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Abstract: This paper presents a method for detecting high-speed incoming targets by

the fusion of spatial and temporal detectors to achieve a high detection rate for an active

protection system (APS). The incoming targets have different image velocities according to

the target-camera geometry. Therefore, single-target detector-based approaches, such as a

1D temporal filter, 2D spatial filter and 3D matched filter, cannot provide a high detection

rate with moderate false alarms. The target speed variation was analyzed according to the

incoming angle and target velocity. The speed of the distant target at the firing time is

almost stationary and increases slowly. The speed varying targets are detected stably by

fusing the spatial and temporal filters. The stationary target detector is activated by an

almost zero temporal contrast filter (TCF) and identifies targets using a spatial filter called

the modified mean subtraction filter (M-MSF). A small motion (sub-pixel velocity) target

detector is activated by a small TCF value and finds targets using the same spatial filter. A

large motion (pixel-velocity) target detector works when the TCF value is high. The final

target detection is terminated by fusing the three detectors based on the threat priority. The

experimental results of the various target sequences show that the proposed fusion-based

target detector produces the highest detection rate with an acceptable false alarm rate.

Keywords: incoming target; target detection; stationary and moving; spatial and temporal;

detector fusion; threat priority
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1. Introduction

An active protection system (APS) is designed to protect tanks from a guided missile or rocket attack

via a physical counterattack. High explosive antitank (HEAT) missiles should be detected and tracked

for active protection using radar and infrared (IR) [1]. The first generation APS required detection

algorithms to locate sub-sonic targets (under 340 m/s). Recently, the previous APS has moved to the

next generation APS (NG-APS) to handle kinetic energy missiles, such as HEMi (over Mach 3–6) [2].

This is a challenging detection problem, because hyper-velocity missiles need to be detected at least

6 km form the target. Although radar and IR complement each other, this paper focuses on the IR

sensor-based approach, because it can provide a high resolution angle of arrival (AOA) and detect high

temperature targets.

Figure 1. Infrared small target detection problem in a next generation active protection

system (NG-APS).



Sensors 2015, 15 7269

In a real APS scenario, an incoming hyper-velocity target is shown as almost stationary in IR images

at the firing stage and then moves slowly depending on the line of sight (LOS), as shown in Figure 1.

In addition, small targets are located in the strong ground clutter. Therefore, it is a highly challenging

problem to satisfy both the detection rate and false alarm rate simultaneously.

The previous small target detection method can be categorized into two approaches, spatial

filter-based detection and temporal filter-based detection. Background subtraction can be a feasible

approach if the target size is smaller than the background. The background image can be estimated from

an input image using spatial filters, such as the least mean square (LMS) filter [3–5], mean filter [6],

median filter [7] and morphological filter (top-hat) [8,9]. The LMS filter minimizes the difference

between the input image and background image, which is estimated by the weighted average of the

neighboring pixels. The mean filter can estimate the background by a Gaussian mean or simple moving

average. The median filter is based on the order statistics. The median value can remove point-like targets

effectively. The morphological opening filter can remove the specific shapes by erosion and dilation with

a specific structural element. Mean filter-based target detection is computationally simple, but sensitive

to thermal noise. Kim improved the mean subtraction filter by inserting a target enhancement and noise

reduction filter, called modified MSF (M-MSF) [10]. Target detection using non-linear filters, such as

the median or morphology filter, shows a low rate of false alarms around the edge, but the process is

computationally complex. Combinational filters, such as max-mean or max-median, can preserve the

edge information of background structures [11]. A data fitting approach that models the background as

multi-dimensional parameters has also been reported [12]. The super-resolution method is useful in a

background estimation, which enhances small target detection [13]. The filtering process of localized

directional Laplacian-of-Gaussian (LoG) filtering and the minimum selection can then remove false

detections around the background edges and maintain a small target detection capability [14].

Gregoris et al. introduced a target detection method based on the multiscale wavelet transforms for

dim target detection [15]. Multiscale images can provide valuable structural information that can be used

to distinguish the targets from clutter. Although it shows the feasibility of multiscale analysis for size

varying target detection, it is computationally complex and cannot provide the precise size and location

information. Wang et al. proposed an efficient method for the multiscale small target detection method

by template matching [16]. They used a set of target templates to maximize the object-background ratio.

A fast orthogonal search combined with a wavelet transform showed efficient small target detection

performance [17]. Recently, Wang et al. proposed support vector machines in the wavelet domain and

reported the feasibility of multiscale small target detection in low contrast backgrounds [18]. In addition,

a multi-level filter-based small target detection method was implemented in real-time using DSP, FPGA

and ASICtechnologies [19]. Size varying targets can be detected optimally via the scale-invariant

approach using the signal-to-clutter ratio [20]. Qi et al. proposed Boolean map visual theory-based target

detection by fusing the intensity and orientation information [21]. Although the method is effective in a

cluttered environment, it incurs high computational cost and requires a huge memory allocation, because

an input image is divided into many binary images in terms of the intensity and orientation channels.

