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Abstract: This paper presents a method for vineyard yield estimation based on the analysis 

of high-resolution images obtained with artificial illumination at night. First, this paper 

assesses different pixel-based segmentation methods in order to detect reddish grapes: 

threshold based, Mahalanobis distance, Bayesian classifier, linear color model 

segmentation and histogram segmentation, in order to obtain the best estimation of the area 

of the clusters of grapes in this illumination conditions. The color spaces tested were the 

original RGB and the Hue-Saturation-Value (HSV). The best segmentation method in the 

case of a non-occluded reddish table-grape variety was the threshold segmentation applied 

to the H layer, with an estimation error in the area of 13.55%, improved up to 10.01% by 

morphological filtering. Secondly, after segmentation, two procedures for yield estimation 

based on a previous calibration procedure have been proposed: (1) the number of pixels 

corresponding to a cluster of grapes is computed and converted directly into a yield 

estimate; and (2) the area of a cluster of grapes is converted into a volume by means of a 

solid of revolution, and this volume is converted into a yield estimate; the yield errors 

obtained were 16% and −17%, respectively. 
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1. Introduction 

One of the most important food industries is the grape growing and wine-making industry, which is 

currently introducing several enhanced vineyard management techniques, which involve automatic leaf 

estimation [1], fruit harvesting [2,3], yield estimation [4–7], grape quality evaluation [8] and grapevine 

variety identification [9]. The wine industry has the challenges of performing accurate yield prediction, 

estimation and quality control [10], because such factors are affected by environmental variables (soil 

factors, climate, plant diseases), forecast and pollen concentration [11], farming factors, such as adding 

products (water, pesticide, fertilizer, herbicides) [12,13], and agricultural tasks [14] (number of 

sprouts, informed pruning, shoot thinning, bunch thinning, number of bunches, prune weight, etc.), 

which makes the feasible management of the vineyard more complicated. 

Crop management can be improved by using remote sensors [6] configured in airborne [14,15] and 

terrestrial applications, such as crop classification, crop area estimation, canopy measurements, 

identification of harvest dates, crop yield estimation, detection of pest occurrence, detection of disease 

occurrence, mapping weed infestation and monitoring abiotic stress. For example, in [7], a terrestrial 

LIDAR device was proposed in order to obtain canopy volume and tree shape information in peach 

orchards and to analyze relationships between the measured LIDAR tree volume and yield and fruit 

weight. The conclusion obtained was that the LIDAR is a suitable technique to assess fruit tree 

production capacity. Another alternative is the use of specialized terrestrial vision systems. Another 

example is the location and detection of fruits on trees [16] by placing a camera at different positions 

and different viewing angles (azimuth and zenith angles). In this case, the best results were obtained 

when locating the camera in front of the fruit with a zenith angle of 60° upwards. Additionally, the 

maximum detection of fruit (90%) was achieved when using five multiple viewpoints positions. In [17], 

a new method based on segmenting the point cloud obtained by using a 3D camera into convex 

surfaces was implemented for individual fruit recognition and detection. The conclusions obtained 

were that the proposed method can be used for fruit detection, although this detection is extremely 

sensitive to changes in lighting conditions [4,5,18] and the color similarity between the fruit and the 

background [19]. In this direction, in [20], an image-processing technique was proposed to detect fruits 

of different degrees of ripeness by using RGB images in combination with automatic machine 

learning, obtaining classification ratios from 0.78 to 1.00 for different ripening conditions. In [21], the 

specific problems originating from daylight operation were identified: skylight transmission from the 

back side of trees, direct sunlight reflectance from non-fruit materials and variations in natural lighting. 

Similarly, in [22], it was proven that changing solar angles, cloud cover and leaf occlusions leads to 

lighting variations that complicate the segmentation process. 

In order to manage the fruit skin color variability in images, the proposals of [18,23] were to 

address fruit skin color daylight variability by defining a linear color model in the RGB color space 

and computing the pixel color intensity distance to these models for direct fruit segmentation. 

Nevertheless, the general conclusion is that the same segmentation techniques cannot be applied to 

different scenarios [24].  

