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Abstract: Device-free localization (DFL) is an emerging wireless technique for estimating 

the location of target that does not have any attached electronic device. It has found 

extensive use in Smart City applications such as healthcare at home and hospitals,  

location-based services at smart spaces, city emergency response and infrastructure 

security. In DFL, wireless devices are used as sensors that can sense the target by 

transmitting and receiving wireless signals collaboratively. Many DFL systems are 

implemented based on received signal strength (RSS) measurements and the location of the 

target is estimated by detecting the changes of the RSS measurements of the wireless links. 

Due to the uncertainty of the wireless channel, certain links may be seriously polluted and 

result in erroneous detection. In this paper, we propose a novel nonlinear optimization 

approach with outlier link rejection (NOOLR) for RSS-based DFL. It consists of three key 

strategies, including: (1) affected link identification by differential RSS detection; (2) outlier 

link rejection via geometrical positional relationship among links; (3) target location estimation 

by formulating and solving a nonlinear optimization problem. Experimental results 

demonstrate that NOOLR is robust to the fluctuation of the wireless signals with superior 

localization accuracy compared with the existing Radio Tomographic Imaging (RTI) approach. 

Keywords: device-free localization (DFL); outlier link rejection; nonlinear optimization; 

clustering centriod 
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1. Introduction 

Wireless localization has found extensive applications in Smart Cities in areas such as healthcare at 

home and hospitals (e.g., for location detection and behavior analysis of patients and old people), 

location-based services in smart spaces (airports, shopping centres, touristic sites etc.), emergency 

response (e.g., location detection of firemen in a building on fire), comfortable and energy saving 

designs for indoor environment monitoring and control, as well as intrusion detection, localization and 

tracking in infrastructure security. 

Various wireless localization techniques have been developed, e.g., based on GPS [1], ultrasound [2], 

infrared [3], and radio-frequency (RF) [4]. In such techniques, the target must be equipped with an 

electronic device. Recently device-free localization (DFL), generally based on wireless network RF 

signal measurements, where the target does not need to have any attached electronic device, has 

attracted tremendous interest [5]. In DFL, wireless devices are used as sensors that sense the target by 

transmitting and receiving wireless signals collaboratively, and the target location is estimated by 

detecting and measuring the RF signal variations induced by the target. 

DFL can be implemented in indoor and outdoor environments and remains a challenging problem, 

mainly due to the uncertain and dynamic wireless propagation environment that suffers from  

non-line-of-sight, multi-path, and fading phenomena [6–10]. Some links, even without the presence of 

the targets, may be found to display large received signal strength (RSS) changes and cause erroneous 

target detection. If such links are used in the location estimation, the accuracy of the localization 

algorithm will be degraded significantly. However, most existing DFL approaches, such as the Radio 

Tomographic Imaging (RTI) approach [7–9] and the geometrical approach [11,12], do not consider 

such links explicitly. Although [13] considers the outlier link rejection, only the links without 

intersections with all the other links are rejected and this may still keep wrong links in many situations. 

In this paper, we consider the DFL problem for a single target and will propose a novel optimization 

approach with outlier link rejection (NOOLR) for DFL by a clustering [14]-based outlier link rejection 

strategy, followed by formulating and solving a nonlinear optimization problem. In summary, the 

contributions of this paper are three-fold: 

(1) We present a clustering-based technique to reject the outlier links to reduce the effect of large 

wireless noise on the DFL. 

(2) We formulate the DFL problem with a nonlinear optimization model and solve it by the convex 

optimization approach. 

(3) We evaluate NOOLR based on the experimental data provided by the University of Utah, and 

compare it with the RTI model [7]. 

The paper is organized as follows: the related work is introduced in Section 2. A motivating 

application scenario for elder care is described in Section 3. The details of the proposed approach are 

addressed in Section 4. Experimental results are reported in Section 5 and finally, conclusions and 

future work are given in Section 6. 
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2. Related Work 

A number of DFL approaches have been proposed, including fingerprinting approaches based on 

differential RSS measurements, geometric approach, RTI approach, compressive sensing approach, 

and Bayesian approach. 

Youssef et al., proposed a fingerprinting approach for Wi-Fi-based DFL [15,16]. A radio map is 

built in the offline phase by recording the differential RSS measurements of links when the target is 

located at reference points with known locations. In the online phase, the location of the target is 

estimated by comparing the measured differential RSS signals of the links with the offline radio map. 