Frequency domain approaches can be useful for removing low frequency clutter. The 3D-FFT

spectrum-based approach shows a possible research direction in target detection [22]. The wavelet

transform extracts the spatial frequency information in an image pyramid, which shows robustness in sea
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environments [23–25]. The low pass filter (LPF)-based approach can also be robust to sensor noise [26].

Recently, an adaptive high pass filter (HPF) was proposed to reduce clutter [27].

If a sensor platform is static, the target motion information is a useful detection cue. A well-known

approach is the track-before-detect (TBD) method [28,29]. The concept is similar to that of the 3D

matched filter. Dynamic programming (DP), which is a fast version of the traditional TBD method,

achieves good performance in detecting dim targets [30,31]. The temporal profiles, including the mean

and variance, at each pixel are effective in detecting moving targets in slow moving clouds [32–35]. Jung

and Song improved the temporal variance filter (TVF) using the recursive temporal profile method [36].

Recently, the temporal contrast filter (TCF)-based method was developed to detect supersonic small

infrared targets [37]. Accumulating the detection results of each frame makes it possible to detect

moving targets [38]. The wide-to-exact search method was developed to enhance the speed of 3D

matched filters [19]. Recently, an improved power law detector-based moving target detection method

was presented; it was effective for image sequences that occur in heavy clutter [39]. Although the target

is in motion, the previous frame is considered a background image. Therefore, a background estimation

can be performed by a weighted autocorrelation matrix update using the recursive technique [40]. Static

clutter can also be removed by the frame difference [41]. An advanced adaptive spatial-temporal filter

derived from a multi-parametric approximation of clutter can achieve tremendous gain compared to that

of the spatial filtering method [42]. Principal component analysis (PCA) for multi-frames can remove

the temporal noise [43].

The above mentioned works showed their own pros and cons in the specific scenarios and

environments. Despite this, no one has proposed a suitable small target detection method for an incoming

target scenario in NG-APS. The key idea of this paper is to consider the incoming target behavior

to maximize the detection rate and minimize the false alarms. The contributions of this paper can

be summarized as follows. First, the motion of an incoming target is analyzed. Second, a multiple

detector-based detection system is proposed to handle both stationary and moving targets. Third, a

novel detector fusion method is proposed using the threat priority. Fourth, a computationally simple and

effective method is proposed to cope with hyper-velocity targets.

This paper is organized as follows. Section 2 analyzes the target size and motion to find suitable

detectors. Section 3 discusses the limitations of previous approaches. Section 4 introduces a new

multiple detector fusion-based method. Section 5 explains various performance evaluations and results.

The paper is concluded in Section 6.

2. Analysis of Incoming Targets in NG-APS

A conventional APS aims to detect anti-tank missiles, such as RPG-7, Metis-M, Tow and Hellfire.

Those missiles shows relatively slow speeds (around Mach 1). On the other hand, the recent trend is

moving to a new anti-tank missile system, such as RPG-30 (the first fire is a decoy, and the second is the

true target) or high kinetic energy missiles, like CKEMand HEMi, as shown in Figure 2. In particular,

the kinetic energy missiles are more difficult to detect because of their hyper-speed (over Mach 6). The

normal diameter is approximately 120 mm with a length of 1200 mm. The maximum missile range is

around 5 km, and the missiles should be detected in at least 2 km to remove them.
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Figure 2. Examples of kinetic energy missiles.

The analysis of the imaged target size and motion behavior should be performed to predict the target

size for optimal detector design. The imaged target size can be predicted using camera-target geometry,

as shown in Figure 3. Let h denote the IR detector resolution, α denote the camera field of view (FOV)

and D represent the target distance with the target diameter (d). The predicted target size (x) can be

obtained using Equations (1) and (2). Figure 4 presents the analysis of the imaged target size depending

on the target diameter (d), target distance (D), field of view (α) and image resolution (h). The default

parameters are set as h = 480 pixels, α = 20◦, d = 100 mm, and D = 5000 m. Each parameter

was varied, while others have default values. The imaged target size is below one pixel considering the

possible imaging scenarios. On the other hand, the thermal energy of a point target is dispersed (blurred)

due to diffraction and aberration of the optical system [44]. Therefore, the actual target occupies several

pixels, as shown in Figure 1.

2 ·D · tan(α/2) : h = d : x (1)

x =
h · d

2 ·D · tan(α/2)
(2)

Distance (D)

Detector 
resolution(h)

FOV (α)

Target 
diameter (d)

Figure 3. Target imaging geometry.

The next analysis is target motion in an image according to the incoming angle (θ) and distance (D).

If the geometry between an incoming target and IR camera is as shown in Figure 5a, the target motion

(L) parallel to the image plane is defined as Equation (3) (m/frame). S denotes the target speed (ex.

