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Abstract: In exoskeletal robots, the quantification of the user’s muscular effort is important
to recognize the user’s motion intentions and evaluate motor abilities. In this paper, we
attempt to estimate users’ muscular efforts accurately using joint torque sensor which
contains the measurements of dynamic effect of human body such as the inertial, Coriolis,
and gravitational torques as well as torque by active muscular effort. It is important to extract
the dynamic effects of the user’s limb accurately from the measured torque. The user’s limb
dynamics are formulated and a convenient method of identifying user-specific parameters is
suggested for estimating the user’s muscular torque in robotic exoskeletons. Experiments
were carried out on a wheelchair-integrated lower limb exoskeleton, EXOwheel, which was
equipped with torque sensors in the hip and knee joints. The proposed methods were
evaluated by 10 healthy participants during body weight-supported gait training. The
experimental results show that the torque sensors are to estimate the muscular torque
accurately in cases of relaxed and activated muscle conditions.
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1. Introduction

In recent years, there has been increasing interest in using robotic devices to assist in the
rehabilitative training of people with motion impairments. Most of the initially developed
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rehabilitation robots only provide passive-mode training, which moves the user’s limbs along a
predefined fixed trajectory. In recent years, many researchers have insisted that robotic assistance
should be adaptive according to the user’s contribution for more effective and optimal training [1,2]. In
this robotic training paradigm, the quantification of the user’s muscular effort is important to make the
robot’s behavior adaptive and to inform the user of their contribution to the training [1]. For example,
in rehabilitative training for neurological disorders (e.g., after stroke or spinal cord injury), the
patient’s motor performance can be measured and evaluated by the muscular effort estimation.

There are two widely used methods for quantifying the user’s muscular effort in a rehabilitation
robot: by measuring electromyography (EMG) using surface electrodes attached to the user’s skin; and
by estimating muscular torque based on inverse-dynamics analysis. Although measuring EMG signals
has advantages in terms of detecting user intentions with accurate timing, it has practical limitations.
For example, the attachment of the electrodes is time-consuming, and complex signal processing is
required [3,4]. This paper considers inverse-dynamics-based muscular torque estimation for practical use.

The muscular torque of the human user can be estimated by measuring the applied external torque
at each joint of the exoskeletal robot, and by removing the inertial, Coriolis, and gravitational torques
of the user’s limb (referred to as “passive torque” throughout the paper to distinguish it from the torque
generated by muscle). Computation of the passive torque requires accurate estimates of anthropometric
and inertial characteristics of the limb segment, such as mass, center of mass location, and moment of
inertia (often referred to as body segment inertial parameters; BSIPs). In inverse-dynamics analyses of
human movement, BSIPs are typically estimated from anthropometric models [1,5-7]. Although such
anthropometric data provide simple solutions for the researcher, they may not match that of the actual
user because they cannot provide comprehensive solutions for variations in the gender, race, age, and
body type of users [8,9].

In this paper, we present a method for estimating the user’s muscular torque using joint torque
sensors and its implementation in an actual exoskeletal robot. In particular, we focus on the
identification of user-specific inertial parameters rather than using typical anthropometric models. This
approach is important because the isolation of active muscular effort from joint torque measurements
critically relies on the accuracy of the dynamic model of the user’s limb. The wheelchair-integrated
lower limb exoskeleton robot EXOwheel was used as a test bed, and 10 subjects participated in the
experiments. This paper provides a mathematical formulation of the joint torque resulting from the user in
the exoskeleton and experimental procedures for identifying user-specific parameters. The performance of
the proposed method was verified by experiments on body-weight-supported gait training.

2. Mathematical Formulation

Experiments were performed with an EXOwheel robot [10], shown in Figure 1a. The EXOwheel is
designed to support exercise and rehabilitative training in the daily lives of individuals with
disabilities. The exoskeleton provides assistive joint torques via electric motors in the sagittal plane at
the hip and knee joints. The user is connected to the exoskeleton through three attachment points: the
thigh, shank, and foot. The length of the thigh and shank in the exoskeleton can be manually adjusted
to fit the user’s leg length. Figure 1b shows a schematic diagram of an exoskeleton joint. The
exoskeleton is equipped at each joint with an encoder for the motor’s position and a sensor for the joint
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torque which is located between the motor and link (“torque sensor” in Figure 1b). The exoskeleton’s
hip and knee joints have the same configuration. The technical specifications of the torque sensor are:
sensing range: +120 Nm, resolution: 0.015 Nm, non-linearity: 0.03% full scale and repeatability:
0.02% full scale.

(a)

Hip joint

(Active assistance;
flexion/extension)

Knee joint

(Active assistance;
flexion/extension)

(d) | 1high

(Exo)

Torque
sensor

Lower leg
(Exo)

Figure 1. (a) Prototype of the EXOwheel robot; (b) Schematic diagram of the exoskeleton
knee joint in the frontal plane.

For a human lower extremity wearing an exoskeletal robot, we considered a two-segmental model in
the sagittal plane as illustrated in Figure 2. Several assumptions are made to simplify the calculations:

(1) The human leg consists of rigid segments, and each segment is connected with a fixed hinge joint.
(2) The human leg is rigidly linked to the exoskeletal robot, and both systems have the same kinematics.
(3) The model only considers motion in the sagittal plane.