Regarding the specific case of a vineyard, the problem is the definition of an automatic procedure to 

recognize and identify grapes or clusters of grapes [19] in order to estimate yield or the optimal 

harvesting period. In general, this detection is affected by color similarities between grapes and 
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background, the different size and scale of the grapes, occlusion originating from leaves or/and 

branches, weather conditions, light variations and reflections and shadows. For example, the proposal 

of [5] was to characterize the diameter and the ripeness of grapes in vineyard images. The 

segmentation process was performed in the HSI (hue, saturation and intensity) color space by applying 

a threshold segmentation level and two additional restrictions: the image regions must have a 

predefined range of intensities and the objects must have a feasible diameter. In [25], the proposal to 

avoid illumination variability was to perform the grape segmentation procedure in the CIELab color 

space. This segmentation considers the lightness component of the pixels in relation to the color 

characteristics of the crop allowing a segmentation quality of 87.2%. In [26], an automatic system to 

detect berries and to determine their size and weight was proposed. In this case, the segmentation 

technique was based on applying a Bayesian discriminant model by using as inputs the RGB pixels 

from two classes of objects selected in the image; background and fruit (peel/stem). Then, these results 

were stored in a look up table (LUT) to perform a fast segmentation. The system estimates the berry 

weight (R2 > 0.96) and size (R2 > 0.97) properly, extending the suitability of the system to other types 

of fruits and vegetables. 

The use of artificial illumination at night was proposed in [27], where color mapping combined with 

morphological operators was used to localize clusters of red and white grapes, obtaining a cluster 

detection efficiency of 97% and 91%, respectively. More recently, [28] showed the first complete 

system for vineyard yield estimation, which has been evaluated with artificial illumination at night 

over several years and a large quantity of vines of different vineyards. In this case, the system captures 

75% of the spatial yield variance with average errors between 3% and 11% of the total yield, values 

that represents the state-of-the-art in this field. 

In a similar direction, the proposal of this paper is to perform yield estimation by applying 

controlled artificial illumination at night in a vineyard in order to avoid the color variability and 

changes induced by daylight natural illumination. The main goal is to assess different methods suitable 

for grape segmentation in vineyard images, perform an estimate of the area and volume of the cluster 

of grapes and, finally, estimate the vineyard yield. 

2. Materials and Methods 

The materials used in this paper are the vineyard facility and the image acquisition system. The 

methods used are different image processing techniques, which will be later optimized in order to 

properly segment the area of the clusters of grapes in the vineyard images. 

2.1. Vineyard Facility 

The vineyard facility was located in Bakersfield, California. The grapes produced in this vineyard 

correspond to the red table-grape Flame Seedless grape variety. These grapes are usually ripe in July 

and are characterized for their small size, round shape, firm and crisp reddish texture and seedless 

property [29]. In the case of this high-quality table-grape variety, an accurate yield estimate will 

contribute to optimizing vineyard management as a way to reduce production costs. The different 

segmentation procedures assessed later in this paper will be optimized to detect this reddish  

table-grape variety. The detection of other grape varieties will require the repetition of the assessment. 
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2.2. Image Acquisition System 

The image acquisition system was composed of a high-resolution monocular Nikon D300s camera 

(Nikon Inc., Melville, NY, USA) with Nikon AF-S DX Nikkor 18–55-mm 1:3.5–5.6 G lenses and a 

focal length of 20 mm. This camera offers many possibilities for remote control and external image 

triggering. In this paper, the aperture of the camera was set to F11 with ISO200; the exposition time 

was set to 1/250 s; and no exposure compensation was applied. The images acquired were saved as 

RGB jpeg images with 4288 × 2848 pixels, 24-bit color depth and a file size smaller than 6 MB. The 

artificial illumination was generated mainly with a ring flash mounted over the camera with the energy 

released configured to 10 Ws. This ring illuminator provides a bright and uniform illumination in the 

complete area of the images acquired. The complete illumination system was pointed 45° to the ceiling 

and mounted in an auxiliary utility vehicle in order to explore the vineyard and obtain high-resolution 

and high-quality images of high-quality red-table grapes during the night. 

The utility vehicle was driven by an expert human operator at a constant speed and at an 

approximate distance of 2 m from the vines of both sides. The vineyard images were sampled at a 

fixed interval assuming no overlap between consecutive images. Under such conditions, the average 

diameter of a mature individual red grape is 109 pixels and the average area of a cluster of grapes is 

250,000 pixels. Figure 1 shows a typical vineyard image. The hypothesis is that the use of  

high-resolution and high-quality images in controlled illumination conditions during the night will 

simplify the detection of individual clusters of grapes, simplifying the estimation of the areas of the 

clusters and improving the vineyard yield estimate. 