340 × 6 (m/s)), and f represents the frames per second (ex. 120 Hz). The normal moving distance per

frame is approximately 17 m/frame for a Mach 6 target. The target motion in an image with an incoming

angle (θ) can be calculated using Equation (4). Figure 5b shows the predicted target motion per frame

with respect to the target distance (D) and incoming angle (θ). θ = 0◦ represents the incoming motion

of the line-of-sight (LOS) direction, and θ = 90◦ represents the passing-by target motion. Figure 5c

shows an enlarged graph indicated by the rectangle region in Figure 5b. Note that the incoming target
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(0◦ < θ < 90◦) shows different velocities, such as being stationary at a long distance, sub-pixel velocity

at a mid-distance and pixel-velocity at a near-distance, depending on the incoming angle. The LOS target

(θ = 0◦) shows only stationary motion, and a passing-by target (θ = 90◦) shows pixel-velocity motion.

Other incoming angle targets show stationary, sub-pixel velocity and pixel-velocity.

L =
S

f
· sin(θ) (3)

l =
h · L

2 ·D · tan(α/2)
(4)
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Figure 4. Analysis of an imaged target size depending on (a) target diameter; (b) target

distance; (c) field of view and (d) image resolution.
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Figure 5. Analysis of imaged target motion depending on the incoming angle: (a) geometry

of the incoming target (top-down view); (b) predicted target motion vs. the target distance

(D); (c) enlarged graph.

3. Problems of Previous Studies

3.1. 2D Spatial Filter: M-MSF

The state-of-the-art spatial target detection methods are the scale-invariant (SI) method and Boolean

map visual theory-based method (BMVT) [20,21]. SI shows the optimal detection in terms of the

signal-to-clutter ratio for size varying targets. The method builds a 10–20 scale-space image and

finds local extrema in space and scale. The BMVT constructs many Boolean maps for an intensity

image and four orientation channels and weights each map based on statistics. The final targets are

detected after fusing the intensity map and orientation map. Although these methods show the best

performance in each specific area, they cannot be applicable to the proposed NG-APS, because of the

heavy computational cost. The second best method is the modified mean subtraction filter (M-MSF) [10].

Figure 6 summarizes the basic concept of M-MSF by comparing with the previous MSF. The original

MSF is a point target detector shown in Figure 6a, where an input image is subtracted from the

background image. The MSF-based approach has been deployed in several countries because of its

simplicity and the high detection capability of small targets [6,45]. The MSF, however, produces many

false alarms around thermal noise or salt and pepper noise. The M-MSF modifies the original MSF
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by inserting an S/Nupgrade filter, as shown in Figure 6b. It is a 2D Gaussian filter with coefficient of

[0.1 0.11 0.1; 0.11 0.16 0.11; 0.1 0.11 0.1], an approximated form of real infrared targets. The idea is

similar to the matched filter theory to obtain the maximum signal-to-noise ratio. Therefore, the proposed

M-MSF is conducted as follows. An input image (I(x, y)) is pre-filtered using the filter coefficients

(G3×3(x, y)) to enhance the signal-to-clutter ratio (SCR), as shown in Equation (5) using the matched

filter (MF). The SCR is defined as (max target signal − background intensity)/(standard deviation of

the background). Simultaneously, the background image (IBG(x, y)) is estimated by a 7 × 7 moving

average kernel (MA7×7(x, y)), as expressed in Equation (6). The pre-filtered image is subtracted by the

background image, which produces an image (IM−MSF (x, y)), as shown in Figure 7.

IMF (x, y) = I(x, y) ∗G3×3(x, y) (5)

IBG(x, y) = I(x, y) ∗MA7×7(x, y) (6)

IM−MSF (x, y) = IMF (x, y)− IBG(x, y) (7)

Input 

image

2D Mean Filter

∑
+

-

MSF

∑
+

-

Input 

Image

2D Mean Filter

Filtered 

image

S/N Upgrade

Filter

M-MSF

Filtered 

image

(a) (b)

Figure 6. Basic concept of the modified mean subtraction filter (M-MSF): (a) previous MSF;

(b) modified MSF by inserting an S/Nupgrade filter.

Although the M-MSF can provide a high detection rate with reduced false alarms, the spatial

filter-based approach has a fundamental drawback when targets are located in a cluttered background,

such as the ground or cloud, as shown in Figure 7. If targets are in ground clutter or cloud, the target

shape is lost, which leads to a failure of the spatial target detection.
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Missed

Missed

Figure 7. Limitation of the spatial filter (M-MSF)-based small target detection method.