(4) The shank and foot are treated as one rigid segment (i.e., lower leg).
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Figure 2. Schematic diagram of the link-segment model of a human lower limb wearing

an exoskeleton.

The model consists of two rigid segments (thigh and lower leg) and two pin joints (hip and knee).
Each segment of the model is defined by five parameters: length (L), mass (m), position of center of
mass in the directions parallel and perpendicular to the link (a and b, respectively), and moment of inertia
(L). @ is the joint angle, and positive values of # represent counter-clockwise rotation. Subscript 1 refers
to variables of the thigh segment and hip joint, whereas subscript 2 refers to the lower leg segment and
knee joint.

The equation of motion for the human lower limb model is expressed as [11]:

M, (0)6+V,,(0,0)+G,(0)+PO) =1, +T,,, (1)

where 6,0,0c R* are the vector of the joint angle, angular velocity, and angular acceleration,
respectively. M, (0)e R>* is the symmetric positive definite inertial matrix of the human limb,
Vv, (0,0)e R* is the vector of the centrifugal and Coriolis torques of the human limb, G, ()€ R is
the vector of gravitational torques of the human limb, P(0)e R’ is the vector of passive elastic
torques of the human limb, z,, € R* is the vector of muscular torques, and 7, € R* is the vector of
external torques from the environment.

As shown in Equation (1), there are two types of user torque that are applied to the exoskeleton:
“passive” torque (motion-dependent torque; i.e., MH(O)é +VH(0,9)+GH(6’)+P(6’)) and “active”
torque (muscular torque; i.e., Tv). The external torque, exr, is the applied torque from the environment.
In the EXOwheel, the external torque can be expressed by subtracting the torque needed to move the
exoskeleton from the torque generated by the robot’s actuator:

Ty =T, (MR ()0 +V,(0,0)+G,(0)) )
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where 7, € R’ is the vector of the actuator torque applied at the joint, M, ()€ R>* is the symmetric
positive definite inertial matrix of the exoskeleton, V,(6,8)e R* is the vector of Coriolis and
centrifugal torques of the exoskeleton, and G,(#)e R’ is the vector of gravitational torques of the

exoskeleton. Substituting Equation (2) into Equation (1) yields the following equation of motion for
the combined human-exoskeleton system:

M, (0)0+V,,(0,0)+G,,(0)+ P(O) =7, +T, 3)
where the index HR represents the combined human-exoskeleton system, i.e., Mar = My + Mg,
Vur = Vu+ Vg, Gur = G + GR.

In Equation (3), Mur, Vur, and Gur are characterized by the segment inertial parameters: the mass
(mi), the moment of inertia (/z;), and two elements of the center of mass location (a; and b;). For the

least-squares identification, the unknown parameters J, X, and Y are defined in their linear combinations
as follows:

Jo=L 1, +m(a +8 ) +m, (@ +0; ) +m L, J,=1,+m,(a;+b;)
X, =ma, +m)L,, X,=ma, 4)
Y :mlbl’ Y, :mzbz

Indexes H, R, and HR are omitted in Equation (4) for brevity. Then, the equations of Mur, Vur, and
G'ir can be written in terms of J, X, and Y-

MHR(O):|:AA§HR,11 %HR,12:|

HR21 HR,22
Mg =y +2L, (XHRZ €080, — Yy, sin 92) (%)
Mgy =Mz =y + L (XHR2 c0s &, — Y, sin 02)
MHR,22 =Jyra
: Vira
V..(0,0)= ’
oa ]
V.. ==L (X, siné +Y 0,)(0> +266 ©)
HR = T 1( g2 SO, + 1, COS 2)( ) +26,0,)
Viras =L (X, 8in 6, + Yy, cOS 6, ) 6"
Giip,
G,..(0)= :
(7)

Gipy = &(X g, SING + Y, OSSO, + X, SIN G, + Y, COSE,,)
Gup, = g(XHR2 sin@,, +Y,,, cos 912)
where g is gravitational acceleration, 012 = 61 + 62, Jur = Ju + Jr, Xur = Xt + Xr , and Yur = Yu + YR

From the location of the torque sensor (between the actuator and link; see Figure 1b), the measured
torque can be described as:
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T, =—"T,

=, (M (0)04V,,,(0,0)+ G,,,(0) + P(0)) )

where 7s is the torque measured by the exoskeleton’s torque sensor. The active muscular torque of the
human user can be estimated from the measured torque zs as follows:

Ty =Tg—Tpyq 9)
where
Tpus :_(MHR(e)é+I}HR(0’9)+GA'HR(0)+ﬁ(a)) (10)

and “hats” are placed on the parameters to denote the estimated values. As shown in
Equations (9) and (10), it is important to extract the dynamic effects of the human body and exoskeleton
accurately from the measured torque for estimating user’s active muscular torque.

