ1 = 90°, ߠଵሶ ଵሷߠ =   = 0, JH,i = XH,i = YH,i = 0, τR2 = u1, θ2 = y1) 

( )1 2 1 2 1 2 1cos sinR R Ru J y g X y Y y= + −  (14)

Step 2 (R1 segment; τM = 0, θ2 = − 90 deg, ߠଶሶ ଶሷߠ =   = 0, JH,i = XH,i = YH,i = 0, τR1 = u2, θ1 = y2) 

( ) ( )2 1 1 2 2 1 2 1 2 2 2 2 22 sin cos cos sinR R R R R Ru J LY y g X y Y y X y Y y= − + + − +  (15)

Step 3 (H2 segment; τM = 0, θ1 = 90 deg, ߠଵሶ ଵሷߠ =   = 0, τR2 = u3, θ2 = y3) 

( )3 2 3 2 3 2 3 2̂cos sinRH RH RHu J y g X y Y y P= + − +  (16)

Step 4 (H1 segment; τM = 0, θ2 = − 90 deg, ߠଶሶ ଶሷߠ =   = 0, τR1 = u4, θ1 = y4) 

( ) ( )4 1 1 2 4 1 4 1 4 2 4 2 4 1̂2 sin cos cos sinRH RH RH RH RH RHu J LY y g X y Y y X y Y y P= − + + − + +  (17)

Equations (14)–(17) can be written in a linear form as: 

<Step 1>

Lower leg of
the EXO

u1 y1

LS estimation to fit
Equation (14)

2 2 2
ˆ ˆ ˆ, ,R R RJ X Y

<Step 2>

Whole leg of
the EXO

u2 y2

LS estimation to fit
Equation (15)

1 1 1
ˆ ˆ ˆ, ,R R RJ X Y

<Step 3>

Lower leg of
the HM+EXO

u3 y3

LS estimation to fit
Equation (16)

2 2 2
ˆ ˆ ˆ, ,H H HJ X Y

2 2 2
ˆ ˆ ˆ, ,R R RJ X Y

1 1 1

2 2 2

ˆ ˆ ˆ, , ,

ˆ ˆ ˆ, ,

R R R

R R R

J X Y

J X Y

<Step 4>

Whole leg of
the HM+EXO

u3 y3

LS estimation to fit
Equation (17)

1 1 1
ˆ ˆ ˆ, ,H H HJ X Y

1 1 1

2 2 2

2 2 2

ˆ ˆ ˆ, , ,

ˆ ˆ ˆ, , ,

ˆ ˆ ˆ, ,

R R R

R R R

H H H

J X Y

J X Y

J X Y
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* , 1,2,3,4T
j j ju jφ= =w , (18)

where *
ju ∈ℜ  is the modified input signal, 3

j ∈ℜw  is the regression vector as a function of geometry 

and , ,y y y  , and 3
jφ ∈ℜ  is the vector of the segment parameters. The components of the vectors uj*, wj, 

and ϕj in Equation (18) can be found in Appendix. 

When N measurements are used, Equation (18) can be represented as: 

T
j j jφ= WU  (19)

where 

*

*

*

(1)(1)

(2)(2)
,

( )( )

jj

jj T
j j

jj

wu

wu

w Nu N

   
   
   = =   
   

     

WU
  (20)

A least-squares method [17] can be used to estimate the parameters in Equation (23). 

1ˆ ( )T T
j j j j jφ −= W W W U  (21)

3.3. Identification Results 

Figure 5 shows the input and output data recorded in the identification experiments. The exciting 

trajectories were selected as the sum of harmonic sine and cosine functions considering the joint angle 

range and frequency in typical gait training in the EXOwheel system. As shown in the second row of 

Figure 5, the range of the joint angle was 5 to 40 deg for the hip joint and −5 to −70 deg for the knee 

joint. The range of angular velocity was ±120 deg/s for the hip joint and ±165 deg/s for the knee joint. 