3.2. 1D Temporal Filter: TCF

The temporal profile-based moving target detection is effective in a cluttered environment. The

well-known methods are the temporal variance filter (TVF) [46,47] and connecting line of the stagnation

points (CLSP) [36,48]. If I(i, j, k) denotes the image intensity of pixel position (i, j) at the k-th image

frame, the TV F (i, j, k) is defined by Equation (8) with a buffer size, n + 1. Because the TVF-based

method detects the targets based on the stripe patterns, it shows high detection performance. On the

other hand, it has limitations, such as the ambiguity of the target position and a sub-pixel velocity

assumption, as shown in Figure 8c. The TCF can overcome the limitation by applying temporal contrast

to the temporal profile, as shown in Figure 8b. The key idea of the TCF is the background signature

estimation by the minimum filter to maximize the signal-to-noise ratio [37]. The TCF (i, j, k) is defined

in Equation (9). The buffer size was assumed to be n + 1, and n frames were used to estimate the

background intensity. As shown in Figure 8d, TCF can solve both the ambiguity of the target position

and the target velocity.

TV F (i, j, k) = var{I(i, j, k − n), I(i, j, k − n− 1), · · · , I(i, j, k − 1), I(i, j, k)} (8)

TCF (i, j, k) = I(i, j, k)− min
m=k−n,k−n−1,··· ,k−2,k−1

I(i, j,m) (9)

The TCF, however, cannot detect stationary targets, such as remote incoming targets or LOS incoming

targets, as shown in Figure 9. The location and size of the incoming target has almost no change at

both 1.19 km and 0.19 km. Therefore, a new target detection scheme is needed to compensate for the

drawbacks of the spatial filter and temporal filter-based approaches.
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(a) (b)

(c) (d)

Figure 8. Basic concept of the temporal filter: (a) test sequence; (b) an example of temporal

profile for a specific pixel; (c) temporal variance filter (TVF) result; and (d) temporal contrast

filter (TCF) result.

Missed Missed Missed

Figure 9. Limitation of the temporal filter (TCF)-based method small target detection method.

4. Proposed Incoming Target Detection by Detector Fusion

As discussed in the previous section, M-MSF and TCF have pros and cons in terms of incoming

target detection in a cluttered background. According to the motion analysis of incoming targets, the

target speed in the image is almost stationary at the beginning. As time passes, the target shows a

sub-pixel velocity and then a pixel-velocity. If the target comes directly (LOS), the speed in the image is

almost zero. Therefore, neither method can work stably.

The key idea stems from how to detect the incoming targets stably with a moderate false alarm rate.

Figure 10 summarize the key idea. The spatial filter (M-MSF) and temporal filter (TCF) have their

own advantages and disadvantages. Furthermore, the drawbacks of each method can be compensated
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using the other method. Therefore, the first idea is to find candidate targets using speed-related multiple

detectors, and the second idea is to find the final targets using threat-priority-based detector fusion.

Spatial Filter 

(M-MSF)

Pros:

- Robust to stationary

target detection

Cons:

- High false alarms due to 

clutters

- Weak detection when 

targets in clutter 

Temporal Filter 

(TCF)

Pros:

- Low false alarms due to 

clutters

- Robust  moving target 

detection in clutter  

Cons:

- Weak to stationary target 

detections 

Complement

Idea
- Propose candidate detection by speed-related multiple detectors

- Final target detection by threat-priority based detector fusion

Basic Concept for Robust Incoming Target Detection

Figure 10. Basic idea for robust incoming target detection by the introduction of

speed-related multiple target detectors and threat priority-based detector fusion.

Figure 11 represents the proposed incoming target system based on these concepts. At the top

functional level, it consists of three parts: basic filters (M-MSF, TCF), speed-related detectors and

detector fusion. Given an input sequence, an M-MSF and two TCFs with different buffer sizes (long-term

and short-term) work in parallel. The stationary target detector produces almost no motion target

using the M-MSF. The sub-pixel velocity target detector locates low speed targets using both long-term

TCF and M-MSF. The pixel velocity target detector generates fast moving targets without spatial filter

information. The candidate target information is merged in the threat-priority-based fusion.

Short-term 

Temporal Filter

(TCF)

Stationary Target

Detector (ID=1)

Threat-Priority 

based Fusion

Sub-pixel Velocity

Target Detector (ID=2)

Pixel Velocity

Target Detector (ID=3)

Long-term 

Temporal Filter

(TCF)

Spatial Filter

(M-MSF)

Figure 11. Proposed incoming target detection system. The system consists of basic filtering

parts (M-MSF, TCF), speed-related detection parts and the detector fusion block.
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4.1. Candidate Detection by Speed-Related Detectors

The stationary target detector consists of an M-MSF-based spatial target detector, as shown in

Figure 12. The spatial targets are detected using a hysteresis threshold constant false alarm detector

(H-CFAR) [49]. The pre-threshold (Thlow) is selected to be as low as possible. The eight-nearest

neighbor (8-NN)-based clustering method is used to group the detected pixels. The sizes of the possible

targets can be estimated by 8-NN clustering. The probing region is divided into the target cell, guard

cell and background cell. The target cell size is the same as the results of low threshold with clustering.

