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Abstract: We show that metallic wires embedded in narrow waveguide bends and channels
demonstrate resonance behavior at specific frequencies. The electromagnetic energy at these
resonances tunnels through the narrow waveguide channels with almost no propagation
losses. Under the tunneling behavior, high-intensity electromagnetic fields are produced
in the vicinity of the metallic wires. These intense field resonances can be exploited to
build highly sensitive dielectric sensors. The sensor operation is explained with the help of
full-wave simulations. A practical setup consisting of a 3D waveguide bend is presented to
experimentally observe the tunneling phenomenon. The tunneling frequency is predicted by
determining the input impedance minima through a variational formula based on the Green
function of a probe-excited parallel plate waveguide.
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1. Introduction

The metallic-wire medium has been a source of interest among the electromagnetic community for the
past several decades, primarily because of its similarities to the anisotropic plasmas. In his 1962 paper,
Rotman studied the wire medium to model the wave propagation in plasmas by considering the analogous
behaviors of their refractive indices (i.e., dispersion) [1]. The wire medium gained popularity after it
was applied, in combination with the split-ring resonators, in formulating the effective negative index
medium [2]. The metallic wires, in this context, have been treated as an effective medium with negative
permittivity in a certain range of frequencies, as given by the well-known relation:

εr = 1− ω2

ω2
p

(1)

where ωp is the plasma frequency [3]. Many subsequent studies utilized their plasma-like dispersion
characteristics to demonstrate interesting effects, such as resonance-cone focusing and epsilon-near-zero
(ENZ) tunneling [4–9].

This paper deals with the application of yet another exciting aspect of the wire medium dispersion
characteristics, i.e., the regime of the what has been referred to as “self-collimation”, “Bragg’s refraction”
or “canalization”. Such regimes are identified by diminishing group velocities along one of the
structure’s axes of symmetry and the flatness of the dispersion surfaces [10–13]. When such media
are interfaced with free space, a strongly directive anomalous refraction is observed. The phenomenon
has also been utilized to transport the image of an object with sub-wavelength details [12,13]. The
electromagnetic energy propagation in such cases is confined to narrow channels and is determined by
a particular relationship between the phase and group velocities [11]. If the impedance is correctly
matched in these directions, full transmission of energy (in lossless cases) known as “tunneling” is
possible [8]. The phenomenon has also been termed as “energy squeezing”, because of the possibility
of transporting energy through sub-wave length channels [7,8]. Energy tunneling through narrow
waveguide channels and bends filled with materials with ENZ electric permittivities have been explored
in several studies [5–9]. One such arrangement depicted in Figure 1a is a 180◦ short-circuited bend
in which two 3D rectangular waveguides are connected through a narrow channel filled with an ENZ
material. In this waveguide configuration, the condition of full transmission is obtained by restricting
the aperture A of the ENZ material to a small value [5]. Analogous energy tunneling effects have also
been observed in waveguide bends loaded with wires, as shown in Figure 1b. In such a configuration, the
metallic wires are separated by a periodicity of T and are directed parallel to the electric (E) field [14–16].

In the first two sections of this paper, we present a review of the energy tunneling phenomenon
in waveguide bends through full-wave simulations using ANSYS R© HFSSTM. A dielectric sensing
mechanism based on energy tunneling is demonstrated. Section 3 provides experimental evidence of
the phenomenon in a 3D rectangular waveguide. In Section 4, we expand our previous works [14–16]
by providing an analytical formulation of the wire-based waveguide tunneling. The developed analytical
method explains the underlying tunneling mechanism and predicts the transmission frequency of the
resonant wire. The proposed method is based on the Green function formulation of impedance and is
inspired by a similar problem of probe antennas when they excite rectangular waveguides. Note that the
ENZ-based tunneling exploits the effective medium characteristics when the dispersion surfaces become
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hyperbolic. The wire-based tunneling, on the other hand, is observed in the long wavelength dispersion
region when the unit cell is comparable to the wavelength. The tunneling concept proposed in this paper
has the flexibility of tuning the cavities to a desired frequency without any waveguide modifications.
Particularly, more resonances can be added to operate the waveguides at multiple tunneling frequencies.
Furthermore, the tunneling effects in the ENZ-based cavities at microwave frequencies are obtained
by using metamaterial-based periodic structures that are inherently dispersive and possess large loss
tangents, especially in the frequency ranges where the permittivities are near zero.

