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Abstract: This paper presents an improved local ternary pattern (LTP) for automatic target
recognition (ATR) in infrared imagery. Firstly, a robust LTP (RLTP) scheme is proposed to
overcome the limitation of the original LTP for achieving the invariance with respect to the
illumination transformation. Then, a soft concave-convex partition (SCCP) is introduced to
add some flexibility to the original concave-convex partition (CCP) scheme. Referring to
the orthogonal combination of local binary patterns (OC_LBP), the orthogonal combination
of LTP (OC_LTP) is adopted to reduce the dimensionality of the LTP histogram. Further,
a novel operator, called the soft concave-convex orthogonal combination of robust LTP
(SCC_OC_RLTP), is proposed by combing RLTP, SCCP and OC_LTP. Finally, the new
operator is used for ATR along with a blocking schedule to improve its discriminability
and a feature selection technique to enhance its efficiency. Experimental results on infrared
imagery show that the proposed features can achieve competitive ATR results compared with
the state-of-the-art methods.

Keywords: local ternary pattern (LTP); robust LTP (RLTP); orthogonal combination of LTP
(OC_LTP); automatic target recognition (ATR); soft concave-convex partition (SCCP)
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1. Introduction

Automatic target recognition (ATR) is an important and challenging problem for a wide range of
military and civilian applications. Since forward-looking infrared (FLIR) images are frequently used
in ATR applications, many algorithms have been proposed in FLIR imagery in recent years [1],
such as learning-based [2,3] and model-based [4-9] methods. Furthermore, there are also many
hybrid vision-based approaches that combine learning-based and model-based ideas for object tracking
and recognition in visible band images [10-12]. The advances in target detection and tracking in
FLIR imagery and the performance evaluation work for the ATR system are referred to in [13]
and [14], respectively.

Different from the learning-based, model-based and hybrid vision-based algorithms, Patel et al.
introduced sparse representation-based classification (SRC) [15] into infrared ATR in [16], and the
experimental results show that it outperforms the traditional ones with promising results.

As one of the learning approaches, the ATR task has also been cast as a texture analysis problem due
to rich texture characteristics in most infrared imagery. Various texture-based ATR methods have been
proposed in recent years [17,18]. In this paper, we focus on local binary pattern (LBP), a simple yet
effective approach, for infrared ATR. It also has achieved promising results in several ATR applications
in recent years, such as maritime target detection and recognition in [19], infrared building recognition
in [20], ISAR-based ATR in [21] and infrared ATR in our previous work [22].

The LBP operator was firstly proposed by Ojala et al., in [23], and it has been proven to be a robust
and computationally simple approach to describe local structures. In recent years, the LBP operator
has been extensively exploited in many applications, such as texture analysis and classification, face
recognition, motion analysis, ATR and medical image analysis [24]. Since Ojala’s original work [23],
the LBP methodology has been developed with a large number of extensions in different fields, such as
the extensions from the viewpoint of improving the neighborhood topology [25-30], the extensions from
the viewpoint of reducing the impact of noise [31-34], the extensions from the perspective of reducing
the feature dimensionality [25,35,36], the extensions from the viewpoint of improving the encoding
methods [22,37-42] and the extensions from the perspective of obtaining rotation invariant
property [25,43-46].

More specifically, we are interested in the applicability of the local ternary pattern (LTP) [31] and
the concave-convex partition (CCP) [22] for infrared ATR. The reason is that the LTP is robust to image
noise, and it has been proven to be effective for infrared ATR. Additionally, the CCP can greatly improve
the performance of the LTP in ATR [22]. In this work, we make several important improvements to
further enhance the performance of LTP and CCP. First, we propose a robust LTP (RLTP) to reduce
the sensitivity of LTP to the illumination transformation. Second, we develop soft CCP (SCCP) to
overcome the rigidity of CCP. Third, the scheme of the orthogonal combination of local binary patterns
(OC_LBP) [36] and a feature selection method [47] are introduced to reduce the dimensionality of the
feature. Based on RLTP, SCCP and OC_LBP, a novel operator is introduced in the paper, which is named
the soft concave-convex orthogonal combination of robust local ternary patterns (SCC_OC_RLTP).
In addition, we also introduce a simple, yet effective blocking technique to further improve the
feature discriminability for infrared ATR. Finally, we evaluate the newly-proposed operator with the
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sCCLTP (spatial concave-convex partition based local ternary pattern) [22] and the latest sparsity-based
ATR algorithm proposed in [16]. Experimental results show that the presented method gives the best
performance among the state-of-the-art methods.