Although the performance of this approach is acceptable, a tedious calibration procedure is required. It 

is also challenging to efficiently build the radio map. 

As a typical geometric approach, Zhang et al., proposed a signal dynamics model to obtain the 

property of the changing RSS behaviors in WSNs, and three tracking algorithms for the midpoint, the 

intersection, and the best-cover geometric calculations. Although the best-cover algorithm can achieve 

high accuracy, it also needs a tedious calibration step [11,12]. 

Wilson and Patwari proposed the RTI approach based on differential RSS link measurements [7–9] 

between the measured RSS measurements of links and the RSS measurements of links without the 

target via the reconstruction of the tomography image for the locations of the target, and formulated 

the DFL problem as a linear ill-posed inverse problem, then solved it by the regularization method. 

Kaltiokallio et al., presented an on-line recalibration method that allows the system to adapt to the 

changes in the radio environment [17]. 

As compressive sensing can deal with the space-domain sparse information, which is a specific 

feature of the RTI approach for DFL, Wang et al., applied compressive sensing to tackle the ill-posed 

inverse problem in signal reconstruction in DFL [18–21]. 

To reduce the complex computation overhead in solving the ill-posed inverse problem, a Bayesian 

grid approach (BGA) is proposed in [22] by utilizing the observation information of the shadowed 

links, the prior information of the previous estimations, and the constraint information of the  

non-shadowed links. Savazzi et al., proposed a joint model based on the theory of diffraction to deal 

with the average path-loss and the fluctuations of the RSS induced by the moving target, and derive a 

novel stochastic Bayesian model for the real-time estimation of the target location [23]. Overall the 

above-mentioned approaches do not consider the negative effects of the outlier links for the 

localization, and the localization accuracy is limited. 

3. Motivating Application Scenario in Smart Aging 

With the constantly increasing aging population with cognitive deficiencies, insuring the autonomy 

of the elderly at home has become a priority for assisting people and improving their quality of life. 

The ability to monitor the elder’s activities and provide timely assistance depends highly on the 

location information for the elder inside the home. Referring to Figure 1 as a motivating scenario, 

based on the location information, the elder person’s activities can be monitored. For example, he/she 

can be advised to do more movement exercises if needed. If abnormalities are detected (e.g., suddenly 
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falling down, staying in bed or in toilet for an unusually long time), alarms can be triggered to inform 

caregivers and family members, while providing the location information. 

The elder can be localized by traditional technologies such as cameras, RFID, WiFi, or some other 

wearable devices. However these may introduce heavy burdens for the elders to carry such devices, 

and cause privacy and comfort problems. Therefore it is desirable for the elder people not to be 

equipped with any electronic device, and implement DFL for the localization demands. 

 

Figure 1. DFL application scenario for aging at home. 

4. The Details of the Proposed Approach 

In this section, we give the detailed description of NOOLR for DFL. It consists of three key 

strategies implemented sequentially, including the affected link identification by differential RSS 

detection, outlier link rejection via positional relationships of links, as well as the target location estimation 

by formulating and solving a nonlinear optimization problem. 

4.1. Affected Link Identification 

Suppose there are N wireless devices used as transmitters or receivers for detecting the target. If 

wireless device ݅ and wireless device j can communicate with each other directly, then we denote the 

link by ܮ௡(݅, ݆) and ܮ௡	for simplicity, with n being the ID of the link. We assume the total number of 

links in the system is ܲ. 

Let ௜ܺ(ݔ௜, and ܴܵܵ଴	௜) denote the location of the wireless device ݅ in the Cartesian coordinates, ܴܵܵ௡଴ݕ = {ܴܵ ଵܵ଴, ܴܵܵଶ଴, … , ܴܵܵ௉଴} denote the RSS measurements of link n and the RSS measurements  

of all links respectively when the monitoring area is vacant. Also let ܴܵܵ௡ and  ܴܵܵ = {ܴܵ ଵܵ, ܴܵܵଶ, … , ܴܵܵ௉} denote the RSS measurements of link ݊ and the RSS measurements of 

all links respectively when the target enters the monitoring area. 