The user’s BISP values in Equation (4) (mui, am:, and Lmu;:) are typically estimated from the
literature. Table 1 shows three widely used BSIP estimation models: two models derived from
cadaver studies [12,13] and one model derived from the gamma-ray scanning of living subjects [14].
In the table, each segment’s mass (M) is described as a ratio of the total weight, whereas the center of
mass location (CM) and radius of gyration (RG) are described as segment length ratios:

my ; :WXMia ay ; :LiXCMia IzH,i :mH,iX(LiXRGi)Z (11)

where W is the subject’s weight. The BSIPs estimated from Table 1 are not identical to those of actual
users; in this study, the BISPs are not only estimated from the literature but also measured and
validated with actual human subjects in the following sections.

Table 1. BSIP estimation models.

Thigh Shank Foot
M?’ CM¢ RGY M CM RG M CM RG
Dempster [12] 7 Cadaver 9.7 43.3 323 45 433 302 14 438 475
Clauser [13] 13 Cadaver 10.3 37.2 - 43 37.1 - 1.5 449 -
De Leva [14] 100 y-ray 14.2 45.5 329 43 405 255 1.4 559 257

@ N: sample size; ° M(%): percentage of body segment mass relative to total body mass; ¢ CM(%): center of

Studies N? Method

mass location as a percentage of the segment length from the proximal end; ¢ RG(%): radius of gyration at

CM for the sagittal axis as a percentage of segment length.

Passive elastic torque, P(0), is a torque generated by the mechanisms of the joint surface, ligaments,
and connective tissue. This torque is weak relative to the gravitational and inertial torques, but it
becomes significant at the end range of motion [15]. A model for estimating passive elastic torque is
based on Riener’s double-exponential equations [16].
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o
P@O)=| .
1

. 12
P =—exp(1.47-0.196, —4.290) +exp(1.34—1.306, +1.756)—8.07 (12

B =—exp(1.80—2.026, +1.246)) + exp(=3.97+0.736, —0.01286 ) — exp(2.22 — 8.606, ) + 4.82

The unit of the angle is radians and the unit of torque is Nm.
3. Identification of Body Segment Parameters
3.1. Experimental Procedure

To improve the accuracy of the BSIPs, we identified certain parameters from the series of
experiments. All experiments were performed on 10 healthy subjects (Table 2). The experimental
procedure was approved by the Ethics Committee of Sogang University (approval number:
Sogang-IRB-2014-08), and written informed consent was obtained from all participants.

Table 2. Subject characteristics.

Subjects Age (years) Height (m) Weight (kg) BMI ® (kg/m?*) L;(m) L;(m)

S1 29 1.76 75.2 243 0.41 0.53
S2 25 1.78 71.1 22.6 0.42 0.55
S3 24 1.78 74.3 235 0.43 0.55
S4 25 1.70 67.6 23.4 0.40 0.52
S5 27 1.78 75.1 23.7 0.42 0.55
S6 24 1.72 65.7 22.2 0.41 0.53
S7 24 1.66 62.8 22.8 0.40 0.52
S8 22 1.72 56.8 19.2 0.40 0.53
S9 23 1.73 65.8 22.0 0.42 0.53
S10 27 1.69 64.6 22.6 0.40 0.51
Mean 25.0 1.73 68.0 22.7 0.41 0.53
SD 2.2 0.04 5.7 1.3 0.01 0.01

2 BMI: Body mass index.

Figure 3 shows the experimental setup for parameter identification. The subjects were placed in the
EXOwheel, and the exoskeleton was connected to their legs. Two experimental configurations were
used for parameter identification.

(1) Identification for the lower leg (Figure 3a): The subject sat on the wheelchair seat, which
allowed the lower leg to swing. During the experiment, the hip was fixed at 90° flexion, and the
knee was moved with a sinusoidal trajectory.

(2) Identification for the thigh (Figure 3b): The subject was in the standing position, which allowed
the entire leg to swing. During the experiment, the hip was moved with a sinusoidal trajectory,
and the knee was fixed at 90° flexion.

In each experiment, the hip and knee angles were imposed by the exoskeleton, and the subject was
asked to fully relax his leg to allow the leg to move passively against the torque imposed by the
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exoskeleton. Each experiment was carried out five times for 40 s. A conventional proportional
derivative (PD) controller was applied at each joint of the exoskeleton to track the desired position.
The exciting trajectories were selected as a sum of harmonic sine and cosine functions within the
frequency range during the gait training (0.3—1.5 Hz). After the experiments on the subjects were
completed, experiments on the exoskeleton only (i.e., exoskeleton not worn by a human subject) were
performed in the same configuration to separate the parameters of the exoskeleton and human limb.

Figure 3. Experimental setup for parameter identification. (a) Identification of the lower leg
parameters; (b) Identification of the thigh parameters.

3.2. Data Analysis and Parameter Identification

The measured joint angles and torques were recorded during the experiment. The angular velocity
and acceleration were obtained off-line from the joint angle using a zero-phase digital low-pass filter
(Butterworth, second-order, cut-off frequency of 20 Hz). To detect the user’s actual muscular effort
during the experiment, EMG data were measured by surface electrodes attached to five major muscles
of the right leg in all subjects (Figure 3b): gluteus maximus (GMAX), vastus medialis (VM), rectus
femoris (RF), semitendinosus (ST), and gastrocnemius (GAS). The raw EMG signals collected from
the electrodes were amplified by a Bagnoli™ 8-channel system (Delsys Inc.) to a gain of 1000 and
then band-pass filtered (Butterworth, fourth-order, cut-off frequency of 20450 Hz). All signals were
collected at a sample rate of 1 kHz.