The kinematic data of the exoskeleton and the combined human-exoskeleton system were identical for 

each joint (i.e., y1 = y3, y2 = y4). 

Table 3 and 4 represent the results of the parameter identification in the exoskeletal robot and 

human body, respectively. In Table 3, the identified parameters of exoskeletal robot vary since the link 

length of the thigh and lower leg in exoskeleton are adjusted to fit the subject’s leg length. The 

parameters of human body, however, vary significantly though the segment length and weight of 

individuals are similar (Table 4). For example, S3 and S5 have highly similar weights (W = 74.3 kg for 

S3; W = 75.1 kg for S5) and segment lengths (L1 = 0.43, L2 = 0.55 for both subjects), but the identified 

human limb parameters show significant discrepancy between the two subjects (e.g., XH1 = 4.40,  

XH2 = 1.50 for S3; XH1 = 3.56, XH2 = 1.27 for S5). In particular, parameter YH, which represents the 

distribution of the mass in the direction perpendicular to the link, deviated significantly among all of 

the subjects regardless of the weight and segment length. 

In Table 4, the identified parameters of the human body are compared from that of the two 

anthropometric models: the De Leva model and the Dempster model. The observed results indicate 

that the anthropometric data are not sufficient to estimate user-specific parameters. There are two 

possible reasons for the discrepancies between the parameters identified from the experiments and the 

anthropometric models. First, normalizing the parameters with respect to weight and segment length 
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alone might cause poor estimation because the identified parameters are sensitive to the body shape of the 

subject (i.e., spatial distribution of the segment’s mass). Second, the assumptions applied in the 

anthropometric-model-based estimation (e.g., the radius of gyration of the each segment is constant and the 

anthropometric segment boundaries coincide with that of the exoskeleton) might increase the discrepancies. 

 

Figure 5. Input (joint torque) and output (joint kinematics) data recorded in the identification 

experiments for subject 1. (a) Step 1 (knee joint data; exoskeleton); (b) Step 2 (hip joint data; 

exoskeleton); (c) Step 3 (knee joint data; combined human-exoskeleton system); (d) Step 4 

(hip joint data; combined human-exoskeleton system). 

Table 3. Parameter identification results for the exoskeletal robot (J(kg·m2), X(kg·m), Y(kg·m)). 

Subjects JR1 JR2 XR1 XR2 YR1 YR2 

S1 3.02 0.74 3.85 1.74 0.15 0.16 
S2 3.13 0.77 3.93 1.77 0.15 0.17 
S3 3.21 0.77 3.99 1.78 0.12 0.18 
S4 2.86 0.71 3.75 1.70 0.15 0.19 
S5 3.14 0.77 3.93 1.78 0.13 0.17 
S6 3.01 0.73 3.85 1.73 0.17 0.18 
S7 2.87 0.71 3.74 1.69 0.13 0.19 
S8 2.86 0.74 3.75 1.73 0.13 0.16 
S9 3.13 0.74 3.93 1.74 0.13 0.18 

S10 2.86 0.68 3.74 1.64 0.16 0.17 
Mean 3.01 0.74 3.85 1.73 0.14 0.18 

SD 0.13 0.03 0.10 0.04 0.02 0.01 
  

0 10 20
-180

0

180

Time(sec)
0 10 20

-180

0

180

Time(sec)
0 10 20

-180

0

180

Time(sec)
0 10 20

-180

0

180

Time(sec)

0

70

0

20

0

45

0

10

T
o

rq
u

e
(N

m
)

y1 y2 y3 y4

u1 u2 u3 u4

Input torque

Output position
(deg)y 1(deg s )y −⋅ 2(deg s )y −⋅

0 10 20
Time(sec)

0 10 20
Time(sec)

0 10 20
Time(sec)

0 10 20
Time(sec)

(a) (b) (c) (d)



Sensors 2015, 15 8348 

 

 

Table 4. Parameter identification results for the human body (J(kg·m2), X(kg·m), Y(kg·m)). 