The difference between the RSS of the link n with the target and without the target in the 

monitoring area is: ∆ܴܵܵ௡ = ܴܵܵ௡ − ܴܵܵ௡଴ (1)
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The main contribution of the ∆ܴܵܵ௡ of link n is due to the presence of the target and the noise. We 

call the links with large differential RSS induced by the target as the affected links. 

Finding the affected links is essential for the localization algorithms. In the offline phase, the radio 

map can be built by collecting the RSS measurements of links, i.e., ܴܵܵ଴ = {ܴܵ ଵܵ଴, ܴܵܵଶ଴, … , RSS୔଴}. RSS can be obtained and the differential RSSs of links (∆ܴܵܵ = {∆ܴܵ ଵܵ, ∆ܴܵܵଶ, … , ∆ܴܵܵ௉}	) can be 

calculated. A negative scalar threshold ߛ is used to identify whether a link is an affected link and 

whether the target is present in the monitoring area [24]. Normally if the link n is affected by the 

target, ∆ܴܵܵ௡ will be less than the threshold γ [25]. The state of the link n can be calculated by: s௡ = ൜1, ݂݅ ∆ܴܵܵ௡ ≤ γ0, ݂݅ ∆ܴܵܵ௡ ≥ γ  (2)

If s௡ = 1 , then link n will be considered as the affected link. The states of all links  ݏ = {sଵ, sଶ, … , s௉} can be obtained according to Equation (2). 

4.2. Outlier Link Rejection 

Due to the uncertain wireless propagation environment, some links associated with large noise but 

that are far away from the target may be incorrectly identified as the affected links, and significantly 

degrade the accuracy of the localization algorithms. They are considered as the outlier links in this 

paper and shall be rejected in the localization approach. As shown in Figure 2, the affected link that 

can detect the target shall be around the target and near to each other, and an outlier link is separated 

and far away from those affected links around the target. 

 

Figure 2. Affected links and outlier links. 

In NOOLR, the outlier links are identified and rejected by clustering the identified affected links by 

transforming the positional relationship of links into one-dimensional distance information. The 

affected links can be obtained from the states of links ݏ = ,ଵݏ} ,ଶݏ … ,  ௉}. We assume the number ofݏ

affected links is m. The number of intersections of the affected links is less than or equal to ݉(݉ − 1) 2⁄ . We assume the number of intersections is R. Because the coordinates of wireless 
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devices are known, the coordinates of intersections can be calculated. Here we use ௜ܺ,௝(ݔ௜,௝,  ௜,௝) toݕ

denote the coordinates of the intersection of link ݅ and link ݆. 
Definition 1. The center of the intersections (ݔ௖,  ௖) is the average coordinates of the intersections ofݕ

the affected links, i.e.: 

۔ە
௖ݔۓ = ∑ ∑ s௜s௝ݔ௜,௝௉௝ୀଵ௉௜ୀଵ Rݕ௖ = ∑ ∑ s௜s௝ݕ௜,௝௉௝ୀଵ௉௜ୀଵ R  (3)

The geometrical positional relationship of links is transformed to the distance values 	݀݅ݏ = ,ଵݏ݅݀} ,ଶݏ݅݀ … ,  ௡ denotes the distance between the affected link n and the centerݏ݅݀ ୫} whereݏ݅݀

of the intersections (ݔ௖,  ௖). The distance between the outlier link and the center of the intersections isݕ

always greater than the distance between the affected links and the center of the intersections. The 

variance of the distance values is used to detect the outlier links, and the variance of the distance 

values ௗܸ௜௦ is: 

ௗܸ௜௦ = ∑ ௜ݏ݅݀) − ଶ௠௜ୀଵ(ିݏ݅݀ ݉ − 1  (4)

where ݀݅ିݏ is the average value of ݀݅ݏ. A threshold of variance (δ) is selected empirically to detect the 

outlier links. Then the outlier state of links can be calculated as: ݋ = ൜1, ௗܸ௜௦ ≥ ,0ߜ (5) ݁ݏ݅ݓݎℎ݁ݐ݋

If ݋ = 0, we consider that there exist no outlier links in the affected links. If ݋ = 1, the outlier links 

are detected and shall be rejected from the affected links. The center of the intersections and ݀݅ݏ are 

mapped to 1-dimension space with the center of the intersections as the origin, as illustrated in Figure 3. 

Clustering will be performed to identify and reject the outlier links as described below. 

 

Figure 3. Distribution of the mapped distances. 