Based on the measured EMG data, muscle activation, A, is classified into two states: “activated”
and “inactivated”. The single-threshold method is used as the classification rule:

1 (activated), if y,(k)=Z,
0 (inactivated), otherwise

A, (5) ={ (13)
where ycn(k) is the amplified, band-pass filtered, and full-wave rectified EMG signal of each channel
(e.g., GMAX, VL, RF, ST, and GAS) at a discrete time instant k. Zcx is the threshold value, which was

set to mean plus three standard deviations (Mean + 3SD) of y.» when the muscle is relaxed.
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The parameters J, X, and Y of the exoskeleton and human limb were estimated using the off-line
least-squares method. For the human limb parameters, data that satisfy passive conditions (i.e., Acxn = 0
for all EMG channels) were used. The estimation procedures are shown schematically in Figure 4. The
procedures were split into two parts: identification of the exoskeleton parameters (Step 1: R2 segment;
Step 2: R1 segment) and identification of the human limb parameters with the exoskeleton’s
parameters assumed to be known (Step 3: H2 segment; Step 4: HI segment).

<Step 1> <Step 2>

Ui | Lowerlegof | Y1 _ Uy | Whole leg of | Y2

the EXO the EXO

\4

v \ 4 A4 A 4

LS estimation to fit 55 LS estimation to fit
Equation (14) Equation (15)

JRZ’XRZ’YRZ JRI’XRI’YRI
<Step 3> <Step 4>
Us | Lowerlegof | V3 Us | Wholelegof | V3 _
"| the HM+EXO - the HM+EXO -
o A4 v ARI’)}'RI’ ARI’ v v
X LS . . . R . . . . .
Ri> AR LR1> estimation to fit LS estimation to fit
J XY g Equation (16) Tros X2 Vo™ Equation (17)
R2>““R2>7R2 A A A
i H2> H2> YH2 i
JHZ’XHZ’YHZ l]Hl’)(Hl’Yle

Figure 4. Estimation procedure of the least-squares method. In the figure, HM and EXO
represent the human user and the exoskeleton, respectively.

From Equations (3)—(7), the relation between the measured signals, input # and output y, are
expressed as:
Step 1 (R2 segment; 7ar =0, 61 = 90°, 6, = 0, =0, Jui =X = Y =0, tr2 = u1, 62 = 1)

, =J g, +8( Xy, c08y, — Y, siny,) (14)
Step 2 (R1 segment; 7y = 0, 62 = — 90 deg, 6, = 0, = 0, Ju; = Xui = Yui =0, tr1 = u2, 1 = y2)
u, = (JRI _2L1YR2))'}2 +g(XR1 sin y, + 1y, €08 y, — Xy, cos y, + 13, Sin)’z) (15)
Step 3 (H2 segment; 7y = 0, 61 = 90 deg, 6, = 6, =0, e = u3, 62 = y3)
y = J gyroFs + 8 (X gy 008 s = Yy sin )+ P (16)
Step 4 (H1 segment; 7z = 0, 6> = — 90 deg, 6, = 6, =0, Tr1 = u4, 61 = y4)
Uy =(J s —2L Y15 ) Vo + & (X SI y, + Yy, €OS 3, — Xy, €08 ¥, + Y,y S0 y4)+f{ (17)

Equations (14)—(17) can be written in a linear form as:
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ujzwf@, j=12,3,4, (18)

where u: € R is the modified input signal, w € R’ is the regression vector as a function of geometry
and y,y,¥,and @, € R’ is the vector of the segment parameters. The components of the vectors u;+, wj,

and ¢, in Equation (18) can be found in Appendix.
When N measurements are used, Equation (18) can be represented as:

U, = W./T¢j (19)
where
Cu (1) ] RON
* (2
U - u, :(2) ,WjT _ W_,E( ) 20)
_u_,-*(N)_ | w,(N) |

A least-squares method [17] can be used to estimate the parameters in Equation (23).

2 T Iy T
¢, =(W, W) WU, (21)
3.3. Identification Results

Figure 5 shows the input and output data recorded in the identification experiments. The exciting
trajectories were selected as the sum of harmonic sine and cosine functions considering the joint angle
range and frequency in typical gait training in the EXOwheel system. As shown in the second row of
Figure 5, the range of the joint angle was 5 to 40 deg for the hip joint and —5 to —70 deg for the knee
joint. The range of angular velocity was +120 deg/s for the hip joint and +165 deg/s for the knee joint.
The kinematic data of the exoskeleton and the combined human-exoskeleton system were identical for
each joint (i.e., y1 = y3, y2 = ya).

Table 3 and 4 represent the results of the parameter identification in the exoskeletal robot and
human body, respectively. In Table 3, the identified parameters of exoskeletal robot vary since the link
length of the thigh and lower leg in exoskeleton are adjusted to fit the subject’s leg length. The
parameters of human body, however, vary significantly though the segment length and weight of
individuals are similar (Table 4). For example, S3 and S5 have highly similar weights (W = 74.3 kg for
S3; W="75.1 kg for S5) and segment lengths (L1 = 0.43, L> = 0.55 for both subjects), but the identified
human limb parameters show significant discrepancy between the two subjects (e.g., Xm1 = 4.40,
Xm = 1.50 for S3; Xm = 3.56, Xm = 1.27 for S5). In particular, parameter Yz, which represents the
distribution of the mass in the direction perpendicular to the link, deviated significantly among all of
the subjects regardless of the weight and segment length.