(a) (b)

A





A

Figure 1. Different waveguide geometries that support electromagnetic energy tunneling.
(a) Two short-circuited waveguides connected by a thin layer of epsilon-near-zero material;
and (b) the two waveguides connected with a cylindrical wire structure.

2. The Energy Tunneling Sensor

2.1. The Tunneling Mechanism

The phenomenon of energy-tunneling is supported by the waveguide configurations in which the
electric fields are excited parallel to the wires [14]. Examples include strip line, parallel-plate
waveguide and microstrip transmission lines. Consider an energy tunneling setup of two short-circuited
parallel-plate waveguides connected through a narrow aperture. This is a two-dimensional waveguide
configuration and can be represented in a unit-cell domain shown in Figure 2. The unit-cell simulation
method is relatively fast and efficient for the analysis of structures that are electrically very large.
Moreover, it is simple to configure in electromagnetic simulation tools, such as ANSYS R© HFSSTM.
As shown, each waveguide that constitutes the bend is backed by a perfectly conducting wall and has
a height of a and a width of T. The two waveguides are connected through an aperture whose radius is
R, which contains a metallic wire of radius r. With two perfectly-magnetic side walls, as indicated in
the figure, the unit cell behaves as an infinitely-extended structure along the x-axis. The TEM mode in
one waveguide is excited through the ANSYS R© HFSSTM wave port. Assuming zero loss, the resulting
magnitude of the reflection coefficients (|S11|) for different values of wire length to waveguide height
ratio (t) are plotted in Figure 3. Evidently, the points of |S11| minima corresponds to the tunneling
frequency. The shift in the resonance shows that the tunneling frequency can be tuned by changing the
length of the wires. To show the no-loss energy transfer at the tunneling frequency, the magnitude of
the transmission coefficient |S21| for one case (t = 0.6) is also depicted. The |S21| plot shows that under
lossless conditions, a complete power transfer results from one waveguide to the other at around 31.96
GHz. Note that without the wires, no transmission is possible through the apertures. A distinctive feature
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of the wire-based tunneling is the very high electric field concentration around the wire tips as a result
of tunneling wave propagation through a channel that only comprises a very thin wire. Therefore, in
comparison with a resonant waveguide, the wire-based energy tunneling offers very high sensitivity to
dielectric samples placed around the locations of concentrated energy.
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Figure 2. (a) Unit cell of the parallel-plate waveguide configuration that supports energy
tunneling. The shaded walls are the perfectly electric conductors (PECs) and the un-shaded
walls are perfectly magnetic conductors (PMCs); (b) side view and (c) top view showing the
boundary conditions; (d) the infinitely extended x-y plane. Waveguide dimensions are given
by a = 3.56 mm, r = 0.04 mm, R = 0.12 mm and h = 0.178 mm. (The picture is not drawn to
the scale.)

The properties of the wire-based tunneling can be further investigated by plotting the real power
vector diagram and electric field patterns (Figure 4) evaluated at the perfect magnetic conductor (PMC)
walls of the unit cell at 31.96 GHz for the t = 0.6 case. The power diagram (Figure 4a) clearly
corroborates the fact that the propagation of energy is confined in the narrow channel between the
wire and the conducting waveguide wall. The electric field pattern shows that the waveguide TEM
electric fields are coupled to the wire’s resonant mode at the tunneling frequency. As expected, a high
concentration of the electric field, oriented perpendicular to the wire, is detected on and in the vicinity of
the wire. Away from the wire, the vertical fields suggest that the dominant mode of propagation is TEM,
which intrinsically flows in a parallel-plate waveguide. The electric field pattern also sheds light on the
differences between the tunneling mechanisms in the wire-loaded waveguides and the analogous effects
in the ENZ-based waveguides. The ENZ tunneling is characterized by uniform and enhanced electric
field distributions throughout the channel, resulting in very small phase variations [6]. On the other hand,
the tunneling in wire-loaded waveguides is governed by resonances that are characterized by large phase
changes and non-uniform electric (and magnetic) field distributions. As shown in Figure 4b, the strong
non-uniform electric field experiences a 180◦ phase variation as it propagates through the channel at the
31.96-GHz resonance.