Sub-jects 
Identified De Leva Dempster 

JH1 JH2 XH1 XH2 YH1 YH2 JH1 JH2 XH1 XH2 JH1 JH2 XH1 XH2 
S1 1.69 0.37 4.54 1.20 −0.16 0.42 1.48 0.42 3.55 1.16 1.71 0.70 3.21 1.39 
S2 1.41 0.50 4.19 1.18 −0.29 0.37 1.48 0.43 3.46 1.14 1.71 0.72 3.13 1.38 
S3 1.50 0.40 4.40 1.50 −0.50 0.42 1.61 0.45 3.67 1.19 1.85 0.74 3.32 1.43 
S4 1.35 0.36 3.89 1.02 −0.45 0.39 1.27 0.37 3.11 1.02 1.46 0.60 2.81 1.23 
S5 1.42 0.48 3.56 1.27 −0.18 0.36 1.55 0.45 3.63 1.20 1.79 0.75 3.28 1.45 
S6 1.62 0.33 4.36 0.99 −0.47 0.30 1.29 0.36 3.10 1.00 1.49 0.60 2.80 1.21 
S7 1.39 0.46 3.55 0.96 −0.21 0.23 1.18 0.34 2.89 0.95 1.36 0.56 2.61 1.14 
S8 1.14 0.42 3.44 1.11 −0.48 0.43 1.06 0.32 2.61 0.87 1.23 0.53 2.36 1.05 
S9 1.37 0.41 3.71 1.08 −0.10 0.21 1.36 0.37 3.18 1.01 1.57 0.61 2.87 1.22 

S10 1.39 0.37 3.22 1.07 −0.29 0.34 1.21 0.34 2.97 0.96 1.40 0.55 2.69 1.15 
Mean 1.43 0.41 3.89 1.14 −0.31 0.35 1.34 0.38 3.21 1.05 1.55 0.63 2.90 1.26 

SD 0.15 0.05 0.44 0.15 0.14 0.07 0.17 0.05 0.33 0.11 0.19 0.08 0.30 0.13 

3.4. Validation of the Identification Results 

The quality of the identified parameters was evaluated in body-weight supported gait training. 

During the experiment, the exoskeleton was controlled to move along a given trajectory while the 

subject was asked to fully relax his leg muscles. The trajectories of the hip and knee joint angles were 

determined from the physiological gait pattern [18], and the gait speed was selected to be 2 km/h 

(typical range of gait speed in rehabilitation training; approximate stride period of 2 s). During the 

training, the subject’s body weight was fully supported by the EXOwheel’s electrical lifter for no 

ground contact. The experiment was carried out for 10 stride cycles on each subject. 

As the subject’s leg moves passively, the measured joint torque only contains motion-dependent 

“passive” torque (i.e., ࣎ො௉஺ௌ in Equation (10)). In the relaxed muscle condition, the estimated torque ࣎ො௉஺ௌ should coincide with the measured torque ࣎ௌ if the identified parameters are accurate. Figure 6 

shows the results of the validation experiment for subject 1, which include measured kinematics 

(Figure 6a), measured EMG data (Figure 6b), and a comparison between measured and estimated 

torque (Figure 6c). Figure 6b shows that all of the muscles were in the “inactivate” state, which 

indicates the subject was fully relaxed throughout the experiment. As shown in Figure 6c, for both the 

hip and knee joints, there was good agreement between the estimated and measured torques, validating 

the accuracy of the identified parameters. 
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Figure 6. Representative experimental results (subject 1) used to validate the identified 

parameters while the subject was relaxed. (a) Measured joint angle; (b) Measured EMG;  

(c) Comparison between measured and estimated torque. 