The background cell size is determined to be three- to four-times the size of the target cell. The guard

cell is just a blank region that is not used in both regions and is set as a two- or three-pixel gap. The

second threshold (ThCFAR) in the CFAR can detect the final targets. µBG and σBG represent the average

and standard deviation of the background region, respectively. ThCFAR controls the detection rate and

false alarm rate. The output is target candidate locations with ID = 1. Figure 13 presents the results

of stationary target candidate detection for an incoming target in LOS. In contrast to the TCF, the

M-MSF-based stationary target detector produces the candidate regions successfully.

A probing region is a candidate target if:

SCR(i, j) =
|Tmax − µBG|

σBG

> ThCFAR

(10)

Low 

Threshold

Adaptive 

Threshold

8-NN based

Clustering

Mean, STD Estimation

of Background

ID=1Spatial Filter

(M-MSF)

Stationary Target Detector

Figure 12. Stationary target candidate detector: given the M-MSF filtered image, spatial

targets are detected using a hysteresis threshold constant false alarm (H-CFAR) detector.

The sub-pixel velocity (slow motion) target detector consists of an M-MSF-based spatial target

detector and a long-term TCF-based speed checker, as shown in Figure 14. The long-term temporal filter

(TCFlong) is defined in Equation (9), where the buffer size (n) is approximately 20 frames to capture

small target motion. The candidate target (position: (i, j)) detected by the spatial filter is confirmed if

the TCFlong(i, j) satisfies the following equation. Therefore, the second detector can generate slowly

moving targets considering both motion and shape. The output is target candidate locations with ID = 2.

Figure 15 shows the detection processing flow of the sub-pixel velocity target. The synthetic target is

inserted to move slowly in the image (elevation angle: 2◦, yaw angle: 1◦), as shown in Figure 15a. Details

for this are provided in the experimental section. The M-MSF-based spatial target detector can produce

possible target regions (Figure 15b), and the TCFlong-based temporal target detector can indicate the
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small motion pixels (Figure 15c). The spatial location and temporal motion information are combined

and produce the final sub-pixel velocity target, as shown in (Figure 15d). Note that the false detections

caused by the backgrounds (cloud, ground) can be removed effectively.

A probing region is the sub-pixel velocity target if:

TCFlong(i, j) > Thsub−pixel

(11)

(a) (b)

Figure 13. Example of stationary target candidate detector: (a) incoming target in line of

sight (LOS); (b) stationary target detection results.

Low 

Threshold

Adaptive 

Threshold

8-NN based

Clustering

Mean, STD Estimation

of Background

ID=2Spatial Filter

(M-MSF)

Sub-pixel Velocity Target Detector

Long-term 

Temporal Filter

(TCFlong: n=20)

TCF����(i,j) >

Th���������

Figure 14. Sub-pixel velocity target candidate detector: given M-MSF filtered image, the

spatial targets are detected using an H-CFAR detector. Slowly moving targets are detected

using the long-term TCF information.

The third detector is the pixel velocity detector, which can produces fast motion targets using the

short-term temporal filter (TCFshort) and hysteresis thresholding, as shown in Figure 16. The normal

buffer size (n) is approximately five to capture fast moving targets. The hysteresis thresholding-based

detection is quite simple, but can localize candidate targets. The output is the target candidate locations

with ID = 3. Figure 17 shows the detection flow of the pixel velocity target detector. A sequence

is generated by passing-by a target whose velocity is approximately eight pixels/frame (Figure 17a).

A TCFshort filter generates a pixel map of a fast moving target (Figure 17b). Final detection results

((Figure 17c)) are obtained by applying hysteresis thresholding to the fast motion map.
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(a) (b)

(c) (d)

Figure 15. Example of a sub-pixel velocity target candidate detector: (a) incoming target

(elevation angle: 2◦, yaw angle: 1◦); (b) M-MSF-based target candidate regions; (c) TCFlong

results; (d) results of the proposed sub-pixel velocity target detector.

Low 

Threshold

Selected

Threshold

8-NN based

Clustering

ID=3

Pixel Velocity Target Detector

Short-term 

Temporal Filter

(TCF
short

: n=5)

Figure 16. Pixel velocity target candidate detector: fast moving (pixel velocity) targets are

detected using the short-term TCF and hysteresis thresholding.
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(a) (b) (c)

Figure 17. Example of the pixel velocity target candidate detector: (a) a passing-by target

(elevation angle: 0◦, yaw angle: 90◦); (b) the processing results of TCFshort; (c) the results

of the proposed pixel velocity target detector.

4.2. Final Detection by Detector Fusion

Recently, a psychologist reported synergistic interaction between temporal and spatial expectation

in enhanced visual perception [50]. The information of temporal expectation can bias (modulate) the

target perception. Similarly, the spatial or receptive field information can bias (modulate) the temporal

expectation. In the proposed method, an M-MSF-based spatial detector and TCFshort-based temporal

detector work independently. The second detector, sub-pixel velocity target detector, utilizes both the

spatial and temporal information.