In Table 4, the identified parameters of the human body are compared from that of the two
anthropometric models: the De Leva model and the Dempster model. The observed results indicate
that the anthropometric data are not sufficient to estimate user-specific parameters. There are two
possible reasons for the discrepancies between the parameters identified from the experiments and the
anthropometric models. First, normalizing the parameters with respect to weight and segment length
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alone might cause poor estimation because the identified parameters are sensitive to the body shape of the
subject (i.e., spatial distribution of the segment’s mass). Second, the assumptions applied in the
anthropometric-model-based estimation (e.g., the radius of gyration of the each segment is constant and the
anthropometric segment boundaries coincide with that of the exoskeleton) might increase the discrepancies.

Input torque

10| u, 45 u, 20 u; 70 u,
S
<
[
=}
g
S
'_
0 : ‘ 0! : ‘ 0 : ‘ 0! : ‘
0 10 20 0 10 20 0 10 20 0 10 20
Time(sec) Time(sec) Time(sec) Time(sec)
Output position
— y(deg) -—--j(deg-s™) — y(degs™)
180 180 180 180
Y1 Y2 ) £ Ya
.’“ ‘l Y bl f N e (\\-'\_ r”l ,“‘\ oy N 0 '/.\"/\ NN (\\'\_l
0 \:“ﬂi’ ,“51' li“‘n'll “<»‘. l"‘\l. ‘”‘1 "I‘\,"‘". 0 \,"(‘:,;‘\5'./ FAYA \,;""’.‘;;'l‘\‘. NS 0 lf“u" ;‘y-l iy l‘"'\ l:“n" ‘m“ 1"“" M 0 \,‘{‘:;‘:\\5;/ A \;F‘\‘," .')\" A
¢ LRV ‘...,‘ 194 FAAAY; W Y g QWY A Lt FabAA YA \ i
SRV VIV Vg SRV VVE $Ve
180 -180 -180 -180
0 10 20 0 10 20 0 10 20 0 10 20
Time(sec) Time(sec) Time(sec) Time(sec)
(a) (b) (c) (d)

Figure 5. Input (joint torque) and output (joint kinematics) data recorded in the identification
experiments for subject 1. (a) Step 1 (knee joint data; exoskeleton); (b) Step 2 (hip joint data;
exoskeleton); (¢) Step 3 (knee joint data; combined human-exoskeleton system); (d) Step 4
(hip joint data; combined human-exoskeleton system).

Table 3. Parameter identification results for the exoskeletal robot (J(kg'm?), X(kg:m), Y(kg:m)).

Subjects Ir Ir2 Xr1 Xr2 Yr Yr2
S1 3.02 0.74 3.85 1.74 0.15 0.16
S2 3.13 0.77 3.93 1.77 0.15 0.17
S3 3.21 0.77 3.99 1.78 0.12 0.18
S4 2.86 0.71 3.75 1.70 0.15 0.19
S5 3.14 0.77 3.93 1.78 0.13 0.17
S6 3.01 0.73 3.85 1.73 0.17 0.18
S7 2.87 0.71 3.74 1.69 0.13 0.19
S8 2.86 0.74 3.75 1.73 0.13 0.16
S9 3.13 0.74 3.93 1.74 0.13 0.18
S10 2.86 0.68 3.74 1.64 0.16 0.17

Mean 3.01 0.74 3.85 1.73 0.14 0.18

SD 0.13 0.03 0.10 0.04 0.02 0.01
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Table 4. Parameter identification results for the human body (J(kg:m?), X(kg'm), Y(kg-m)).

Sub-iect Identified De Leva Dempster
ub-jects
! Jn Jm Xm Xm Ym Yo Jm IJm Xm Xm Jm IJm Xm Xm
S1 1.69 037 454 120 -0.16 042 148 042 355 1.16 171 0.70 321 1.39

S2 141 050 4.19 1.18 -029 037 148 043 346 1.14 1.71 072 3.13 1.38
S3 1.50 040 440 150 -0.50 042 1.61 045 367 119 185 074 332 143
S4 1.35 036 389 1.02 -045 039 127 037 3.11 102 146 060 281 1.23
S5 142 048 356 127 —0.18 036 155 045 3.63 120 179 0.75 328 1.45
S6 1.62 033 436 099 -047 030 129 036 3.10 1.00 149 060 280 1.21
S7 139 046 355 096 —-021 023 1.18 034 289 095 136 056 2.61 1.14
S8 1.14 042 344 1.11 -048 043 1.06 032 261 087 123 053 236 1.05
S9 137 041 371 1.08 —0.10 021 136 037 3.18 101 157 061 287 122
S10 1.39 037 322 107 -029 034 121 034 297 096 140 055 2.69 1.15
Mean 143 041 389 1.14 —-031 035 134 038 321 105 155 063 290 1.26
SD 0.15 0.05 044 0.15 0.14 007 0.17 005 033 0.11 0.19 008 030 0.13

3.4. Validation of the Identification Results

The quality of the identified parameters was evaluated in body-weight supported gait training.
During the experiment, the exoskeleton was controlled to move along a given trajectory while the
subject was asked to fully relax his leg muscles. The trajectories of the hip and knee joint angles were
determined from the physiological gait pattern [18], and the gait speed was selected to be 2 km/h
(typical range of gait speed in rehabilitation training; approximate stride period of 2 s). During the
training, the subject’s body weight was fully supported by the EXOwheel’s electrical lifter for no
ground contact. The experiment was carried out for 10 stride cycles on each subject.