The performance of the identified model was quantitatively evaluated by inspecting the  

root-mean-square (RMS) error of the torque differences between the estimated and measured torque:  

( )2

1

ˆ( ) ( )
N

S PAS
k

k k
RMSE

N
=

−
=

 τ τ
 (22)

In calculating the RMS error, the estimated torque ࣎ො௉஺ௌ was calculated using the three different 

parameter sets: experimentally identified parameters and the parameters estimated from the De Leva 

and Dempster models. According to the results shown in Table 5 for all subjects, the RMS errors range  

1.5–2.2 Nm for the hip joint and 0.7–1.2 Nm for the knee joint when torques are computed using the 

experimentally identified parameters. In contrast, large RMS errors are observed when using the 

parameters estimated from the De Leva model (3.3–6.5 Nm for the hip joint; 2.0–3.9 Nm for the knee 

joint) and the Dempster model (2.8–7.3 Nm for the hip joint; 2.3–4.5 Nm for the knee joint). These 

results demonstrate that the experimentally identified parameter set is acceptable and significantly 

increases the accuracy of the inverse-dynamics analysis relative to the parameter set estimated from 

typical anthropometric models. 
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Table 5. RMS error for the estimation of the measured torque in passive-mode gait training. 

Subjects 
Hip Joint (Nm) Knee Joint (Nm) 

Identified De Leva Dempster Identified De Leva Dempster 

S1 2.1 3.8 4.9 1.2 2.5 3.8 
S2 1.5 4.3 2.8 0.9 3.9 2.3 
S3 1.7 6.5 7.3 0.7 2.0 4.4 
S4 2.0 4.9 5.4 0.7 2.3 4.5 
S5 1.5 3.3 2.9 1.1 2.6 4.2 
S6 1.9 6.0 6.6 1.0 2.4 4.2 
S7 1.7 3.9 3.8 0.9 2.5 4.1 
S8 1.7 5.7 6.3 1.2 3.7 3.1 
S9 2.2 4.6 4.9 0.8 2.7 3.5 

S10 1.8 6.2 6.5 0.8 3.0 3.2 
Mean 1.8 4.9 5.1 0.9 2.8 3.6 

SD 0.2 1.1 1.6 0.2 0.6 0.7 

4. Experimental Validation of Active Muscular Torque Estimation 

As indicated in Equation (9), the reliability of the estimated active muscular torque ࣎ොெ is guaranteed 

if the passive torque ࣎ො௉஺ௌ is accurately removed from the measured torque ࣎ௌ. Although the accuracy 

of the estimated passive torque was analyzed in the previous section, it remains unclear whether the 

amplitude of the estimation error is sufficiently small to recognize a user’s muscular effort. To validate 

the estimation of active muscular torque in Equation (9), we investigated the correlation between the 

estimated muscular torque and EMG data. Prior to the experiment on gait training, the relationship 

between the EMG data and joint torque was established with isometric contractions. Figure 7 shows 

the experimental setup for the isometric calibration procedures. The subjects were placed in the 

EXOwheel, and the exoskeleton was connected to their legs. The subject stood upright during the 

isometric hip flexion and extension (Figure 7a), whereas the subject sat on the wheelchair seat during 

isometric knee flexion and extension (Figure 7b). The subjects were asked to perform five to eight 

isometric flexion and extensions for each joint. 

 

Figure 7. Schematic representation of the isometric calibration procedure. (a) Isometric 

hip flexion and extension; (b) Isometric knee flexion extension. 
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The raw rectified EMG data (i.e., χch) were low-pass filtered (Butterworth, fourth-order, 2 Hz) to 

obtain linear envelopes. The resulting EMG envelope of each muscle was normalized to the respective 

muscle’s maximal voluntary contraction (MVC). The subjects were instructed to perform MVCs 

against manual isometric resistance with specific test positions for each muscle of interest [19]. Three 

trials were performed with 2 min of resting time between trials; the average of the three highest EMG 

peaks was used as the MVC value for normalization.  