According to the recent sensor and data fusion theory, data fusion is used to enhance target detection

performance [51]. In terms of image processing, there can be pixel-level fusion, feature-level fusion and

decision-level fusion. Pixel-level fusion is usually applied to different sensor images, such as infrared

and visible or infrared and synthetic aperture radar (SAR) to enhance target pixels and reduce clutter

pixels [52]. It is possible to encounter precise image registration problems with fusion data from

different sensors. In feature-level fusion, features are extracted for each sensor and combined into a

composite feature, representative of the target in the field. The SAR feature and infrared feature can be

combined to enhance target detection or classification [53]. The features can be selected and combined

to form a composite vector that can be trained and tested in classifiers, such as SVM and random forest.

Decision-level fusion is associated with a sensor or channel. The results of the initial target detection by

the individual sensors are input into a fusion algorithm.

Our system uses the framework of the decision-level fusion, because three independent channels can

detect velocity-related targets, such as stationary, sub-pixel velocity and pixel velocity. In decision-level

fusion, simple AND operation-based fusion can be a feasible solution. Tao et al. used the AND/OR rule

to fuse a 2D texture image and 3D shape, which produced a reduced error rate [54]. Toing et al. found

moving targets by applying the AND rule to fuse the temporal and spatial information [55]. Jung and

Song used the same AND fusion scheme to fuse spatial and temporal binary information [36]. Fusing

data collected from different sensors requires measurement accuracy (reliability or uncertainty), so that

they can be fused in a weighted manner. The mathematical formulation can be Bayesian inference, fuzzy

logic and belief theory (Dempster–Shafer model) [56]. The Bayesian inference (e.g., particle filtering)
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method computes the probability that an observation can be attributed to a given hypothesis, but lacks

in its ability to handle sensor uncertainty [57]. Fuzzy logic methods use imprecise states and variables

and can provide tools to deal with observations that are not easily separated into discrete segments [58].

The belief theory generalizes Bayesian theory to relax the restriction on mutually exclusive hypotheses,

so that it is able to assign evidence to unions of hypotheses. Kumar et al. used the belief theory to

fuse visible and infrared video for surveillance [56]. The precise belief modeling and sensor reliability

assessment are the key part of the fusion algorithm.

In NG-APS, it is very important to achieve a high detection rate with moderate false alarms for

successful protection. Each detector has its own pros and cons. The logical AND fusion can reduce

false detections, but causes reduced target detection performance. On the contrary, the logical OR fusion

can enhance the target detection rate with increased false detections. Note that both the AND and OR

fusion schemes ignore target attribute information (velocity type) during fusion. In the proposed detector

bank, each detector can find different kinematic targets, such as stationary, slow moving or fast moving

motion. Therefore, weight-based decision fusion is not feasible in this incoming target scenario. If three

detectors produce candidate targets, the fusion system merges the information in the decision level, as

shown in Figure 18. In this paper, a new information fusion strategy, called max fusion, was proposed

using threat-priority-based order statistics, as Equation (12). [IDk, (x, y)k, V k
T ] represents the k-th target

attributes, such as target type (IDk), position ((x, y)k) and threat level (V k
T ). Dk

id=i(x, y) denotes the

threat of the k-th target detected at (x, y) in the i-th detector as Equation (13). The threat level of a

candidate target can be defined depending on the scenarios. This paper uses a target velocity (vki (x, y))

in an image as a quantitative threat measure, because fast moving targets in an image are usually located

near the camera sensor, as shown in the motion analysis (Figure 5).

[IDk, (x, y)k, V k
T ] = max

id

{

Dk
id=1

(x, y), Dk
id=2

(x, y), Dk
id=3

(x, y)
}

(12)

Dk
id=i(x, y) = vki (x, y) (13)

Threat-based 

candidate ordering

Maximal threat

selection

Final 

detection

Threat-Priority based Fusion
Stationary target

(ID=1)

Sub-pixel 

velocity target

(ID=2)

Pixel 

velocity target

(ID=3)

Figure 18. Threat-priority-based detector fusion using threat ordering and max selection.

The proposed threat-priority-based fusion system can provide not only the target location, but also

the threat level of the detected target. Figure 19 presents the effects of detector fusion for an incoming

target. At the initial stage, only the spatial filter works (ID1: yellow square). After several frames, both
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the M-MSF (spatial filter) and TCFlong (temporal filter) are activated. ID2 is selected according to the

threat-priority. At the 19th frame, three detectors produce candidate targets, and the proposed fusion

system selects ID3, which shows the highest threat. In the last row (100th frame), the target enters the

strong ground clutter. Therefore, the stationary target and sub-pixel velocity detector do not work. The

third pixel-velocity detector can produce a moving target that is selected in the fusion system.

Speed related detections Threat-priority based fusion

Initial: 

frame #1

Sub-pixel 

velocity: 

frame #9

Pixel 

velocity: 

frame 

#19

Pixel 

velocity: 

frame 

#100

(Clutter)

ID1: Stationary

ID2: Sub-pixel vel.

ID3: Pixel vel.