As the subject’s leg moves passively, the measured joint torque only contains motion-dependent
“passive” torque (i.e., Tpys in Equation (10)). In the relaxed muscle condition, the estimated torque
Tpas should coincide with the measured torque s if the identified parameters are accurate. Figure 6
shows the results of the validation experiment for subject 1, which include measured kinematics
(Figure 6a), measured EMG data (Figure 6b), and a comparison between measured and estimated
torque (Figure 6¢). Figure 6b shows that all of the muscles were in the “inactivate” state, which
indicates the subject was fully relaxed throughout the experiment. As shown in Figure 6c, for both the
hip and knee joints, there was good agreement between the estimated and measured torques, validating
the accuracy of the identified parameters.
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Figure 6. Representative experimental results (subject 1) used to validate the identified
parameters while the subject was relaxed. (a) Measured joint angle; (b) Measured EMG;
(¢) Comparison between measured and estimated torque.

The performance of the identified model was quantitatively evaluated by inspecting the
root-mean-square (RMS) error of the torque differences between the estimated and measured torque:

N

k)—%,,.(k))
RUSE - ;(TS( )= Tps )) (22)
N

In calculating the RMS error, the estimated torque Tp,5 was calculated using the three different
parameter sets: experimentally identified parameters and the parameters estimated from the De Leva
and Dempster models. According to the results shown in Table 5 for all subjects, the RMS errors range
1.5-2.2 Nm for the hip joint and 0.7-1.2 Nm for the knee joint when torques are computed using the
experimentally identified parameters. In contrast, large RMS errors are observed when using the
parameters estimated from the De Leva model (3.3—-6.5 Nm for the hip joint; 2.0-3.9 Nm for the knee
joint) and the Dempster model (2.8—7.3 Nm for the hip joint; 2.3—4.5 Nm for the knee joint). These
results demonstrate that the experimentally identified parameter set is acceptable and significantly
increases the accuracy of the inverse-dynamics analysis relative to the parameter set estimated from
typical anthropometric models.
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Table 5. RMS error for the estimation of the measured torque in passive-mode gait training.

. Hip Joint (Nm) Knee Joint (Nm)

Subjects Identified De Leva Dempster Identified De Leva Dempster
S1 2.1 3.8 4.9 1.2 2.5 3.8
S2 1.5 43 2.8 0.9 3.9 23
S3 1.7 6.5 7.3 0.7 2.0 4.4
S4 2.0 4.9 5.4 0.7 2.3 4.5
S5 1.5 33 2.9 1.1 2.6 4.2
S6 1.9 6.0 6.6 1.0 24 4.2
S7 1.7 3.9 3.8 0.9 2.5 4.1
S8 1.7 5.7 6.3 1.2 3.7 3.1
S9 2.2 4.6 4.9 0.8 2.7 3.5
S10 1.8 6.2 6.5 0.8 3.0 3.2

Mean 1.8 4.9 5.1 0.9 2.8 3.6
SD 0.2 1.1 1.6 0.2 0.6 0.7

4. Experimental Validation of Active Muscular Torque Estimation

As indicated in Equation (9), the reliability of the estimated active muscular torque 7,, is guaranteed
if the passive torque Tp,s is accurately removed from the measured torque Ts. Although the accuracy
of the estimated passive torque was analyzed in the previous section, it remains unclear whether the
amplitude of the estimation error is sufficiently small to recognize a user’s muscular effort. To validate
the estimation of active muscular torque in Equation (9), we investigated the correlation between the
estimated muscular torque and EMG data. Prior to the experiment on gait training, the relationship
between the EMG data and joint torque was established with isometric contractions. Figure 7 shows
the experimental setup for the isometric calibration procedures. The subjects were placed in the
EXOwheel, and the exoskeleton was connected to their legs. The subject stood upright during the
isometric hip flexion and extension (Figure 7a), whereas the subject sat on the wheelchair seat during
isometric knee flexion and extension (Figure 7b). The subjects were asked to perform five to eight
isometric flexion and extensions for each joint.

Backrest

Fixed at 0°
Flexion — Extension C—
‘i) Fixed at
Seat T 90 °flexion
Flexion <—J—> Extension
L
(a) (b)

Figure 7. Schematic representation of the isometric calibration procedure. (a) Isometric
hip flexion and extension; (b) Isometric knee flexion extension.
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The raw rectified EMG data (i.e., ycn) were low-pass filtered (Butterworth, fourth-order, 2 Hz) to
obtain linear envelopes. The resulting EMG envelope of each muscle was normalized to the respective
muscle’s maximal voluntary contraction (MVC). The subjects were instructed to perform MVCs
against manual isometric resistance with specific test positions for each muscle of interest [19]. Three
trials were performed with 2 min of resting time between trials; the average of the three highest EMG
peaks was used as the MV C value for normalization.