Firstly, the distances associated with the links ݀݅ݏ = ,ଵݏ݅݀} ,ଶݏ݅݀ … ,  ୫} are considered as a dataݏ݅݀

set {ݔଵ, ,ଶݔ … ,  ௠} and clustered by the K-means algorithm [26]. Two clusters are generated for theݔ

affected links and the outlier links, respectively, and their corresponding centroids are calculated. 

Then, each data in the data set is clustered to the nearest centroid, and the centroids will be updated by 

recalculating the average data in each cluster [26,27]. With the new centroids, a new loop is formed 
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and each data is associated to the nearest new centroid. Finally, the loop stops until the centroids are 

not changed any more. This approach aims at minimizing an objective function described as: 

J = ෍෍ ∥ ௜௝ݔ − ௝ܿ ∥ଶ୫
௜ୀଵ

ଶ
௝ୀଵ  (6)

where ݔ௜௝ is the associated data in the data set, and ௝ܿ is the centroid. Because the distance between the 

center of the intersections and an outlier link is larger than the distance between the center of the 

intersections and the affected link, the centroid with the larger coordinate should belong to the outlier 

links. Finally, the cluster with the larger centroid is associated with the set of the outlier links. The 

process that detect and reject outlier links is summarized in Algorithm 1. 

Algorithm 1 Detection and rejection of outlier links 

1. Get the ∆ܴܵܵ௧ according to Equation (1) 

2. Get the state of links according to Equation (2) 

3. If there are the effected links 

4. Calculate the coordinates of the intersections 

5. Calculate the center of the intersections (xୡ, yୡ) according to Equation (3) 

6. Get the variance of the distances according to Equation (4) 

7. Estimate the outlier state of links according to Equation (5) 

8. If there are the outlier links (outlier state is 1) 

9. Cluster the affected links use K-means algorithm based on the distance values ݀݅ݏ = ,ଵݏ݅݀} ,ଶݏ݅݀ … , {୫ݏ݅݀
10. The links in the cluster with the larger centroid coordinate is the outlier links, 

11. Eliminate the outlier links. 

12. End 

13. End 

4.3. Nonlinear Optimization for Location Estimation 

Definition 2: The projection ܳ௜௡ from the position i to link n is the point on link ܮ௡ which is closest 

to position ݅, and the distance from position ݅ to link n is the distance ܦ௜௡	between position ݅ and the 

projection ܳ௜௡. If ௜ܺ 	is on link ܮ௡, the projection is itself and ܦ௜௡ = 	0, otherwise the distance ܦ௜௡ can 

be calculated by: ܦ௜௡(ݔ଴, (଴ݕ = ݉݅݊ଡ଼ౠఢ௅೙ dis(X୧, X୨) (7)

where ௜ܺ is the coordinate of the position ݅. For ௜ܺ and ௝ܺ with coordinates (ݔ௜, ,௝ݔ) ௜) andݕ  ௝), theirݕ

distance ݀݅ݏ( ௜ܺ, ௝ܺ) is given by: ݀݅ݏ൫ ௜ܺ, ௝ܺ൯ = ට(ݔ௜ − ௜ݕ)+௝)ଶݔ −  ௝)ଶݕ

By the clustering algorithm mentioned earlier, the affected links with outlier link rejection can be 

obtained. In this section, we consider the affected links as the affected links without outlier links, and 

the number of affected links is M.  
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The main contribution for the RSS difference of an affected link is caused by the target. Thus, the 

target must be nearby the affected links or on the affected links. As shown in Figure 4, the affected 

links intersect with each other, and the target location shall be inside the red circle. We assume the 

target location is ܺ଴(ݔ଴, ,଴ݔ)଴). The projection ܳ଴௡ from target location ܺ଴ݕ  ௡ܮ ଴) to the affected linkݕ

௡ܮ) ∈ ௔௟௦ݏ ) and the distance ܦ଴௡  can be obtained. The DFL problem can be translated into an 

optimization problem according to the relationship between the target location and the affected links. 

The point with the minimum sum of distance to the affected links is used as the estimation of the target 
location. Mathematically, the optimal target location ܺ଴∗(ݔ଴,∗ ∗,଴ݕ	 ) is obtained by: 

ܺ଴∗(ݔ଴,∗ ∗,଴ݕ ) = ,଴ݔ)଴௜ܦ෍(௫బ,௬బ)݊݅݉݃ݎܽ ଴)ெݕ
௜ୀଵ  (8)

 

Figure 4. Possible location area of the target. 