The rest of the paper is organized as follows. We first briefly review the background of the
basic LBP, LTP and OC_LBP. Then, we present the detailed feature extraction step, followed by the
extensive experimental results on the texture databases and the ATR database. Finally, we provide some
concluding remarks.

2. Brief Review of LBP-Based Methods

In this section, we only give a brief introduction of the basic LBP and its extensions, LTP
and OC_LBP.

2.1. Local Binary Pattern

The basic LBP operator is first introduced in [23] for texture analysis. It works by thresholding a
neighborhood with the gray level of the central pixel. The LBP code is produced by multiplying the
thresholded values by weights given by powers of two and adding the results in a clockwise way. It was
extended to achieve rotation invariance, optional neighborhoods and stronger discriminative capability
in [25]. For a neighborhood (P,R), the basic LBP is commonly referred to as LBPp r, and it is written as:

P-1 )
. 1 ifz>0
LBPpRr = s(pi —pe) X 2%, s(x) = - 1
PR ; (p pe) ( ) { 0 otherwise b

where P is the number of the sampling pixels on the circle, IR is the radius of the circle, p. corresponds
to the gray value of the central pixel and p; corresponds to the gray value of each sampling pixel on the
circle. In order to extract the most fundamental structure and rotation invariance patterns from LBP, the

uniform and rotation invariant operator LBPY% [25] is given as:

S s(pi—pe) ifU(LBPpR) <2

. ()
P+1 otherwise

LBP}} = {

where the superscript riu2 refers to the rotation invariant uniform patterns that have a U value (U < 2).
The uniformity measure U corresponds to the number of transitions from zero to one or one to zero

between successive bits in the circular representation of the binary code LBPp i, which is defined as:

U(LBPpr) = |s(pp_1—pe) — s (po — pe) | + 05" 5 (0 — pe) — 5 (pic1 — pe) | 3)

All nonuniform patterns are classified as one pattern for LBP‘};‘%. The mapping from LBPpf to

LBP?L‘%, which has P + 2 distinct output values, can be implemented with a lookup table.

2.2. Local Ternary Pattern

The LBP is sensitive to noise, because a small gray change of the central pixel may cause different

codes for a neighborhood in an image, especially for the smooth regions. In order to overcome such a
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flaw, Tan and Triggs [31] extended the basic LBP to a version with three-value codes, which is called the
local ternary pattern (LTP). In LTP, the indicator s () is further defined as:

P—1 1 z>7
LTPpr, =Y s(pi—p) x 3. s(z) =< 0 |z <7 @)
=0 -1 < —7

where 7 is a threshold specified by the user. In order to reduce the feature dimension, a coding scheme
is also represented by Tan and Triggs [31] by splitting each ternary pattern into two parts: the positive
part and the negative part, as illustrated in Figure 1. Though the LTP codes are more resistant to noise,
it is no longer strictly invariant to gray-level transformations, because 7 is constant in feature extraction

for all neighborhoods and all images in the database.
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Figure 1. Calculation of the LTP with eight neighboring pixels.

2.3. Orthogonal Combination of Local Binary Patterns

In [36], Zhu et al. proposed the orthogonal combination of local binary patterns (OC_LBP), which
drastically reduces the dimensionality of the original LBP histogram to 4 x P by combining the
histograms of [P/4]different four-orthogonal neighbor operators. Experimental results given in [36]
show that OC_LBP is better than uniform patterns LBP]UD,QR in [25]. Figure 2 gives the comparison of
calculating LBP and OC_LBP with eight neighboring pixels.