Figure 19. Examples of target detection using the proposed threat-priority-based detector

fusion: (Left) before detector fusion; (Right) after detector fusion.
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5. Experimental Results

A test database needs to be prepared to validate the proposed target detection method. The acquisition

of an incoming target in the LOS direction is almost impossible. Therefore, two kinds of synthetic

test sequence generation methods and real IR camera-based incoming target sequences were prepared.

The first synthetic sequence generator is based on the synthesis of a 3D target model to a real IR

image background using physics-based geometric and radiometric modeling [44]. The direction of the

incoming target can be configurable using the elevation angle and yaw angle. The reference line is the

LOS between the target and camera. Therefore, the elevation angle (0◦) and yaw angle (0◦) represent

direct incoming in the LOS direction. Figure 20 shows the 3D target model and its synthesized result.

The synthesized target is very small at a 1.2-km distance. The LOS incoming sequence (Set1-elevation:

0◦, yaw: 0◦), passing-by sequence (Set2-elevation: 0◦, yaw: 90◦) and a general incoming sequence

(Set3-elevation: 2◦, yaw: 1◦) with the target speed of Mach 3 were generated.

(a) (b)

Figure 20. Test DB generation by inserting 3D CAD model into a real IR sequence: (a) 3D

target CAD model; (b) synthesized result: target distance 1.2 km, target radiation: 50 W/sr.

For the second synthetic sequence generator, commercial software, called OKTAL-SE, was used [59].

OKTAL-SE is the only simulator that can synthesize both passive (IR) and active (synthetic aperture

radar) data. Figure 21 summarizes the overall flow of IR synthesis. Given simulation parameters, such

as weather and time, the atmospheric transmittance is calculated. The scenario program can select the

background and target trajectory, and then, SE-RAY-IRsynthesizes the IR sequences using the ray tracing

method. Figure 22 shows the APS scenario and corresponding synthesis IR image (Set4). Two targets

(one is the real target, the other is a decoy) were inserted, and the target distance was 1.23 km.

The first real sequence contains a real antitank missile (Metis-M) incoming near the IR camera (Set5:

Cedip, long-wave IR, 120 Hz, target distance 1.5 km), as shown in Figure 23a. The next real sequence

consists of four F-15Kswith dynamic motion in strong cloud clutter (Set6).
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Figure 21. The flow of synthetic IR image generation using OKTAL-SE.

Hellfire

(a) (b)

Figure 22. OKTAL-SE-based incoming target generation: (a) geometric scenario of

incoming target using the Hellfire missile; (b) mid-wave IR image generation.

(a) (b)

Figure 23. Real target sequence: (a) incoming Metis-Mmissile; (b) maneuvering multi

targets (F-15K).
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The detection rate (DR) and false alarm rate (FAR) defined in Equations (14) and (15) were used

as the comparison metrics. If the distance between a ground truth and a detected position is within a

threshold (e.g., three pixels), then the detection is declared to be correct. The DR represents how many

correct targets are detected among the true targets, and the FAR represents how many false targets are

detected per frame on average.

DR[%] =
Number of correctly-detected targets

Number of true targets
(14)

FAR[#] =
Number of incorrectly-detected targets

Number of frames
(15)

The proposed method was evaluated in terms of the target detection performance for the above

mentioned scenarios. M-MSF [10], TCF [37] and top-hat [9,60,61] were used as the baseline methods,

and the proposed fusion method was compared. The top-hat method was well studied and showed

good performance in terms of the small target detection problem. The recent method, BMVT [21], was

tested on our highly cluttered dataset and showed a poor result. Therefore, the method was excluded

in the evaluation. The related parameters were set as follows: The buffer size of TCFlong was set to

25, and that of TCFshort was set to five. Thlow in M-MSF was set as 10. The THCFAR in M-MSF

was set to six. The THsub−pixel in the TCFlong was set to 10. These parameters were tuned to achieve

the best results, and the same values were used for each detection method. In the top-hat, the same

parameters (Thlow = 10, THCFAR = 6) were used, except the structured element size (3 × 3). Table 1

summarizes the statistical performance comparisons of the proposed method, M-MSF (spatial filter) [10],

TCF (temporal filter) [37] and top-hat [61] in terms of the detection rate and the false alarm rate.

According to the results, the proposed detection method produces the best detection rate with moderate

false alarms. The baseline method, top-hat, showed a relatively moderate detection rate. However, it

generated many false detections per frame, such as 71–118 (#/fr), depending on the background clutter.

Figure 24 provides examples of the sample test results for each dataset. Set1 contains only an LOS

incoming target whose image velocity is zero (pixels/frame). As can be seen, the proposed method

detected the target correctly, and the TCF missed it. The top-hat method generated many false detections

around cloud and ground. Set2 contains a passing-by target, whose motion is right in the image. The

M-MSF fails to detect the target due to background (mountain) clutter. Set3 has an incoming missile

whose initial velocity is zero and increases slowly. Therefore, the TCF missed the initial target. Set4

has two incoming missiles: one is a decoy, and the other is the true target. M-MSF failed to detect,

because a close target increased the threshold. Set5 is an incoming real Metis-M missile sequence.