For a given affected link i of the transmitter and receiver with known coordinates, assume its 

associated linear equation is expressed by: ݇௜ݔ + ܿ௜ݕ + ݀௜ = 0 (9)

Then the distance ܦ଴௜ can be calculated according to Equations (7) and (9) by: ܦ଴௜(ݔ଴, (଴ݕ = |݇௜ݔ଴ + ܿ௜ݕ଴ + ݀௜|ට݇௜ଶ + ܿ௜ଶమ  
(10)

Then we can re-write Equation (8) as: 

ܺ଴∗(ݔ଴,∗ ∗,଴ݕ ) = ଴ݔ෍|݇௜(௫బ,௬బ)݊݅݉݃ݎܽ + ܿ௜ݕ଴ + ݀௜|ට݇௜ଶ + ܿ௜ଶమ
ெ
௜ୀଵ  (11)
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As the above nonlinear optimization problem is difficult to solve. We replace ܦ଴௜	with (ܦ଴௜)ଶ and  

re-formulate DFL problem as the following nonlinear optimization problem: 

ܺ଴∗(ݔ଴,∗ ∗,଴ݕ ) = ଴ݔ෍(݇௜(௫బ,௬బ)݊݅݉݃ݎܽ + ܿ௜ݕ଴ + ݀௜)ଶ݇௜ଶ + ܿ௜ଶெ
௜ୀଵ  (12)

Now we define some notations in Table 1 and give two important theorems. 

Table 1. The notations. 

Notations Description ݀݉݋	݂ The domain of function f ∇݂ The first-order partial derivatives of x∇ ௫݂ The Hessian matrix of function f det∇ଶ݂ The value of Hessian matrix ∇ଶ݂ 

Theorem 1 [28]: If the function f is twice differentiable, that is, its Hessian or second derivative ∇ଶ݂ 

exists at each point in ݀݉݋	݂, which is open, then f is convex if and only if dom	f is convex and its 

Hessian is positive semidefinite: for all ݔ ∈ ଶ݂∇ :݂	݉݋݀ ≥ 0 

Theorem 2 [28]: For the unconstrained optimization: ݉݅݊݅݉݅݁ݖ  (ݔ)݂
where f is convex and differentiable, there exists an optimal point ݔ∗, and the necessary and sufficient 

condition for a point ݔ∗ to be optimal is:  ݂ߘ( (∗ݔ = 0 

Denote the following nonlinear function: 

,଴ݔ)݂ (଴ݕ =෍(݇௜ݔ଴ + ܿ௜ݕ଴ + ݀௜)ଶ݇௜ଶ + ܿ௜ଶெ
௜ୀଵ  (13)

In the DFL problem, the dom	݂ is the monitoring area and we assume it is convex in this paper. The 

Hessian matrix of f is: 

∇ଶ݂ = ۈۉ	
෍ۇ 2݇௜ଶ݇௜ଶ + ܿ௜ଶெ௜ୀଵ ෍ 2݇௜ܿ௜݇௜ଶ + ܿ௜ଶெ௜ୀଵ෍ 2݇௜ܿ௜݇௜ଶ + ܿ௜ଶெ௜ୀଵ ෍ 2ܿ௜ଶ݇௜ଶ + ܿ௜ଶெ௜ୀଵ ۋی

ۊ
 (14)

It is obvious that	∑ ଶ௞೔మ௞೔మା௖೔మெ௜ୀଵ ≥ 0, and ݀݁ߘݐଶ݂ 4⁄ = 	∑ ௞೔మ௞೔మା௖೔మெ௜ୀଵ ×	∑ ௖೔మ௞೔మା௖೔మெ௜ୀଵ −	(∑ ௞೔௖೔௞೔మା௖೔మெ௜ୀଵ )ଶ. 