Sensors 2015, 15 7848

Frequency (GHz)

t=0.5

t=0.6t=0.7

t=0.8
t=0.9

With wires

Without  wiresS11
S21

S-
Pa

ra
m

et
er

s

Figure 3. Reflection (solid lines) and transmission (dashed lines) coefficients for different
values of the wire length to waveguide height ratio (t = 2l/2a).
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Figure 4. (a) Poynting vector ((power flow) plot and (b) electric field pattern on the magnetic
wall (y-z plane) of the parallel plate waveguide unit cell at 31.96 GHz for the case in which
the wire-length to waveguide-height ratio t = 0.6.

2.2. Operation of a Dielectric Sensor

As depicted in Figure 3, the resonant frequency of the tunneling waveguide cavity shifts to lower
values with the increase in wire length. The effective length of the wire can be also increased
by immersing it into a dielectric of higher relative permittivity. Conversely, a dielectric sensor can
be fabricated that can determine the permittivity values by detecting the resonance of the tunneling
waveguide. A practical dielectric sensor is presented in [16]. The sensing behavior can be observed in
the transmission curves shown in Figure 5 for a tunneling setup that was designed to resonate at 23 GHz
in the absence of a dielectric. When a 5-mm dielectric sample was inserted, the transmission peak shifted
to lower resonances. As depicted in Figure 5, the sensor indeed supports a tunneling mode that is highly
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sensitive, especially in the lower permittivity range. For example, a small permittivity shift from εr = 1

to εr = 1.5 results in a large resonance shift of −2.4 GHz. Practically, a characteristic curve of the
detector, similar to the one shown in Figure 6, can be obtained at the time of fabrication. Note that when
the permittivity attains higher values, the characteristic curve approaches saturation imposed by the law
of charge conservation. In Figure 5, a second resonance peak is also observed at around 29 GHz for all
of the dielectric values. This peak is due to the well-known Fabry–Perot resonance that builds up in a
closed cavity. The Fabry–Perot resonances depend on the channel dimensions and are independent of
the wires’ length; hence, they are observed at a constant frequency.

Figure 5. Transmission coefficients for wire-loaded waveguide cavity with the wire covered
with different values of permittivities (reproduced from [16] with the authors’ permission).
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Figure 6. The characteristic curve of the detector showing the variation of the resonant
frequency with the dielectric permittivity.
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3. An Energy Tunneling Experiment Using 3D Waveguides

The 3D waveguide configuration, shown in Figure 1, can be used to demonstrate the concept
of wire-based energy tunneling. A practical waveguide measurement setup is depicted in Figure 7.
The waveguide is fabricated by wrapping conducting copper sheets over a slab made up of Plexiglas
(εr = 2.57). The thickness of the waveguide is 17 mm, and the width of the waveguide is 63.5 mm.
With these dimensions, the waveguide has a cutoff frequency of 1.48 GHz. The steel wires that are
placed at the end of the waveguide measure 20 mm in length (l = 10 mm) and 3.2 mm in diameter. The
diameter of the aperture is 2R = 9.5 mm, and the wires are separated by a distance of T = 12.7 mm.
A control waveguide, shown in the inset of Figure 7, was also fabricated to characterize the losses in the
experimental setup. The waveguide is fed with an SMA connector connected to an Agilent HP8722ES
vector network analyzer through a coaxial cable. The experimental S-parameters of the waveguide bend
and the control waveguide are shown in Figure 8. ANSYS R© HFSSTM simulations are also included
in the plot for comparison. The tunneling effect is observed at about 4 GHz. The control waveguide
measurement shows about 1.5 dB loss at the transmission frequency. These losses are mainly caused
by the impedance mismatches at the SMA connectors, the dielectric and metallic losses in the system
and the fabrication imperfections. An additional 1 dB loss in the 180◦ bend is partly due to the metallic
conductors. The simulation, however, shows negligible losses when the conductor losses in the wires and
waveguide dielectric losses are considered. Additional resonances observed in the experimental results
are due to the cavity effect.