To calculate muscular torque from the EMG signals, the model reported by Olney and Winter [4]
was used in this study. The muscular torques at the hip and knee joint during isometric contraction
were calculated from EMG data as follows:

T 0 (k) = Olpp g LEgy (k) — (aGMAX,l LEg (k) + 0, - LE, (k)) (23)

AEMG ISO(k) ( . 'LEVM (k)+aRF,2 'LERF(k))_(aST,Z 'LEST(k)-i_aGAS’z LEGAS(k)) (24)

~EMG,ISO ~EMG,ISO
where 7, and 7,

are, respectively, the muscular torques at the hip and knee joints calculated
using EMG under isometric contraction, LE_j, is the normalized linear envelope of EMG, and a is a
constant relating the amplitude of the LE_;, to the joint torque. a is determined by a least-squares

curve-fitting procedure as follows:
find a,

that minimize J%0 = 3" (259 (k) - 540 (k))',  i=1,2 (25)
k
where a1 = {or1, aGmax1, ost1}, a2 = {ovm2, ORF2, OST2, 0G4s,2}, and T,’\f? (k) = t5;(k). Note that the
measured torque at the joint torque sensor only contains the user’s muscular torque in the experimental
setup shown in Figure 7, which indicates that TISO is reliable during the isometric calibration
procedures regardless of the accuracy of the inverse dynamics model.
The optimized values of a computed by the least-squares method are (Mean + SD):
ar = {1.88+0.76, 1.08 £ 0.42, 1.70 + 0.83}, a2 = {2.53 £ 0.77,0.89 + 0.37,2.91 + 1.12, 1.51 £ 0.35}.
The results of the isometric calibration for the hip and knee joint of subject 1 are presented in
Figure 8a,b, respectively. In each figure, a time plots of the EMG signals recorded from GMAX, VM,
RF, ST, GAS, and the corresponding muscular torques are presented. In the EMG graphs of Figure 8,
thin grey lines represent the raw-rectified EMG signals, and thick blue lines represent EMG linear
envelopes. As shown in the torque graphs of Figure 8, good agreement was observed between the
muscular torque measured from the torque sensor (solid red line in the figure) and the torque
calculated using EMG (dashed black line in the figure). The R? values and normalized RMS errors
between 139 and ‘tEMG 150 for all 10 subjects are presented in Table 6. The average R? values were
high (ranging between 0.951 and 0.976), and the normalized RMS errors were low (ranged between
5.03% and 8.12%) for all isometric contractions; this indicates that the EMG to torque processing
model produced accurate estimates of the joint torque.
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Figure 8. EMG signals and corresponding muscular torques resulting from the isometric

calibration procedure (Subject 1). (a) Isometric hip flexion and extension; (b) Isometric

knee flexion and extension.
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~EMG,ISO

0
and T, during

Table 6. Average R’ and normalized RMS errors between

isometric contraction. Standard deviations are presented in parentheses.

Joint R? % RMSE

Hip Flexion 0.968 (0.013) 6.24 (1.53)
Extension 0.951 (0.019) 8.12 (2.37)

Knee Flexion 0.962 (0.016) 5.96 (1.88)
Extension 0.976 (0.012) 5.03 (1.61)

After the calibration was completed, the experiment was conducted on gait training. The experimental
setup was the same as that used in the model-validation experiment, i.e., body weight supported gait
training with pre-defined gait pattern (gait speed: 2 km/h). In this case, the subjects were asked to
generate more force than required to follow the pre-defined gait trajectory (i.e., gait with exaggerated
flexion/extension of hip and knee joint). The experiment was performed for 10 stride cycles on each subject.

To calculate muscular torque from the EMG signals during dynamic contractions, the model
reported by Olney and Winter [4] was used in this study. The muscular torques at the hip and knee
joint during dynamic contraction were calculated as follows:

AEMG DYN(k) Ol ,LERF(k){1+ﬁ1(91(k)—910)_%él(k)}

. . (26)
~(onses Ly (K)+0tsp - LE: (k) {1= B,(6,(k) = 67) + %6, (b)}
Es " (k) = (@ Ly (k) + O+ LE e (5)) {1+ B,(6,(6) = 65) = 1,6,(K)}
. . (27)
- (asr,z LEg (k) + Olgasn LEG,s (k)){l - 182 (6,(k)—6,)+ 7.6, (k)}
where f,’f%c PYNand ‘LA'EAZ'IG PYN-are, respectively, the muscular torques at the hip and knee joints

calculated using EMG under dynamic contraction. # is a constant, in deg ', depending on the
difference between the joint angle 8 and the angle 8¢ at which the isometric calibration trials were
conducted (8f = 0, 85 = — 90 deg). y is a constant, in (deg/s)"!, accounting for the variations in angular
velocities. The optimized values of § and y were determined by a least-squares curve-fitting procedure.
The optimization problem was formulated as follows:

find B, 7,
that minimize J =3 (2,,,() 22"V (b)), i=1,2 (28)

k
where Ty, (k) = 75, (k) — Tpas,i(k).