 

Figure 1. Example vineyard image: 4288 × 2844 pixels. 

The vineyard images analyzed in this paper were obtained during the harvesting period. The  

real-time analysis of the acquired images and the synchronization between the trigger applied to the 

camera and the displacement of the utility vehicle will be addressed in future works. 
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3. Yield Calibration 

The objective of the yield calibration stage is the development of a procedure designed to obtain the 

relationship between grape-cluster image analysis parameters (measured directly in pixels) and  

grape-cluster weight (measured in grams). The calibration parameters selected in this paper are the 

area of the cluster of grapes and the volume of the cluster of grapes, but if available, other parameters, 

such as the number of grapes in the images, can be used as calibration parameters [28,30,31].  

These calibration parameters will enable the automatic estimate of the vineyard yield based on the 

analysis of the images obtained from the vineyard. The typical hypotheses adopted in this calibration  

procedure are: 

- There is a relationship between the weight, size and volume of the cluster  

of grapes [4,10,28,30,31]. 

- The obtained relationship between the weight and size of the cluster of grapes is valid during a 

measurement experiment. 

- The grape variety analyzed in this paper is of high quality and low cluster density. 

- The distance between the grapes and the image acquisition system is constant during the  

entire process [28,32]. 

Similarly to the calibration procedure proposed in [28], the proposal for yield calibration has been 

performed off-line in laboratory conditions in order to guarantee enough weight and cluster size 

variability, but a practical development of this proposal will require the development of a detailed  

on-line application procedure. The yield calibration procedure is based on the following steps: (1) a set 

of representative clusters of grapes were manually harvested and selected for the calibration; (2) the 

weight of each cluster of grapes is manually measured; (3) each cluster of grapes is hung in front of a 

white background in order to obtain a reference image with the image acquisition device; (4) the image 

of the cluster of grapes is automatically segmented by applying the Otsu method [33] combined with 

the application of morphological operators (10 erosions and dilations) in order to remove noisy pixels 

from the images (Figure 2a); and (5) the segmented image is used to estimate the area and volume of 

the cluster of grapes expressed in pixels. The total area of the cluster of grapes is computed as the 

number of white pixels in the segmented image (Figure 2a). This area estimate summarizes the effect 

of all of the existing grapes in a cluster. Alternatively, the proposal is to compute the volume of the 

clusters. For example, in [28], the volume of the clusters is estimated by using a 3D ellipsoidal model, 

but in this paper, the proposal is to estimate the volume of the grapes by interpreting the area of the 

grapes as the volume of a solid of revolution (expressed in pixels or square pixels). This volume 

estimate is computed similarly as a solid of revolution (Figure 2b), where the cylinder of each row is 

obtained around the column center of the object. For example, if k is a row of the segmented image and 

s(k) and e(k) the first and last image column of the pixels classified as a cluster of grapes, then this 

partial volume slice will be computed as π·((e(k) − s(k))/2)2. 

Figures 3 and 4 show the calibration results obtained with 29 representative clusters of grapes. 

Figure 3 shows the relationship between the areas of the cluster of grapes (expressed in pixels) and its 

weight (in grams); the coefficient of correlation was 0.9557. Alternatively, Figure 4 shows the linear 

relationship between the volume of the cluster of grapes (expressed in pixels) and its weight (in 
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grams); the coefficient of correlation was 0.9635. In [31], similar results have been achieved in a less 

controlled environment. 

(a) (b) 

Figure 2. (a) Example segmented image of a cluster of grapes; (b) Representation of the 

solid of revolution of the cluster of grapes estimated from the segmented image. 
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Figure 3. Relationship between the weight and area of the cluster of grapes analyzed.  
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Figure 4. Relationship between the weight and volume of the cluster of grapes analyzed. 
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4. Automatic Segmentation of Clusters of Grapes 

This section is focused on the automatic segmentation of the cluster of grapes as a procedure 

required to perform an estimate of the yield. The hypothesis is that the controlled artificial illumination 

used during the acquisition of the images at night will simplify the grape segmentation procedure and 

will allow the application of a pixel-based segmentation method. The main advantage of using a  

pixel-based classification strategy is that complex classification rules can be mapped directly into a 

LUT [23] and applied in a real-time implementation. 