We use the notations ௜ଶܣ	  and ܤ௜ଶ	 to stand for 
௞೔మ௞೔మା௖೔మ  and 

௖೔మ௞೔మା௖೔మ  respectively, then 
௞೔௖೔௞೔మା௖೔మ  can be 

represented as ܣ௜ܤ௜ and we have: ݀݁ߘݐଶ݂ 4⁄ = 	෍ ௜ଶெ௜ୀଵܣ ×෍ ௜ଶெ௜ୀଵܤ − ൬෍ ௜ெ௜ୀଵܤ௜ܣ ൰ଶ (15)
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The equation by factorization can be written as: ݀݁ߘݐଶ݂ 4⁄ =෍ ෍ ௜ܤ௜ܣ) − ௝)ଶெ௝ୀଵெ௜ୀଵܤ௝ܣ  (16)

and ݀݁ߘݐଶ݂ 4⁄ ≥ 0. 

Because ∑ ଶ௞೔మ௞೔మା௖೔మெ௜ୀଵ ≥ 0 and ݀݁ߘݐଶ݂ ≥ 0, the Hessian matrix ߘଶ݂  is positive semidefinite, and dom	݂	is convex, we know that f is convex according to Theorem 1. 
As ݂ is convex and differentiable, according to Theorem 2, the optimal point ܺ଴∗(ݔ଴,∗ ∗,଴ݕ ) for problem 

Equation (12) exists and can be calculated by: ൜ߘ ௫݂ = ߘ0 ௬݂ = 0 (17)

where ߘ ௫݂ = 	∑ ଶ௞೔(௞೔௫బା௖೔௬బାௗ೔)௞೔మା௖೔మெ௜ୀଵ , ߘ ௬݂ = 	∑ ଶ௖೔(௞೔௫బା௖೔௬బାௗ೔)௞೔మା௖೔మ .ெ௜ୀଵ  

The optimal point ܺ଴∗൫ݔ଴,∗ ∗,଴ݕ ൯	 of Equations (17) is the estimation of the target location. Now we 

give the complexity analysis for NOOLR. Assume that the number of loops in the K-means algorithm 

is	ݍ, and the number of intersections of the initial affected links is R	 as	 mentioned	 earlier, the 

computational complexity of Algorithm 1 is O(ݍR) , thus according to Equation (17), the 

computational complexity of the nonlinear optimization based NOOLR approach is O(ݍR). 
5. Experimental Evaluation 

5.1. Experimental Setup 

To evaluate the performance of the nonlinear optimization model for the DFL, we performed some 

experiments based on the experimental data that can be acquired [29] from the SPAN Lab of the 

University of Utah (Salt Lake City, UT, USA). There are 28 wireless devices and a Crossbow base 

station device, and the total number of links is 378. Each device operates in the 2.4 GHZ frequency 

band, and uses the IEEE 802.15.4 standard for communication. The base station node listens to all 

network traffic, then feeds the data to a laptop computer via a USB port for the processing of NOOLR. 

The RSS of each link is an averaged value of the RSS measurements from bi-directional transmissions. 

Each wireless device is placed three feet apart along the perimeter of a 21 × 21 feet square, 

surrounding a total area of 441 square feet, and is placed on a stand at three feet off the ground. In the 

experiment, the target is a person with the height 1.85 m and the weight 88 kg. As shown in Figure 5, 

30 testing locations are selected to compare the nonlinear optimization model for the DFL with RTI 

reconstruction [7]. 

In this experiment, the system is calibrated by collecting RSS measurements while the network is 

vacant from targets. The time for calibration is 30 s. The time for data initialization which processes 

the calibration data is 2.0759 seconds. We perform experiments to test the running time for NOOLR. 
The running time ݐ௧௢௧௔௟_௧௜௠௘ contains two portions, including the time ݐௗ௔௧௔_௧௜௠௘ for processing the real 

time data and the time ݐேைை௅ோ_௧௜௠௘ for running NOOLR. 
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Figure 5. The experimental setup. 

We repeat the trials for 30 times, and the statistic results are summarized in Table 2. 

Table 2. Running time for NOOLR in the experiment. 

Description Mean(s) Worst(s) Best(s) ݐௗ௔௧௔_௧௜௠௘ 1.5420 1.6051 1.4917 ݐேைை௅ோ_௧௜௠௘ 0.0204 0.1244 0.0052 ݐ௧௢௧௔௟_௧௜௠௘ 1.5624 1.6973 1.5130 

NOOLR can achieve averaged, worst and best times of 0.0204 s, 0.1244 s and 0.0052 s, which is 

very low, the average, the worst and the best times for the total running time is 1.5624 s, 1.6973 s and 

1.5130 s, respectively, which is acceptable for target location estimation. 