To calculate muscular torque from the EMG signals, the model reported by Olney and Winter [4] 

was used in this study. The muscular torques at the hip and knee joint during isometric contraction 

were calculated from EMG data as follows: 

( ),
1 ,1 ,1 ,1ˆ ( ) ( ) ( ) ( )EMG ISO

M RF RF GMAX GMAX ST STk LE k LE k LE kτ α α α= ⋅ − ⋅ + ⋅  (23)

( ) ( ),
2 ,2 ,2 ,2 ,2ˆ ( ) ( ) ( ) ( ) ( )EMG ISO

M VM VM RF RF ST ST GAS GASk LE k LE k LE k LE kτ α α α α= ⋅ + ⋅ − ⋅ + ⋅  (24)

where ߬̂ெଵாெீ,ூௌை and ߬̂ெଶாெீ,ூௌை are, respectively, the muscular torques at the hip and knee joints calculated 

using EMG under isometric contraction, ܧܮ௖௛  is the normalized linear envelope of EMG, and ߙ is a 

constant relating the amplitude of the ܧܮ௖௛  to the joint torque. ߙ  is determined by a least-squares  

curve-fitting procedure as follows: 

( )2,
, ,

find

ˆ ˆthat minimize ( ) ( ) , 1,2

i

ISO ISO EMG ISO
i M i M i

k

J k k iτ τ= − =
α

 (25)

where α1 = {αRF,1, αGMAX,1, αST,1}, α2 = {αVM,2, αRF,2, αST,2, αGAS,2}, and ߬̂ெ,௜ூௌை(݇) = ߬ௌ,௜(݇). Note that the 

measured torque at the joint torque sensor only contains the user’s muscular torque in the experimental 
setup shown in Figure 7, which indicates that ߬̂ெ,௜ூௌை  is reliable during the isometric calibration 

procedures regardless of the accuracy of the inverse dynamics model.  

The optimized values of α computed by the least-squares method are (Mean ± SD):  

α1 = {1.88 ± 0.76, 1.08 ± 0.42, 1.70 ± 0.83}, α2 = {2.53 ± 0.77, 0.89 ± 0.37, 2.91 ± 1.12, 1.51 ± 0.35}. 

The results of the isometric calibration for the hip and knee joint of subject 1 are presented in  

Figure 8a,b, respectively. In each figure, a time plots of the EMG signals recorded from GMAX, VM, 

RF, ST, GAS, and the corresponding muscular torques are presented. In the EMG graphs of Figure 8, 

thin grey lines represent the raw-rectified EMG signals, and thick blue lines represent EMG linear 

envelopes. As shown in the torque graphs of Figure 8, good agreement was observed between the 

muscular torque measured from the torque sensor (solid red line in the figure) and the torque 

calculated using EMG (dashed black line in the figure). The R2 values and normalized RMS errors  
between ࣎ොெூௌை and ࣎ොொெீ,ூௌை for all 10 subjects are presented in Table 6. The average R2 values were 

high (ranging between 0.951 and 0.976), and the normalized RMS errors were low (ranged between 

5.03% and 8.12%) for all isometric contractions; this indicates that the EMG to torque processing 

model produced accurate estimates of the joint torque. 
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Figure 8. EMG signals and corresponding muscular torques resulting from the isometric 

calibration procedure (Subject 1). (a) Isometric hip flexion and extension; (b) Isometric 

knee flexion and extension. 
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Table 6. Average R2 and normalized RMS errors between ࣎ොெூௌை  and ࣎ොொெீ,ூௌை  during 

isometric contraction. Standard deviations are presented in parentheses. 

Joint R2 % RMSE 

Hip 
Flexion 0.968 (0.013) 6.24 (1.53) 

Extension 0.951 (0.019) 8.12 (2.37) 

Knee 
Flexion 0.962 (0.016) 5.96 (1.88) 

Extension 0.976 (0.012) 5.03 (1.61) 

After the calibration was completed, the experiment was conducted on gait training. The experimental 

setup was the same as that used in the model-validation experiment, i.e., body weight supported gait 

training with pre-defined gait pattern (gait speed: 2 km/h). In this case, the subjects were asked to 

generate more force than required to follow the pre-defined gait trajectory (i.e., gait with exaggerated 

flexion/extension of hip and knee joint). The experiment was performed for 10 stride cycles on each subject. 