The M-MSF and top-hat failed to detect it, because the target is located in strong ground clutter. Set6

has four maneuvering targets. The proposed detector showed complementary detection performance in

this case. The top-hat missed a strong target on the edge of cloud clutter. Figure 25 shows the effects

of the proposed velocity-based detector and the final detection by threat-priority-based fusion. Note

that the proposed detection scheme can not only provide a high detection rate, but also identify the

target attributes, such as the stationary target, sub-pixel velocity target and pixel velocity target. This

information can be useful to a tracking system.
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Table 1. Statistical performance comparisons of the small infrared target detection methods

(DR: detection rate; FAR: number of false alarms per frame; PE: position error).

Method
Perf. Set1: Syn Set2: Syn Set3: Syn Set4: Syn Set5: Real Set6: Real

Measure LOS Passing-By Incoming OKTAL-SE Metis-M F-15 Multi

Proposed
DR (%) 100.0 (120/120) 100 (33/33) 100 (110/110) 97.4 (224/230) 99.1 (114/115) 99.3 (3178/3200)

FAR (#/fr) 11 (1320/120) 13 (429/33) 12 (1320/110) 7 (805/115) 7.1 (821/115) 5 (4055/811)

M-MSF [10]
DR (%) 86.7 (104/120) 3 (1/33) 89.1 (98/110) 0 (0/230) 0 (0/115) 92.2 (2915/3200)

FAR (#/fr) 11 (1320/120) 13 (429/11) 12 (1320/110) 7 (805/115) 6.7 (776/115) 5 (4055/811)

TCF [37]
DR (%) 10.0 (12/120) 100 (33/33) 96.3 (106/110) 97.4 (224/230) 99.1 (114/115) 98.7 (3161/3200)

FAR (#/fr) 0 (0/120) 0 (0/33) 0 (0/110) 0 (0/115) 0.4 (45/115) 0.003 (2/811)

Top-hat [61]
DR (%) 97.5 (117/120) 100 (33/33) 94.5 (104/110) 96.9 (223/230) 35.6 (41/115) 80.6 (2580/3200)

FAR (#/fr) 116 (13,920/120) 118 (3894/33) 117 (12,870/110) 92(10,582/115) 71 (8165/115) 76 (61,316/811)

Proposed M-MSF TCF

Set1

Missed

Missed

Missed

Set2

Set3

Missed

Set4

MissedSet5

Set6

Missed Missed

Top-hat

Many false 

detections

Missed

Missed

Figure 24. Performance comparison examples of the small target detection methods for

the six kinds of test sets. The dotted circles represent the ground truth, and the rectangles

represent detection results.
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Figure 25. Effects of the proposed target detection system on the test Set6.

Although the proposed target detection method showed powerful detection capability, it misses some

targets, as shown in Figure 26. In the first example, the missed target is stationary and close to a strong

target. The stationary target detector uses H-CFAR, and the neighboring target belongs to background

clutter, which makes a large standard deviation. Therefore, the stationary target was missed due to the

reduced signal-to-clutter ratio (SCR). In the second case, the fast moving Metis-M missile was missed

due to the large target size (80 pixels). We limited the maximum size to 60 pixels. In the last example,

the proposed method could not detect the dim target. It can be possible to detect the dim target if the

detection threshold is decreased. However, this approach will produce a number of false detections.
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Set4 Set5 Set6
Missed:
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Missed: 
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Figure 26. Examples of failure cases of the proposed method.

6. Conclusions

The next generation active protection system (NG-APS) requires infrared-based small target detection

methods with a high detection capability at the lowest computational cost. Conventional state-of-the-art

small target detectors based on either a spatial filter or temporal filter have their own advantages and

disadvantages. According to the analysis of incoming targets in terms of the image size and motion, they

showed a point-like size and varying image velocity, such as stationary at the firing time, slow motion

at mid-course and fast motion at the final stage. One filter cannot detect those targets. The key idea

is to use three kinds of velocity filters: stationary, sub-pixel velocity and pixel velocity. The stationary

target detector uses only strong spatial shape information. The sub-pixel velocity target detector uses

both the spatial cue and temporal motion cue, because the sub-pixel velocity targets have very small

signal changes that cause false alarms in temporal noise. This problem is overcome using spatial

information. The last pixel-velocity target detection uses only a temporal cue, because fast moving

targets are normally located near the camera, which leads to a strong signal change in the temporal

domain. The three kinds of detection results are fused using the threat-priority-based method. As

validated by six sets of experiments, it can achieve the highest detection rate in various target motion

scenarios. Furthermore, the proposed detection system can provide target attribute information, such as

the motion property. The simplicity of the algorithm with a powerful detection capability highlights its

real-time military applications for NG-APS and other surveillance problems.
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