LBP= OC-LBP1= OC-LBP 220:
S(PU*PL)ZOJF s(po - . )20+ s(pr—pe) ]+
s(p; — ]JL,)2I + s(pr—p, 2+ s(p3—p)2 +
2 o s(ps—p.)2* +
s(py=p)2" + S(pg —p)2° + 3
3 ‘ s(p;—p)2’ +
s(ps=p)2" + s(pe—p)2 +
s(py—p)2t+
s(ps—p)2’ +
s(ps—p)2 +
s(py—p)2’ + ‘ OC-LBP=[OC-LBP1 OC-LBP2] ‘

Figure 2. Calculation of local binary patterns (LBP) and the orthogonal combination of local
binary patterns (OC_LBP) with eight neighboring pixels.
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3. Feature Extraction

LTP and CCP have been proven to be robust for ATR in our previous work [22]. We also adopt them
for feature descriptions in the paper. Furthermore, the robust local ternary patterns (RLTP) and soft
concave-convex partition (SCCP) are presented to solve the flaws of LTP and CCP, respectively.

3.1. Robust Local Ternary Patterns

For LTP, it is not invariant to the gray-level transformations, because the threshold T is a constant
for all neighborhoods. Instead of employing a fixed threshold, we propose a robust method to assign
its value based on the average gray value of the neighborhood. Let w(7, j) be a neighborhood centered
at pixel (¢, 7) in an image, p; ; be the gray value of the pixel (¢, j) and p; ; be the average gray value of
w(i, 7). Specifically, the new threshold T; ; for the neighborhood w(i, j) is defined as follows:

T = [oe X i )

where « is a scaling factor and p; ; is defined as:

P-1
1

R S 6

Hi,j P+1(p7]+kz:;pk) ()

It is evident that the threshold T; ; changes with the variation of the gray levels of the neighborhood
w(i,j). Therefore, it can help the LTP to retain the invariance with respect to illumination
transformation. In this case, the robust LTP (RLTP) is given as:

P-1 I xz>7y
RLTPP,R,Ti’j = Z S (pk — pi,j) X 3k, S(.I') = 0 |.CE| < Tij (7)
k=0 -1 =z S _Ti,j

3.2. Soft Concave-Convex Partition

It has been shown that the neighborhoods with different visual perceptions may have the same binary
code by the LBP-based operators, and the concave-convex partition (CCP) was proposed to solve such
a flaw in [22]. For simplicity, the average gray value () of the whole image is chosen as a threshold to
partition all of the neighborhoods into two categories, the concave and convex category. If u; ; < p, the
neighborhood falls into the concave category, or else, it is classified as the convex category. It can be seen
that the classification results depend entirely on the threshold p for CCP. Therefore, such a classification
is a rigid partition. In this paper, we introduced a soft concave-convex partition (SCCP) definition as
follows to overcome its shortcoming.

Given 3 as a scaling factor, if p; ; < (1—3) x p, the central pixel (g, j) is regarded as a concave pixel
and the neighborhood w(3, j) as a concave neighborhood. If ; ; > (1 4+ f3) x p, the central pixel (i, j)
is regarded as a convex pixel and w(i, j) as a convex neighborhood. When 3 = 0, the SCCP reduces to
the CCP.
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3.3. Orthogonal Combination of Robust Local Ternary Patterns Based on SCCP

Based on OC_LBP and LTP, the orthogonal combination of local ternary patterns (OC_LTP) is
proposed firstly in the paper. Figure 3 gives a calculation example for an eight-pixel neighborhood.
Furthermore, OC_LTP is enhanced by the RLTP and SCCP. The new approach is named the soft
concave-convex orthogonal combination of robust local ternary patterns (SCC_OC_RLTP). Table 1 gives
the dimensionality comparison of OC_LBP, OC_RLTP and SCC_OC_LTP.
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Figure 3. Calculation of the OC_LTP operators with eight neighboring pixels.

Table 1. Dimensionality comparison.

(P,R) = (8,1) (P,R)=(16,2) (P, R)=(24,3)

OC_LBPp 32 64 96
OC_RLTPp i 64 128 192
SCC_OC_RLTPp 128 256 384

3.4. Blocking Methods

According to the report in [22] and [48], it is better to divide the infrared image into patches and
to combine the feature of each patch together for higher performance. Six different blocking methods
have been tested in our previous work [22], and the results show that the blocking method (illustrated in
Figure 4a), which divides a chip into four quadrants that are slightly overlapped, gives more promising
results. Because the objects are basically located in the center of the infrared image, we choose the center
region as an additional block in this paper, which is illustrated in Figure 4b. After that, the features of

the five blocks and that of the whole image are concentrated together for the image description.
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(b)

Figure 4. Two blocking methods to divide an infrared chip into multiple segments.