Figure 7. The experimental setup to verify energy tunneling in a wire-loaded waveguide
bend. The inset shows the control waveguide.
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Figure 8. Experimental S-parameters for the 3D waveguide bend, the control waveguide.
The simulation transmission coefficient (S21) is also shown for comparison.

4. Analytical Formulation of the Resonance Mechanism

The tunneling frequency of the wire-loaded parallel-plate waveguide can be calculated analytically by
considering the antenna probe analogy that excites a rectangular waveguide [17]. Looking at Figure 2,
the configuration resembles two probes that are connected back to back exciting two waveguides.
The input impedances Zin1 and Zin2 can thus be defined at the entrances of two interconnected
parallel-plate waveguides, as depicted in Figure 9. At the tunneling frequency, the energy is coupled
from one waveguide to the other when the two probes operate at the impedance-matched condition.
Numerically, this condition is obtained when the input impedances of the two probes are complex
conjugates of each other. Moreover, because of the symmetry of the problem, Zin,1 = Zin,2, which can
only be possible if the imaginary part of the input impedance of each probe is zero. The input impedance
can be written in terms of the current density and the dyadic Green function in the form of the following
variational formula [17]:

Zin =
1

I2
in

∫
So

∫
So

J(r)G(r|r′) J(r)dSdS ′ (2)

Zin1 Zin2

a
l

Figure 9. Definition of the input probe impedance.
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where So is the surface of the probe inside the waveguide. Assuming a y-directed uniform angular
current density J(r) = I(y)/2r, the Green function is given by the following expression [17]:

Gyy =
jZo
aTko

∞∑
n=1

∞∑
m=1

εomεonk
2
m

Γnm
.cos

nπx

T
.cos

nπx′

T
.

cos
mπy

T
.cos

mπy′

T
.e−Γnm(z>+h).sinhΓnm(z> + h)

(3)

where Zo and ko are the intrinsic impedance and wavenumber of the medium that fills the waveguide, εon
is the Neumann factor, which is equal to zero for n = 0 and equals two otherwise. k2

m = (mπ/a)2 − k2
o

and Γ2
nm = (nπ/T )2 + k2

m. z> is the larger of z and z′ and z< is the smaller of the two. The last
two factors in Equation (3) can be written as:

cos
mπy′

T
.e−Γnm(z>+h).sinhΓnm(z> + h) =

1

2

{
e−Γnm|z−z′| − e−2Γnmh−(z+z′)Γnm

}
(4)

Substituting Equations (3) and (4) in Equation (2) yields,

Zin =
1

[I(0)]2
jZo
ako

∞∑
m=0

{[
εomk

2
m

4π2
.I1 −

∞∑
n=0

εomεonk
2
m

4π2Γnm
.I2

]
.I3.I4

}
(5)

where the integrals I1 − I4 are defined by:

I1 =

∫ 2π

0

∫ 2π

0

(
∞∑
m=0

εom
2

cosnπx
T
cosnπx

′

T

ΓnmT
e−Γnm|z−z′|

)
dφdφ′ (6)

I2 =

∫ 2π

0

∫ 2π

0

(
cos

nπx

T
cos

nπx′

T
e−2Γnmh−(z+z′)Γnm

)
dφdφ′ (7)

I3 =

∫ l

0

cos
mπy

a
I(y)dy (8)

I4 =

∫ l

0

cos
mπy′

a
I(y′)dy′ (9)

Following a similar procedure that is outlined in [17], which involves writing the Equation (5) in terms
of cylindrical Bessel and Hankel functions and integrating over φ and φ′, we can arrive at the following
simpler expression for the input impedance:

Zin =
1

[I(0)]2

∞∑
m=0

gm.I3.I4 (10)

where gm for indexes m > 0 can be calculated as:

gm =
jZo
ako

k2
m

π

(
Io(kmr)Ko(kmr) +

∞∑
n=1

2Ko(kmnT )

)

− jZo
ako

(
1 +

k2
mr

2

2

)(
km
T
e−2kmh + 2k2

m

∞∑
n=2,4,..

e−2Γnmh

ΓnmT

) (11)
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where Io and Ko are the modified Bessel functions of the first and second kinds, respectively. go is
given by:

go = −jZoko
a

[
−j(Jo(kor)− 1)H2

o (kor)

4
+
e−jkor

2jkor
− ln(1− e−2πr/a)

2π

]
− jZoko

a

∞∑
n=2,4,..