To calculate muscular torque from the EMG signals during dynamic contractions, the model 

reported by Olney and Winter [4] was used in this study. The muscular torques at the hip and knee 

joint during dynamic contraction were calculated as follows: 

{ }
( ){ }

,
1 ,1 1 1 1 1 1

,1 ,1 1 1 1 1 1

ˆ ( ) ( ) 1 ( ( ) ) ( )

( ) ( ) 1 ( ( ) ) ( )

EMG DYN c
M RF RF

c
GMAX GMAX ST ST

k LE k k k

LE k LE k k k

τ α β θ θ γ θ

α α β θ θ γ θ

= ⋅ + − −

− ⋅ + ⋅ − − +



  (26)
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2 ,2 ,2 2 2 2 2 2
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c
ST ST GAS GAS

k LE k LE k k k

LE k LE k k k

τ α α β θ θ γ θ

α α β θ θ γ θ

= ⋅ + ⋅ + − −

− ⋅ + ⋅ − − +



  (27)

where ߬̂ெଵாெீ,஽௒ே  and ߬̂ெଶாெீ,஽௒ே  are, respectively, the muscular torques at the hip and knee joints 

calculated using EMG under dynamic contraction. β is a constant, in deg−1, depending on the 

difference between the joint angle ߠ and the angle ߠ௖ at which the isometric calibration trials were 

conducted (ߠଵ௖ = 0, ߠଶ௖ = − 90 deg). γ is a constant, in (deg/s)−1, accounting for the variations in angular 

velocities. The optimized values of β and γ were determined by a least-squares curve-fitting procedure. 

The optimization problem was formulated as follows: 

( )2,
, ,

find ,

ˆ ˆthat minimize ( ) ( ) , 1, 2

i i

DYN EMG DYN
i M i M i

k

J k k i

β γ

τ τ= − =  (28)

where ߬̂ெ,௜(݇) = ߬ௌ,௜(݇) − ߬̂௉஺ௌ,௜(݇). 
The optimized values of β and γ computed by the least-squares method are presented in Table 7. 

The values of α were derived from the isometric calibration procedure. Figure 9 shows the results of 

the gait experiment for subject 1, which include the measured EMG, measured joint angle, measured 

joint torque, and estimated muscular torque. The subject was fully relaxed up to 5 s, and then 

generated muscular force with exaggerated flexion/extension of the hip and knee joint. During the 

periods when the subject was passive (i.e., 0–5 s), the measured torque exhibited a repetitive pattern 

(Figure 9b). This behavior can be explained by the fact that most of the measured torque was induced 

by the passive torque, such as the inertial, Coriolis/centrifugal, and gravitational torque of the subject’s 
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limb. It can be observed that the active muscular torque estimated using inverse dynamics (solid red 

lines in Figure 9d) was close to zero over the period 0–5 s, indicating the passive torque was accurately 

removed from the measured torque. 

Table 7. Average values of the optimal coefficients, R2 and normalized RMS errors for the 

experiment on gait training. Standard deviations are presented in parentheses. 

Model Joint 
Optimal Coefficients (10−3) 

R2 % RMSE 
β γ 

Identified 
Hip 3.27 (1.53) 1.45 (0.57) 0.935 (0.028) 8.74 (2.63) 

Knee 2.44 (1.31) 0.92 (0.35) 0.924 (0.034) 10.26 (3.06) 

De Leva 
Hip 2.05 (1.27) 0.87 (0.52) 0.884 (0.046) 11.31 (3.83) 

Knee 1.46 (1.05) 0.66 (0.44) 0.877 (0.048) 14.73 (4.05) 

Dempster 
Hip 2.14 (1.36) 0.84 (0.48) 0.879 (0.042) 11.67 (3.74) 

Knee 1.37 (0.92) 0.63 (0.40) 0.872 (0.051) 15.38 (4.12) 

 

Figure 9. EMG signals and corresponding muscular torques resulting from the experiment 

on gait training (subject 1). (a) Measured joint angle; (b) Measured joint torque;  