(a) The chip is divided into four overlapped quadrants; (b) The chip is divided into five
overlapped regions.

3.5. Feature Selection

In our previous work [22], three different multi-resolutions, P = 8and R = 1, P = 16 and R = 2
and P = 24 and R = 3, are combined together for feature description. Obviously, this leads to a sharp
increase of the feature dimensionality. For sCCLTP [22], the dimensionality is 1080 bins ((104 + 72 +
40) x 5 = 1080); while, for the novel operator SCC_OC_RLTP, its dimensionality reaches to 4608 bins
((384 + 256 + 128) x 6 =4608).

A tremendous amount of previous studies have demonstrated that a highly redundant feature
set should have an intrinsic dimensionality much smaller than the actual dimensionality of the
original feature space [49]. Namely, many features might have no essential contributions to characterize
the datasets, and the features that do not affect the intrinsic dimensionality could be dropped. There are
two general approaches of feature reduction, which include feature selection and feature recombination.
The former method chooses a subset of original feature set just like the feature filter to achieve
feature reduction, e.g., LBPU pr in [25], the method based on differential evolution [47] (called FSDE
in the paper) and discriminative features [35]. The latter obtains a new smaller feature set by a
weighted recombination of the original feature set, e.g., independent component analysis (ICA), principal
component analysis (PCA) and their improvements. In this paper, we performed the feature selection
step to get a discriminative features subset from the original high dimensional features. To reach this

goal, our interest focus on the FSDH in [47] for its promising results in feature selection.

3.6. Dissimilarity Measure

Various metrics have been presented to evaluate the dissimilarity between two histograms. As most
LBP-based algorithms, we also chose the chi-square distance as the dissimilarity measure, which is
defined as:

d(H,B) = 8)
i=1
where H = {h;} and B = {b;} (i = 1,2,. .., K) denote the two feature histograms and K is the number

of bins in the histogram.
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4. Experiments and Discussions

In this section, we first evaluate and compare LTP [31] and CCLTP [22], along with the improved
methods, RLTP and SCCLTP (Soft Concave-Convex LTP), respectively, for texture classification.
Then, we focus on OC_LBP, OC_LTP, CC_OC_LTP, OC_RLTP and SCC_OC_RLTP to examine their
effectiveness for infrared ATR.

4.1. Experiments for Texture Classification

For texture classification, we chose the Outex database [50], which has been widely used for the
comparison of LBP-based methods, as the test beds. For the Outex database, we chose Outex_TC_0010
(TC10) and Outex_TC_0012 (TC12), where TC10 and TC12 contain the same 24 classes of textures
collected under three different illuminants (“horizon”, “inca” and “t184”) and nine different rotation
angles (0°, 5°, 10°, 15°, 30°, 45°, 60°, 75° and 90°). There are 20 non-overlapping 128 x 128 texture
samples for each class under each situation. For TC10, samples of illuminant ‘inca’ and an angle of 0° in
each class were used for classifier training, and the other eight rotation angles with the same illumination
were used for testing. Hence, there are 480 (24 x 20) models and 3840 (24 x 8 x 20) validation samples.
For TC12, all of the 24 x 20 x 9 samples captured under illumination “t184” or “horizon” were used as
the test data.

In this experiments, we firstly test the influence of « and 3 on RLTP and SCCLTP. For TC12, the
samples captured under illumination “horizon” (TC12_001) were used as the test data. The curves
of precision vs. o and 3 on TC10 and TC12_001 are shown in Figures 5 and 6, where RLTP(8,1),
RLTP(16,2) and RLTP(24,3) denote RLTPQ}’E, RLTPrlig?2 and RLTPS}&, and SCCLTP(8,1), SCCLTP(16,2)
and SCCLTP(24,3) denote SCCLTPF"?, SCCLTP}¢? and SCCLTP3}%, respectively. The colored boxes in
the curves of different methods in Figures 5 and 6 denote such methods obtaining the best performance
at those points. It can be seen that the optimal values of « and 3 are different for P = 8 and R = 1,
P =16and R = 2and P = 24 and R = 3. The results in Figure 5b show that the features
SCCLTPgY and SCCLTPY’, get the best performance when 3 < 0. While, the feature SCCLTP3}%
gets the best performance when 3 > 0. The results in Figure 6b show that the three features, SCCLTnglz,
SCCLTP}% and SCCLTPS}%, achieve the best performance when 3 < 0. The experimental results in
Figures 5b and 6b also show that the scaling factor (3 may have different values for different features and
image databases.