The pixel-based segmentation procedures assessed in this section are: threshold segmentation, 

Mahalanobis distance segmentation, Bayesian classifier, direct three-dimensional histogram and linear 

color models. The empirical assessment is based on the analysis of a continuous sequence of vineyard 

images acquired with the image acquisition system under controlled artificial illumination at night. In 

this paper, the images of the cluster of grapes analyzed are not affected by occlusion. The final goal of 

this proposal is to classify all of the pixels of the high-resolution vineyard images into grapes (“1” or 

white color) or background (“0” or black color). The color spaces analyzed were the original RGB and 

the Hue-Saturation-Value (HSV) with the H layer shifted 180° in order to move the reddish 

components of the grapes into the center of the H linear vector. 

The tuning of the segmentation procedures used in this paper may require the previous manual 

selection of complementary reference templates in a representative image of the vineyard. In this 

paper, the proposal is to define two basic auxiliary templates (Figure 5): grape template and 

background template. In the case of the grape template, a predominant reddish color from the skin of 

the grapes is expected, but in the case of the background template, a mixture of different predominant 

colors from leaves, branches and other dark image areas is expected. In this paper, these two templates 

will be required by some segmentation methods in order to define two basic classification classes: 

template and background. The effect of defining more classes (for example, splitting the background 

class into leaves, branches and dark background classes) has not been evaluated, except in the case of 

using linear color models, because doing so is mandatory for this method. Figure 5 shows a zoomed 

part of a representative vineyard image where an expert human operator has already selected two 

reference templates by applying a circular selection tool. 

Grape template Zoomed cluster of grapes Background template 

 

[100]

[100]

 

 

Figure 5. Example of a manual selection of the grape and background templates. 
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The accurate validation of the different cluster grape segmentation methods assessed requires two 

operations: (1) an accurate manual labeling of the regions of the images covered by grapes; and (2) the 

comparison of the automatic classification results with the manual labeling in order to extract 

statistical similitude information. As an example, Figure 6 shows this validation procedure applied to 

one cluster of grapes of the vineyard (Figure 6a). Then, Figure 6b shows the accurate result obtained 

with a manual selection of the contour of the cluster of grapes (with approximately 600 contour 

points), and Figure 6c shows an example of automatic pixel-based grape segmentation. Finally,  

Figure 6d shows the differences between the manual labeling of the cluster and the automatic 

segmentation by applying an exclusive (or XOR) function between both segmented images. Finally, 

the size segmentation error is computed in this paper by counting the different pixels (the XOR 

differences) divided by the number of pixels of the cluster of grapes obtained from the manual 

selection of the contour. These image differences can be further reduced by applying an optimized 

sequence of morphological operators to the segmented image. 

 
 
 

 

 

 
 
 
 

 
 
 
 

 

 
 
 

Figure 6. (a) Vineyard image with a cluster of grapes; (b) Manual labeling of the cluster of 

grapes; (c) Example automatic grape segmentation results; (d) XOR differences between 

the manual labeling and the automatic segmentation. 

The color spaces considered for all of the methods assessed in this paper were the original RGB 

color space and the transformed HSV color space [34], with the hue component shifted 180° in order 

to place the red color intensity in the center of the H plane and to simplify the detection of the 

predominant reddish color of the grapes. 

The segmentation results obtained with each method assessed can be improved with the application 

of an empirical optimized sequence (or minimal sequence) of morphological operators, such as the 

hole filling, erosion and dilation, in order to refine the segmentation. This empirically-optimized 

morphological filtering sequence must be interpreted as the optimal or fast combination of erosion and 

dilatation operators required to eliminate noisy pixels from the images. In the case of big objects, such 

b) 

c) 

d) a) 

XOR 
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as the cluster of grapes, the use of a larger sequence with more erosion and more dilation operators only 

results in requiring greater execution time, because both operators have a neutral compensating effect. 

4.1. Threshold Segmentation 

The application of threshold levels in one or several color layers in order to segment the areas 

covered by grapes or other fruits in color images is very common in the literature. For instance, in [35], 

a transform to the original RGB color space into the YIQ color space was proposed, and the threshold 

intensity levels were established by a trial and error manual operation. The proposal of [36] was to 

implement one of the methods for vineyard yield estimation by establishing the red, green and blue 

thresholds in a reference RGB image manually and to apply these settings to the remaining images.  