The optimized values of f and y computed by the least-squares method are presented in Table 7.
The values of o were derived from the isometric calibration procedure. Figure 9 shows the results of
the gait experiment for subject 1, which include the measured EMG, measured joint angle, measured
joint torque, and estimated muscular torque. The subject was fully relaxed up to 5 s, and then
generated muscular force with exaggerated flexion/extension of the hip and knee joint. During the
periods when the subject was passive (i.e., 0-5 s), the measured torque exhibited a repetitive pattern
(Figure 9b). This behavior can be explained by the fact that most of the measured torque was induced
by the passive torque, such as the inertial, Coriolis/centrifugal, and gravitational torque of the subject’s



Sensors 2015, 15 8354
limb. It can be observed that the active muscular torque estimated using inverse dynamics (solid red
lines in Figure 9d) was close to zero over the period 0-5 s, indicating the passive torque was accurately
removed from the measured torque.

Table 7. Average values of the optimal coefficients, R* and normalized RMS errors for the
experiment on gait training. Standard deviations are presented in parentheses.

Optimal Coefficients (10°)

Model Joint 5 R? % RMSE
7
_ Hip 3.27 (1.53) 1.45 (0.57) 0.935 (0.028) 8.74 (2.63)
Identified
Knee 2.44 (1.31) 0.92 (0.35) 0.924 (0.034) 10.26 (3.06)
Dol Hip 2.05 (1.27) 0.87 (0.52) 0.884 (0.046) 11.31 (3.83)
€ Leva
Knee 1.46 (1.05) 0.66 (0.44) 0.877 (0.048) 14.73 (4.05)
Hip 2.14 (1.36) 0.84 (0.48) 0.879 (0.042) 11.67 (3.74)
Dempster
Knee 1.37 (0.92) 0.63 (0.40) 0.872 (0.051) 15.38 (4.12)
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Figure 9. EMG signals and corresponding muscular torques resulting from the experiment
on gait training (subject 1). (a) Measured joint angle; (b) Measured joint torque;
(¢) Measured EMG; (d) Estimated muscular torque.
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During the periods when the subject was active (i.e., after 5 s), the pattern observed for the
measured torque was not repetitive because it featured the active muscular torque in addition to the
passive torque (Figure 9b). Figure 9d shows a comparison of the muscular torque estimated using
inverse dynamics, T, and the muscular torque calculated using EMG, ‘i‘ZMG’DYN. As expected, good
agreement was observed between T,, (solid red line in the figure) and f'f,,M GDYN (dashed black line in
the figure). The R? values and normalized RMS errors between %,, and f'f,,M GPYN for all 10 subjects are
presented in Table 7. As seen in Figure 9d and Table 7, the estimated muscular torque and EMG data
are closer when using the experimentally identified parameter set than using the parameter set
estimated from typical anthropometric models. The average R? is 0.935 for the hip joint and 0.924 for
the knee joint when using the experimentally identified parameter set and it shows that the estimated
muscular torque during gait experiment is highly correlated with the EMG data. This indicates that
most of the estimated muscular torque was induced by the subject’s muscle activation (i.e., neural

command) and the proposed method can be effectively used to estimate the user’s muscular effort.
5. Conclusions

This study presents a method for estimating users’ active muscular torque measured by sensor
systems typically used in exoskeletal rehabilitation robots (i.e., encoder and torque sensors). The key
step in this method was to accurately identify the inertial parameters of the user’s limb. Parameters
experimentally derived from actual users are significantly more accurate than those obtained by widely
used anthropometric models. Experimental results on gait training validate the proposed muscular
torque estimation method.

The method proposed in this study is valid only when the user moves in the air with no ground
contact because ground reaction force (GRF) cannot be measured with the current EXOWheel system.
This method can also be extended to over-ground walking with measurement of the GRF. When the
foot is in contact with the ground, however, the accuracy of the GRF measurements will likely become
the critical factor in estimating muscular torque rather than the accuracy of the user’s limb inertial
parameters. A future study will examine the performance of this method during ground contact.

The advantages of the proposed method can be summarized as follows: (1) no additional sensors for
measuring bio-signals are necessary because this method only uses common rehabilitation robot
sensors and (2) the method provides user’s muscular effort in terms of joint torque, which is adequate
as a feedback signal for the controller in joint space; this method can be used for the shared control or
adaptive control of exoskeletons.
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Appendix

The components of the vectors u;+ wj, and ¢; in Equation (18) are expressed as follows:

Vi I
u =u, w=gcosy |, ¢ =X, (A1)
gsin y, Y,
V) Jur |
u, :“2+2L1Ysz}2_g(_XR2 cos y, + 1z, Sinyz)’ wy,=| gsiny, |, ¢, =| X (A2)
gCos Yy, Yy i
¥, i |
Us =u3—Pz+JR2j}3—g(XR2c0sy3—Ystiny3), wy=|gcosy; |, @ =| Xy, (A3)
gsiny, Y, i

Uy =ty =B (g =2LYy15) 94 = g (X8I0 vy + Y €08 vy = Xy, €O,y + Yoy, s8I0, ),

Vs I (Ad)
w,=| gsiny, |, ¢,=|X,,
gCOoS Yy, Y
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