The comparison between the proposed methods (RLTP and SCCLTP with optimal threshold o
and (3) and the methods in [22] (T = 5 and 3 = 0) is given in Table 2. The improved methods,
RLTP}}, and SCCLTPR':, get an average accuracy improvement of 1% and 0.5% over their original
versions, respectively.

Further, we compare the feature extraction complexity of the proposed operators, SCC_OC_RLTP,
OC_RLTP and CCLTP, in [22]. The experimental results on TC10 are given in Table 3, where the three
different multi-resolutions, P = 8 and R = 1, P = 16 and R = 2 and P = 24 and R = 3 are
concentrated together for feature description, as in [22]. The time complexity of computing the two
thresholds o and 3 was not considered in this experiment, because they can be achieved off-line. It is
clear that the proposed methods have lower computational complexity than CCLTP.
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Table 2. Classification accuracy (%) on the TC10 and TC12 texture sets.

(P9R) = (8’1)

(P’ R) = (16’ 2)

(Pa R) = (24, 3)

TC10 TC12 Average TC10 TC12 Average TC10 TC12 Average
t h t h t h
LTPrIL‘j%2 94.14 7587 73.95 81.32 96.95 90.16 86.94  91.35 98.20 93.58 8942  93.73
RLTPS‘D‘% 93.78 7771 75.58 82.36 9742 91.02 88.70  92.38 9891 9491 9259 9547
CCLTP‘}‘:%% 96.87 86.96 88.10  90.64 98.20 94.53 94.46 95.73 98.75 95.67 9291 95.77
SCCLTP?D‘% 97.37 87.43 88.52 91.11 98.52 95.14 94.75 96.14 98.83  96.11 93.77 96.24

Table 3. The average feature extraction time per image on TC10.

SCC_OC_RLTP OC_RLTP CCLTP

Average feature extraction time (s)

0.012

0.009

0

.013
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4.2. Experiments for ATR

The same FLIR dataset as [22] is used in this paper for ATR. There are 10 different military targets
denoted as 7'1, 12, ..., T'10. For each target, there are 72 orientations, corresponding to aspect angles
of 0°, 5°, ..., 355°. The dataset contains 437 to 759 images (40 x 75) for each target type, in total
6930 infrared chips. In Figure 7, we show some infrared chips for 10 targets under 10 different views. In
the following experiments, the three different multi-resolutions, P = 8and R =1, P = 16 and R = 2
and P = 24 and R = 3, are also concentrated together for feature description as in [22].

~ I I I B I N ) O N
rESYEILIEILICIEIEI KN
g =]-Jesl-J&]- J- - J- |-
- N N R B S ™ (20 B2
- I I N [ N N N ) S B
+« I S I W B I N P TN
~ [ I N SN I B I O )
g ] ~]-ejefinla]~]dfe] -
ol T I s T KIS
gl e i) ] o o] o -] =] -

Vi V2 V3 V4 V5 Vo6 V7 V8 V9 V10

Figure 7. Some infrared chips of the 10 targets (row-wise) in 10 views (column-wise) in the
forward-looking infrared (FLIR) dataset.

4.2.1. Comparison of CC_OC_LTP, OC_LTP, OC_LBP and CCLTP

We evaluate the performance of the operators CC_OC_LTP, OC_LTP, OC_LBP [36] and CCLTP [22]
in this section. We randomly chose about 10% (718 chips), 20% (1436 chips), 30% (2154 chips), 40%
(2872 chips) and 50% (3590 chips) target chips in each target class as training data. The remaining
90%, 80%, 70%, 60% and 50% images in the dataset are set as testing data, respectively. The
mean and variance of the recognition accuracy averaged by 10 trails are given in Figure 8, where
CC_OC_LTP, OC_LTP, OC_LBP and CCLTP denote CC_OC_LTPg}‘lZJrl(),V2 42435 OC_LTPg”fH&2 12430
OC_LBPS*, 6.9 943 and CCLTPEY, 45,043 Tespectively. In can be seen from the experimental
results that:

* The operators CC_OC_LTP and OC_LTP get better results than CCLTP in [22], and CC_OC_LTP
is the best in the four operators.
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» With CCP enhancement, the average accuracy improvement of CC_OC_LTP is 4.94% compared
with OC_LTP. It further was proven that the CCP method introduced in [22] is effective at
improving the performance of the LBP-based methods.