In [37], a transform from the RGB image into the Ohta color space [38] was proposed by applying a 

constant threshold for fruit segmentation. In [5], the grapes were segmented by applying a threshold 

level to the transformed HSI color space [39]. The threshold levels were computed by analyzing the 

histogram of the transformed images [40]. Similarly, in [27], the grapes in vineyard images taken at 

night were detected by defining a region of pixel intensities in the RGB color space to segment the 

grapes based on a trial and error procedure. 

Inspired by these cited works, the threshold segmentation method is applied to five different cases: 

red (R), green (G), blue (B), gray (I) and transformed hue (H) layers, in order to take advantage of the 

existing color differences between the reddish grapes and the greenish background. In each intensity 

color layer considered, the segmentation threshold level was fixed by applying the Otsu method [33] to 

the first image acquired with the image acquisition device. 

4.2. Mahalanobis Distance Segmentation 

Mahalanobis distance [41] segmentation is the second method tested, which consist of computing 

the distance between the three-dimensional color intensities of the pixels of the image and the 

ellipsoidal pixel intensity distributions of the existing grape and background templates. This distance 

can be used to classify each pixel as a member of its closest template. Compared with the Euclidean 

distance, the Mahalanobis distance also considers the differences in the variances of each intensity 

layer of the reference templates, so it is a robust method against small color variance caused by small 

changes in lighting. For example, in [4], eight different templates were proposed in daylight field 

conditions: grapes, wood, background and four classes of leaf, depending on their age. 

Inspired by these cited works, the Mahalanobis distance segmentation will be applied with only two 

classes: grape and background. The variances of each intensity color layer were obtained by analyzing 

the grape template and the background template (selected in the first image obtained in the vineyard). 

Then, the color intensity of an image pixel is compared with those models by computing the 

Mahalanobis distance, and the pixel is classified with the nearest class. 

4.3. Bayesian Classifier 

The Bayesian classifier is a well-known classifier widely used for image analysis in agricultural 

applications. For instance, in [42], a Bayesian classifier to detect plants was implemented, and in [43], 



Sensors 2015, 15 8293 

 

 

oranges in trees were discriminated with the aim of providing guidance information for a  

robotic manipulator.  

The Bayesian classifier is a probabilistic technique based on the previous definition and analysis of 

image features (pixel color intensities in this paper) corresponding to different classes. Based on these 

characteristic statistical features, a Bayesian classifier is able to analyze and classify each pixel of the 

image into one of these specified classes. Inspired by the work of [43], the implementation of the 

Bayesian classifier is based on the simplified discriminant function, which assumes that the covariance 

matrices of the two reference templates used in the learning stage are not equal, and the color features 

that describe the grapes and the background are not statistically independent. Finally, the color 

intensity of a pixel is classified as a member of the template class with a large discriminant value. 

4.4. Linear Color Model Segmentation  

The proposal of applying linear color models (LCM) to detect fruit in color images [18] is based on 

the prior selection of small object region areas in the image whose pixels have a linear intensity 

relationship (in a three-dimensional space) that can be modeled with a linear regression. Then, a class 

or object is defined by several linear regressions that describe the different color relationships of the 

object, and the pixel color intensity is classified by finding the minimum Euclidean distance to all the 

linear regressions defined. This classification method is very powerful, as it can model objects with a 

non-uniform color distribution and affected by daylight illumination changes, but requires the 

definition of one class per image object and several templates per class in order to model all object 

color variabilities. In this paper, three different template selections have been used to define the color 

variability of the grape class, and six different template selections (leaves, branches, etc.) have been 

used to define the color variability of the background (or non-grape) class. 