(c) Measured EMG; (d) Estimated muscular torque. 
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During the periods when the subject was active (i.e., after 5 s), the pattern observed for the 

measured torque was not repetitive because it featured the active muscular torque in addition to the 

passive torque (Figure 9b). Figure 9d shows a comparison of the muscular torque estimated using 
inverse dynamics, ࣎ොெ, and the muscular torque calculated using EMG, ࣎ොொெீ,஽௒ே. As expected, good 

agreement was observed between ࣎ොெ (solid red line in the figure) and ࣎ොொெீ,஽௒ே (dashed black line in 

the figure). The R2 values and normalized RMS errors between ࣎ොெ and ࣎ොொெீ,஽௒ே for all 10 subjects are 

presented in Table 7. As seen in Figure 9d and Table 7, the estimated muscular torque and EMG data 

are closer when using the experimentally identified parameter set than using the parameter set 

estimated from typical anthropometric models. The average R2 is 0.935 for the hip joint and 0.924 for 

the knee joint when using the experimentally identified parameter set and it shows that the estimated 

muscular torque during gait experiment is highly correlated with the EMG data. This indicates that 

most of the estimated muscular torque was induced by the subject’s muscle activation (i.e., neural 

command) and the proposed method can be effectively used to estimate the user’s muscular effort. 

5. Conclusions 

This study presents a method for estimating users’ active muscular torque measured by sensor 

systems typically used in exoskeletal rehabilitation robots (i.e., encoder and torque sensors). The key 

step in this method was to accurately identify the inertial parameters of the user’s limb. Parameters 

experimentally derived from actual users are significantly more accurate than those obtained by widely 

used anthropometric models. Experimental results on gait training validate the proposed muscular 

torque estimation method.  

The method proposed in this study is valid only when the user moves in the air with no ground 

contact because ground reaction force (GRF) cannot be measured with the current EXOWheel system. 

This method can also be extended to over-ground walking with measurement of the GRF. When the 

foot is in contact with the ground, however, the accuracy of the GRF measurements will likely become 

the critical factor in estimating muscular torque rather than the accuracy of the user’s limb inertial 

parameters. A future study will examine the performance of this method during ground contact. 

The advantages of the proposed method can be summarized as follows: (1) no additional sensors for 

measuring bio-signals are necessary because this method only uses common rehabilitation robot 

sensors and (2) the method provides user’s muscular effort in terms of joint torque, which is adequate 

as a feedback signal for the controller in joint space; this method can be used for the shared control or 

adaptive control of exoskeletons. 
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Appendix 

The components of the vectors uj*, wj, and ϕj in Equation (18) are expressed as follows: 

1 2
*
1 1 1 1 1 2

1 2

, cos ,

sin

R

R

R

y J

u u w g y X

g y Y

φ
   
   = = =   
      


 (A1)

( )
2 1

*
2 2 1 2 2 2 2 2 2 2 2 2 1

2 1

2 cos sin , sin ,

cos

R

R R R R

R

y J

u u L Y y g X y Y y w g y X

g y Y

φ
   
   = + − − + = =   
      


  (A2)

( )
3 2

*
3 3 2 2 3 2 3 2 3 3 3 3 2

3 2

ˆ cos sin , cos ,

sin

H

R R R H

H

y J

u u P J y g X y Y y w g y X

g y Y

φ
   
   = − + − − = =   
      


   (A3)

( ) ( )*
4 4 1 1 1 2 4 1 4 1 4 2 4 2 4

4 1

4 4 4 1

4 1

ˆ 2 sin cos cos sin ,

sin ,

cos

R RH R R RH RH

H

H

H

u u P J L Y y g X y Y y X y Y y

y J

w g y X

g y Y

φ

= − − − − + − +

   
   = =   
      




(A4)

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Riener, R.; Lunenburger, L.; Jezernik, S.; Anderschitz, M.; Colombo, G.; Dietz, V.  

Patient-Cooperative Strategies for Robot-Aided Treadmill Training: First Experimental Results. 