* The OC_LTP gets better recognition performance than OC_LBP [36] and CCLTP [22].

e The CCLTP [22] is better than OC_LBP [36].

* The experimental results also show that CC_OC_LTP, OC_LTP and OC_LBP are robust for
infrared ATR, because they are fairly stable in 10 random trials, as CCLTP.

T
I cc-oc-LTP
o0 Edoc-LTp - A
gs|_Joc-Lp = ]
Bl ccLTP
80F = i
>
2 7% . B B
= ==
Q
8 i
-4 1
= _
<
1 2 3 4 5

Size of training data

Figure 8. Recognition accuracy comparison for CC_OC_LTP, OC_LTP, OC_LBP and CCLTP.

4.2.2. Comparison of RLTP, SCCLTP with LTP and CCLTP, Respectively

In this experiment, we mainly tested the impact of « and 3 on the RLTP and SCCP for infrared ATR,
and the training data and test data are set the same as the above experiment. The curves of the precision
vs. acand (3 for RLTPEY, 4 5,045 and SCCLTPEY, 1 5,4 5 are given in Figure 9, where the colored boxes
in the curves denote that the methods obtain the best performance at that point.

The comparison between RLTPG'Z, (¢, 54 5 (With optimal threshold &) and LTPEY, 145,045 (T = 8)
and SCCLTPLY, 14 5. 045 (With optimal threshold 3) and CCLTPgY, 1 5, 545 in [22] (T=8 and f3 = 0) are
given in Tables 4 and 5, respectively. It can be seen that the RLTP§317‘112+1672 1243 gets an average of nearly
3.4% higher performance than LTPF'?, ¢ 5, 4 5, and the SCCLTPE'?, ¢, 54 5 gets an average of nearly
0.5% higher performance than CCLTPg’“erl&2 +243- The experimental results show that the introduced
schemes are effective for LTP and CCP in infrared ATR.
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Figure 9. The curve of precision vs. & and {3 for ATR.

Table 4. Accuracy of infrared ATR (%) for RLTP and LTP under different training datasets.

Methods 10% 20% 30% 40% 50%
LTPGY, 1621243 51.58 62.67 69.12 73.53 76.71
RLTPE" 1691043 54.22 65.90 72.81 77.14 80.48

Table 5. Accuracy of infrared ATR (%) for SCCLTP and CCLTP under different training datasets.

Methods 10% 20% 30% 40% 50%
CCLTPEY, 691243 60.23 71.97 78.61 82.78 85.74
SCCLTPE, 691243 60.84 72.48 79.16 83.28 86.13

4.2.3. Comparison of Blocking Methods

In this section, the sCCLTP proposed in [22] was chosen as the testing operator to compare the
performance of the two blocking methods given in Figure 4a,b. The training data and test data are set the
same as the above experiment. The recognition accuracy averaged by 10 trials is given in Table 6. The
experimental results shows that the blocking method introduced in the paper (Figure 4b) gets an average
accuracy improvement of 1.3% compared to that of Figure 4a used in [22].

Table 6. Accuracy of infrared ATR (%) for the two blocking methods under different
training datasets.

Blocking Methods 10% 20% 30% 40 % 50%
Figure 4a 66.50 79.05 85.88 89.80 92.25
Figure 4b 68.61 80.32 86.79 91.33 92.81

4.2.4. Comparison of Feature Selection

In this experiment, we randomly selected 10% (718 chips), 20% (1436 chips), 30% (2154 chips), 40%
(2872 chips), 50% (3590 chips), 60% (4308 chips), 70% (4958 chips) and 80% (5607 chips) target chips
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in each target class as training data. The remaining 90%, 80%, 70%, 60%, 50%, 40%, 30% and 20%
images in the dataset are set as testing data, respectively. The operators SCC_OC_RLTPgi,“erl&2 4243
and OC_RLTPg“erm’2 1243 are selected for feature description. Furthermore, the blocking methods
in Figure 4b are chosen in the paper. After that, the features of each block and that of the whole
image are concentrated together for image description, which are denoted as sSCC_OC_RLTP and
sOC_RLTP, respectively. At the same time, the FSDE introduced in [47] is used for feature selection.
The selected dimensionalities for sSSCC_OC_RLTP and sOC_RLTP are 288, 576, 864, 1152 and 1440
bins, respectively.