4.5. Histogram Segmentation 

An alternative way to detect the skin of the grapes in the images is by comparing pixel color 

intensities with an existing three-dimensional color-intensity histogram obtained from a grape template 

(either in the RGB and HSV color spaces). However, this detection method is dependent on the 

manually selected grape template and may require the selection of additional grape templates in order 

to include all of the skin-color relationships of the grapes. In order to overcome this problem, the 

proposal of [27] was to fill the gaps in the three-dimensional histogram and to complete the color 

relationship by applying a morphological dilation with a structuring element of 3 × 3 boxes. Inspired 

by this proposal, this paper proposes to dilate the color relationships appearing in the  

three-dimensional color-intensity histogram computed from the grape template by convolving the 

histogram with a solid sphere. Then, the segmentation is performed with a zero threshold level applied 

to the histogram. 
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5. Results 

5.1. Grape Cluster Size Segmentation Results 

This subsection presents the pixel-based segmentation results obtained. Table 1 enumerates the 

segmentation method, the color space analyzed, the values of the tunable parameters of each method, 

the clusters detected, the cluster size estimate error after segmentation (Segm. in Table 1), and the 

improvement obtained when applying a morphological filtering (Seg. + Morph. Filter in Table 1) for 

noise removal and the optimal (or minimum) morphological filtering sequence applied, obtained by a 

trial and error procedure in one sample image. The results of Table 1 have been obtained by analyzing 

97 clusters of grapes obtained from 40 vineyard images (see Figure 1). This proposal agrees with [28], 

where a small amount of labeled images was used to identify the most optimal grape descriptor. In this 

paper, all of the methods assessed are color dependent, so the optimal results are tuned for the mature 

reddish grape variety analyzed in this paper; it is expected that the segmentation of damaged grapes, 

grape varieties with other characteristic skin color or even the same variety, but in another maturity 

state, may produce different results. 

In general, Table 1 shows that the detection of non-occluded clusters of grapes is always successful, 

probably because the skin color variability of the grapes is limited by the use of controlled illumination 

at night. Then, the quality of the segmentation procedure can be evaluated in a fine way by computing 

the number of different pixels (false positives and false negatives) between the automatic segmentation 

provided and the manual labeling of the clusters.  

The first method (first bloc of rows) illustrated in Table 1 corresponds to the threshold segmentation 

method applied to different color spaces. In this case, the best segmentation results and the best cluster 

size estimate were obtained when applying a threshold (0.54902) to the H layer, obtaining an error of 

13.55%, improved to 10.01% by applying a morphological filtering sequence (a hole filling (HF) 

combined with four erosions (4E) and four dilations (4D)). The next method shown is the Mahalanobis 

segmentation (Mah. Segm. in Table 1) in the RGB and HSV color spaces. The use of the Mahalanobis 

distance has the advantage that it does not require additional configurable or segmentation parameters, 

as it only requires the definition of reference templates [4], the determination of the Mahalanobis 

distance, and the classification of the pixels according to the class of the nearest Mahalanobis class.  

Table 1 shows that the average size error obtained was 17.36% in the RGB color space and 16.05% in 

the HSV color space, and these values were improved up to 13.29% and 10.50% by the application of 

an optimal sequence of morphological operators: four erosions (4E), four dilations (4D) and a hole 

filling (HF); and three erosions (3E), three dilations (3D) and a hole filling (HF), respectively. The 

cluster size estimate errors obtained with the Bayesian segmentation (Bay. Segm. in Table 1) in the 

RGB and HSV color spaces are similar (19.29% and 17.97%). The development of the Bayesian 

classifier requires the previous definition of the baseline probability for the two classes used: grapes 

and background. In this paper, the assumption made is that all of the pixels of the image must be 

members either of the grape or background class, and then, the best separation between both classes 

was with a pixel prior probability of 43.36% for the grape class and 56.64% for the background class, 

values obtained by a trial and error procedure during the tuning stage. The errors obtained with the 

Bayesian classifier were improved up to 13.24% and 10.29% with the application of an optimal 
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sequence of morphological operators: five erosions (5E), five dilations (5D) and a hole filling (HF); 

and three erosions (3E), four dilations (4D) and a hole filling (HF), respectively. The next bloc of rows 

show the results obtained with the LCM segmentation, which provides better cluster size estimations 

results in the RGB color space (20.07% error) rather than the HSV (62.59% error), although the 

application of a sequence of morphological operators greatly reduces the cluster size estimation error 

up to 10.99% and 14.78%, respectively. The optimal sequence of morphological operators applied 

was: five dilations (5D), five erosions (5E) and a hole filling (HF) in the RGB color space; and three 

dilations (3D), four erosions (4E) and a hole filling (HF) in the HSV color space. The LCM 

segmentation method was originally proposed to model color relationships in the RGB color space, 

and it is expected to have the best segmentation performances in this color space. The drawback of the 