In RTI, the monitored area is divided into voxels, aggregately all voxels contribute to the RSS 

changes of each transmitter-receiver link in the network. The weights of all voxels are computed 

according to their impacts on all the links, and the voxel with the minimum weight is considered as the 

location estimation of the target. The RTI reconstruction for obtaining the weights of the voxels uses 

H1 regularization with the parameters listed in Table 3. 

Table 3. The parameters of RTI. 

Parameter Value Description ∆p 0.5 Pixel width(feet) Ε 0.01 Width of weighting ellipse (feet) Α 5 Regularization parameter 

The NOOLR parameters are listed in Table 4. As the analytical relationship between the parameters 

and the system performance of NOOLR is not clear, we use the trial and error method to determine  

the parameters. 
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Table 4. The parameters of NOOLR. 

Parameter Value Description γ −6 The threshold for affected link detection δ 0.5 The threshold for the variance 

The Euler distance between the “true” location of the target and the estimated location of the target is 

used as the localization error. The localization errors against different thresholds ߛ  are shown in 

Figures 6 and 7 when the threshold for the variance δ is 0.5. If ߛ < −8	dB, there may be not enough 

affected links for localization, and the average error of the algorithm increases sharply.  

 

Figure 6. The errors when γ changes. 

 

Figure 7. Average errors for different γ. 
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Meanwhile, from Figure 7, due to the uncertain wireless propagation environment, if γ ≥ −5.5	dB, 

some links with large noise are incorrectly identified as the affected links, the average error of 

localization will also increase. The localization errors against different thresholds of variance δ are 

shown in Figure 8 when the threshold γ  is −6. If δ < 0.3 , the outlier state of links ݋௧  may be 

incorrectly detected, and the error of localization increases. Nevertheless, if δ ≥ 0.7, an outlier link 

may be missed, and the error of localization is increased. 

 

Figure 8. Average errors for the different thresholds of variance (δ). 

5.2. Performance Comparison 

To evaluate the performance of NOOLR, we compare it with the scheme of nonlinear optimization 

without outlier link rejection (NOwoOLR), and RTI. The detailed comparison results for 30 testing 

locations are shown in Figure 9 and Table 5. 

  

Figure 9. Performance comparison of NOOLR, NOwoOLR, and RTI. 
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Table 5. Performance comparison of NOOLR , NOwoOLR, and RTI. 

Algorithm Mean (Feet) Variance Worst (Feet) Best (Feet) Median (Feet) 

NOOLR 0.7030 0.1210 1.6861 0.1500 0.6554 
NOwoOLR 1.9571 2.1034 5.0493 0.3170 1.4104 

RTI 0.8244 0.4262 3.8891 0.3536 0.7905 

The mean localization error and the worst localization error of NOOLR are reduced by 10.6%, 

50.2%, respectively, from RTI, which shows a significant improvement. The best localization error of 

NOOLR can achieve is 0.1197 feet. Statistically the performance of NOOLR is the best, followed by 

RTI and NOwoOLR, this is because RTI uses all the links, NOwoOLR uses the affected links, and 

NOOLR uses the affected links with outlier link rejection to calculate the target locations, and the 

different impacts of the noises and outlier links are reflected in the localization accuracy. The variance 

of the localization errors reveals the robustness of the DFL systems. The smaller variance of NOOLR 

illustrates that NOOLR is more robust and reliable. It is obvious that the proposed nonlinear 

optimization model has better performance than RTI. 

Meanwhile it is obvious that NOwoOLR has the worst performance. Outlier links are not eliminated 

in NOwoOLR. RTI utilizes the RSS measurements of all links at time t. The outlier links can degrade 

the accuracy of RTI. After the outlier links are rejected, it is beneficial for the localization algorithms 

using the nonlinear optimization model. 

6. Conclusions 

This paper proposes a novel nonlinear optimization based approach for DFL called NOOLR as a 

valuable localization approach for Smart City applications. To decrease the negative impacts of the 

large noise of the wireless links, outlier link detection and rejection are suggested by considering the 

geometrical relationship of links and utilizing a the clustering algorithm. A nonlinear optimization 

model is formulated for the location estimation to minimize the distance of the target location to the 

affected links. Experimental results show the superior localization performance of NOOLR against 

RTI. As future work, DFL for multiple targets and a case Smart City study will be considered as 

important problems to be solved. 
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