(
e−Γnor

ΓnoT
− e−nπr/a

nπ

)
+
jZoko
a

(
1− k2

or
2

2

)(
e−2jkoh

2jTko
+

∞∑
n=2,4,..

e−2Γnoh

ΓnoT

)
(12)

where Jo and Ho are the Bessel and Hankel functions, respectively. In order to find the best choice of
currents on the wires, we use a set of basis functions ψν(y) to form I(y):

I(y) =

q∑
ν=1

Iνψν(y) (13)

If the current basis function ψν(y) is normalized, such that ψν(0) = 1, then:

I(y) =

p∑
ν=1

Iν (14)

The impedance Equation (10) can the be written in the following matrix form:

Zin = −
ITGI

ITNI
(15)

where,
I = [I1I2...Iq]

T (16)

[G]ij =
∞∑
m=0

gmP
(m)
i P

(m)
j (17)

and N is the unitary matrix. The P (m)
ν is defined as the following integral:

P (m)
ν =

∫ l

0

cos
mπy

a
ψν(y)dy (18)

Since the best approximation of the input impedance is obtained when Equation (15) is stationary, or
in other words:

d

dI
Zin = −2

(ITGI)(ITN) − (ITNI)(ITG)

(ITNI)2
= 0 (19)

To solve Equation (19) numerically, the following four basis current functions are selected:

ψ1 =
sinko(l − y)

sinkol
, ψ2 =

1− cosko(l − y)

1− coskol

ψ3 = cos
πy

2l
, ψ4 = cos

3πy

2l

(20)

The analytical method determines the tunneling frequency by searching the frequency at which the
input impedance Equation (15) has a vanishing imaginary part. The results for different values of wire
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lengths in the air-filled waveguide of Figure 2 are displayed in Figure 10. Along with the numerical
results, the resonant frequencies obtained by the ANSYS R© HFSSTM are also shown. The difference
between the two results is about 6% in the worst case. We note that the numerical results based on
the impedance matching of interconnected probes are approximate, as numerical approximations were
used; therefore, we expect the full-wave simulation to give a more accurate prediction of the resonant
frequencies. The time required to generate the theoretical results is much less than the time required
to run the simulations. Therefore, the numerical solution should be used as an initial step in the design
procedure. The final design values can then be fine-tuned utilizing the full-wave simulations. When
the waveguide is filled with a dielectric instead of air, the resonant frequency shifts towards a lower
value. For instance, for t = 0.9, the numerical method predicts the new resonance at 20.52 GHz when the
waveguide dielectric constant is changed to 1.3.

Figure 10. Plot of the first two principal components, which contributed more than 70% of
the variance.

5. Conclusions

We studied theoretically and experimentally the the frequency-dependent tunneling of
electromagnetic energy as it propagates through narrow bends and channels loaded with resonant
wires. In particular, a 180◦ waveguide bend loaded with metallic wires was designed to tunnel
electromagnetic energy with full transmission under ideal conditions. The tunneling is characterized
by intense electric field distributions and a highly selective frequency response, which can be utilized
in the determination of the dielectric properties of the media. The frequency response of such
wire-loaded cavities primarily depends on the lengths of the resonant wires and, therefore, can be
tailored to any desired range of frequencies. The wires in the waveguide configuration were analyzed
by writing the variational impedance formula in a way that was similar to that of a probe-excited
waveguide. A maximum difference of 6% was observed when the resonant frequencies obtained
from the analytical method were compared to the ANSYS R© HFSSTM simulations. The tunneling in
the wire-based waveguides is characterized by non-uniform spatial field distributions and large phase
changes that resemble a Fabry–Perot resonance. Due to the ease of fabrication, flexibility in tuning
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without waveguide modifications and scalability to any desired range of frequencies, the proposed
configuration of wire-loaded waveguide bends can also find wide applications in microwave and
millimeter wave bands.
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