LCM method is the accurate manual selection of several representative templates during the tuning 

stage in order to describe the color variability of grapes and the other objects considered as part of the 

background. Finally, the histogram segmentation (Hist. Segm. in Table 1) technique generates similar 

segmentation results and similar cluster size estimations in the RGB color space (18.80%, improved up 

to 13.37% when applying morphological operators) and in the HSV color space (17.81%, improved up to 

12.27%). In both cases, the resulting three-dimensional histogram was computed with 128 histogram bins 

per layer, dilated with a solid sphere with a radius, r, of six bins in the RGB color space and nine bins 

in the case of the HSV color space. These radii were obtained by a trial and error procedure during the 

tuning stage. 

Table 1. Grape cluster size segmentation results obtained in the case of no occlusion. 
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. RGB 43.36%/56.64% 100% 19.29% 13.24% 5D + 5E + HF 

HSV 43.36%/56.64% 100% 17.97% 10.29% 3D + 4E + HF 

L
C

M
 

S
eg

m
. RGB - 100% 20.07% 10.99% 5D + 5E + HF 

HSV - 100% 62.59% 14.78% 3D + 4E + HF 

H
is

t.
 

S
eg

m
. RGB r = 6 100% 18.80% 13.37% 3E + 3D + HF 

HSV r = 9 100% 17.81% 12.27% 3E + 3D + HF 

* Morphological operators: E, erosion; D, dilation; HF, hole filling. 
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In general, small differences in the numerical errors obtained with the methods compared have a 

large impact on the accuracy of the segmentation, because the large size of the images analyzed 

smoothes the differences in the perimeter of the cluster of grapes. The lowest difference between the 

areas of the cluster of grapes (automatic segmentation compared to manual labeling) was 13.55% in 

the case of applying a threshold level to the H color layer, and this error was improved up to 10.01% 

when applying an optimal sequence of morphological operators. This segmentation method provides 

the best estimate of the area (less false negatives and false positives) and has the advantage that it is 

extremely fast and then suitable for a real-time implementation, as it only requires the computation of 

the transformed H color layer of the image and the application of a threshold level. 

Alternatively, in the case of using the original RGB color space, the lowest size estimation error 

was obtained when applying the linear color model segmentation (10.99%), although this method has 

the drawback of requiring an accurate selection of several representative templates of the grapes, 

branches, leaves and shadows appearing in the images. This initial selection is reduced to only two 

templates in the case of the Bayesian classification (13.24% error), the Mahalanobis distance 

segmentation (13.29% error) and the histogram segmentation (13.37% error). This initial selection 

precludes the practical applicability of these cited segmentation methods. 

The segmentation results obtained agree with the classification results obtained by [27] and validate 

the use of controlled artificial illumination at night for grape detection as it generates small 

light/brightness variations in the skin of the grapes and simplifies fruit segmentation. 

5.2. Yield Estimation Results  

Finally, the area of the clusters of grapes obtained with the best segmentation method (applying a 

threshold to the H color layer) can be converted into a yield estimate by applying the regression curves 

obtained in the calibration stage. Figure 7 shows the error obtained when estimating the individual 

weight of a sequence of 25 clusters of grapes computed from the volume and area of the pixels of the 

grapes; with individual error values from 15.1% to −21.1% and 18.8% to −16.5%, respectively. 
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Figure 7. Individual error obtained when comparing the real and estimated weight of  

25 clusters of grapes in consecutive images. The grape weight was predicted by using the 

estimated area and deduced volume of the cluster of grapes.  
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The cluster of grapes shown in Figure 7 is not affected by occlusion, because the hypothesis is that 

the table-grape variety is properly trimmed for a fresh marker production. However, any occlusion in 

the grapes will reduce the area of the grapes in the images, reduce the volume of the solid of revolution 

and then reduce the weight estimated with both methods.  

Finally, Table 2 shows the total weight estimate and the average error produced for the cases of 

using the grape cluster area and the grape cluster volume obtained from the images analyzed. In the 

case of estimating the weight from the area of the cluster of grapes, the total weight computed for  

25 non-occluded clusters was 18.382 kg, which represents an error of 16% relative to the real weight 

measured. Alternatively, in the case of performing this estimate from the estimated volume of the 

cluster of grapes; the total weight computed for these 25 non-occluded clusters was 13.183 kg, which 

represents an error of −17% relative to the real weight measured. Table 2 also shows that the average 

estimations obtained with both methods can be compensated, although this effect can be a numerical 

coincidence, and future extensive validation experiments performed with large datasets will be needed 

to validate this compensation effect. 