IEEE Trans. Neural Syst. Rehabil. Eng. 2005, 13, 380–394. 

2. Cai, L.L.; Fong, A.J.; Otoshi, C.K.; Liang, Y.; Burdick, J.W.; Roy, R.R.; Edgerton, V.R. 

Implications of Assist-as-Needed Robotic Step Training after a Complete Spinal Cord Injury on 

Intrinsic Strategies of Motor Learning. J. Neurosci. 2006, 26, 10564–10568. 

3. Rainoldi, A.; Melchiorri, G.; Caruso, I. A Method for Positioning Electrodes during Surface EMG 

Recordings in Lower Limb Muscles. J. Neurosci. Methods 2004, 134, 37–43. 

4. Olney, S.J.; Winter, D.A. Predictions of Knee and Ankle Moments of Force in Walking from 

EMG and Kinematic Data. J. Biomech. 1985, 18, 9–20. 

5. Rocon, E.; Pons, J.L. Exoskeletons in Rehabilitation Robotics: Tremor Suppression; Siciliano, B., 

Khatib, O., Groen, F., Eds.; Springer Verlag: Berlin, Germany, 2011; Volume 69. 

6. Perry, J.C.; Powell, J.M.; Rosen, J. Isotropy of an Upper Limb Exoskeleton and the Kinematics 

and Dynamics of the Human Arm. Appl. Bioni. Biomech. 2009, 6, 175–191. 

7. Kong, K.; Moon, H.; Jeon, D.; Tomizuka, M. Control of an Exoskeleton for Realization of 

Aquatic Therapy Effects. IEEE/ASME Trans. Mechatron. 2010, 15, 191–200. 



Sensors 2015, 15 8357 

 

 

8. Durkin, J.L.; Dowling, J.J. Analysis of Body Segment Parameter Differences between Four 

Human Populations and the Estimation Errors of Four Popular Mathematical Models.  

J. Biomech. Eng. 2003, 125, 515–522. 

9. Shan, G.B.; Bohn, C. Anthropometrical Data and Coefficients of Regression Related to Gender 

and Race. Appl. Ergon. 2003, 34, 327–337. 

10. Hwang, B.; Jeon, D. Development and Preliminary Testing of a Novel Wheelchair Integrated 

Exercise/Rehabilitation System. In Proceedings of the 2013 IEEE International Conference on 

Rehabilitation Robotics (ICORR), Seattle, WA, USA, 24–26 June 2013. 

11. Peterson, D.R.; Adrezin, R.S. Biodynamics: A lagrangian approach. In Standard Handbook of 

Biomedical Engineering and Design; McGraw-Hill: New York, NY, USA, 2004. 

12. Dempster, W.T.; Gaughran, G.R. Properties of Body Segments Based on Size and Weight. Am. J. 

Anat. 1967, 120, 33–54. 

13. Clauser, C.E.; McConville, J.T.; Young, J.W. Weight, Volume, and Center of Mass of Segments of 

the Human Body; U.S. Department of Commerce: Springfield, VG, USA, 1969. 

14. Leva, P.D. Adjustments to Zatsiorsky-Seluyanovʼs Segment Inertia Parameters. J. Biomech. 1996, 

29, 1223–1230. 

15. Kearney, R.E.; Hunter, I.W. System Identification of Human Joint Dynamics. Crit. Rev. Biomed. Eng. 

1990, 18, 55–87. 

16. Riener, R.; Edrich, T. Identification of Passive Elastic Joint Moments in the Lower Extremities.  

J. Biomech. 1999, 32, 539–544. 

17. Ljung, L. System Identification; Springer Verlag: Berlin, Germany, 1998. 

18. Winter, D.A. Biomechanics and Motor Control of Human Movement; John Wiley & Sons:  

New York, NY, USA, 2009. 

19. Rouffet, D.M.; Hautier, C.A. EMG Normalization to Study Muscle Activation in Cycling.  

J. Electromyogr. Kinesiol. 2008, 18, 866–878. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