The calibration results obtained in Section 3 showed a linear relationship between the weight and 

the area of the clusters and between the weight and the deduced volume of the clusters (obtained as a 

solid of revolution of the area of the grapes), but the yield error results obtained in this experimental 

measurement (16%, −17%) are not conclusive of which method is most suitable for this estimation. 

Initially, the expectation was to obtain better yield estimates when using the volume of the grapes 

(obtained as a solid of revolution from the segmented area), but the results have not confirmed this 

expectation, and other, similar proposals also concluded that a volume estimate will be very sensitive 

to cluster overlapping and occlusion [28]. The relative yield error obtained when segmenting the 

vineyard images with the other methods assessed in this paper is worse than the results shown in 

Figure 7 and Table 2, because the calibration curves are very sensitive to the estimated cluster size; a 

higher error in the size estimate after segmentation is converted into a higher yield estimate error. 

Table 2. Total yield estimate for the case of 25 clusters of grapes. 

Weight Estimated From Total Estimated Weight (kg) Total Measured Weight (kg) Error (%)

Grape cluster area 18.382 15.835 16.0 
Grape cluster volume 13.183 15.835 −16.7 

Average 15.782 15.835 −0.3 

The final vineyard yield error obtained with the two methods proposed in this paper in the case of 

analyzing a limited number of clusters has a similar error range as similar works found in the literature. 

In [28], the yield error obtained in a realistic experimentation with a controlled illumination was 

between 3% and 11% when evaluating the information corresponding to several years, hundreds of 

vines and four grape varieties. In [44], the absolute yield errors reported were in a range between 9 and 

15% when using a contact-based estimator and historical data, whereas in [30], the yield error reported 

in a row of vines was of 9.8%. In the case of other fruits, a yield error within a 10% range is 

considered valuable in terms of crop management [32]. 
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Finally, the methods proposed in this paper require further validation by performing large vineyard 

measurements, such as presented in [28], although such a task was beyond the scope and possibilities 

of the present paper. 

6. Conclusions 

This paper proposed a method for vineyard yield estimation based on the application of artificial 

illumination in a vineyard facility during the night in order to obtain high-resolution images of clusters 

of red grapes with small illumination variance. Five grape segmentation methods have been 

empirically assessed under such illumination conditions. The quality of the segmentation was 

computed by comparing the automatic segmentation results with a manual labeling of the clusters of 

grapes in the images. The direct segmentation results have been improved by applying a sequence of 

morphological operators in order to fill gaps and eliminate noisy pixels from the segmented images.  

Empirical results showed that the use controlled illumination at night combined with the  

high-resolution and high-quality images of the vineyard simplifies the detection of clusters of grapes, 

because the color variability is small and the number of pixels available in each grape is very large 

(250,000 pixels on average). In the case of clusters of grapes not affected by occlusion, nine optimized 

implementations have provided grape size errors under 15%. The best estimate of the area of the 

grapes was obtained when applying a threshold level to the transformed H color layer of the images, 

obtaining a cluster size estimate error of 13.55%, which was improved up to 10.01% when applying an 

optimized sequence of morphological operators. In this case, the H layer was shifted 180° in order to 

move the reddish components of the grapes into the center of the H circular vector. The additional 

advantage of threshold segmentation is the simplicity of its real-time implementation in an agricultural 

machine designed to locate clusters of grapes and to estimate their size. 

The area and estimated volume of the clusters of grapes obtained from the images analyzed have 

been converted to vineyard yield by using specific calibration curves, which require manual operation. 

The results obtained with the proposed methods have shown that the yield can be predicted with an 

error of 16% and −17% in the cases of using the size information of the segmented area of the grapes 

and the volume of the solid of revolution computed from the segmented area.  

The results of this paper will have application to vineyard management by optimizing the resources 

required to harvest, transport, store and, if needed, manufacture the vineyard product. Future work will 

be focused on developing a real-time system in order to estimate yield in large vineyard facilities and 

to evaluate the robustness of the estimators against diseases and the ripening stage of the grapes. 
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