The recognition accuracy averaged by 10 trials was given in Tables 7 and 8. It can be seen from the

experimental results that:

* The dimensionalities of the selected features are only 6.25%, 12.5%, 18.75%, 25% and 31.25% of
sSCC_OC_RLTP (4608) and 12.5%, 25%, 37.5%, 50% and 62.5% of sOC_RLTP (2304).

* It can be seen from Tables 7 and 8 that, with SCCP enhancement, sSCC_OC_RLTP gets higher
accuracy than sOC_RLTP.

* The experimental results in Table 7 show that the sSSCC_OC_RLTP-1440 (sSCC_OC_RLTP with
1440 dimensionalities by feature selection) gets the best performance when we chose 10%, 20%,
30%, 40% or 50% target chips in each target class as training data and the sSSCC_OC_RLTP-1152
(sSCC_OC_RLTP with 1152 dimensionalities by feature selection) gets the best performance
when we chose 60%, 70% or 80% target chips in each target class as the training data. For the
leave-one-out experiment, sSSCC_OC_RLTP-1152 also gets the best results.

* The experimental results in Table 8 show that the sOC_RLTP-576 (sOC_RLTP with
576 dimensionality by feature selection) gets the best performance in the five different cases.

* The results in Tables 7 and 8 also prove that not all of the features in sSCC_OC_RLTP and
sOC_RLTP have essential contributions to the operators. The feature selection method FSDE
presented in [47] is effective, and it can drop the redundant features effectively.

Table 7. Accuracy of infrared ATR (%) for sSSCC_OC_RLTP by FSDE [47] under different

training datasets.

Dimensionality 10% 20% 30% 40% 50% 60 % 70% 80% Leave-One-Out

288 7071 8228 87779  91.15 9342 9448 9548 96.14 97.94
576 71.64 83.06 8874 91.79 94.03 95.16 96.08  96.72 98.34
864 7212 8350 89.20 9230 9443 9532 9624  96.85 98.43
1152 72779 8450 89.61 9254 9456 95,57 9646 9691 98.61

1440 7291 8477 89.70 9259 9458 9547 9633  96.88 98.37
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Table 8. Accuracy of infrared ATR (%) for SOC_RLTP by FSDE [47] under different

training datasets.

Dimensionality 10% 20% 30% 40 % 50% 60 % 70% 80% Leave-One-Out

288 67.83 7998 86.19 89.58 9227 9348 9471 95.23 97.50
576 69.24 81.61 87.57 9097 9329 9432 95.60 96.36 98.11
864 68.22 80.61 8699 9041 9291 9405 95.17 95.96 97.81
1152 68.18 80.56 86.79 90.27 92776 9397 95.05 95.74 97.66
1440 68.40 80.75 87.04 9037 9287 9410 9522 95.90 97.78

4.2.5. Comparison of sSSCC_OC_RLTP, sOC_RLTP, sCCLTP and SRC-Based Methods

In this section, we compare the performance of the proposed methods, sOC_RLTP and
sSCC_OC_RLTP, with sCCTLP introduced in [22] and two SRC-based methods (Sparselab-lasso and
SPG-lasso) [16], which are also tested in [22]. The training data and test data are set the same as the
above experiment. The dimensionality of 576 for sSSCC_OC_RLTP and sOC_RLTP is chosen in the
experiment. The recognition accuracies of sSCC_OC_RLTP-576, sOC_RLTP-576, sCCLTP and the
sparse-based methods that are averaged by 10 trials are given in Table 9, where we also include the

leave-one-out experimental result for each method. It can be seen from the experimental results that:

* The operator sCCLTP gets better performance than the SRC-based methods (SPG-lasso and
Sparselab-lasso), which have been verified in [22].

* The performance of sSSCC_OC_RLTP-576 is better than sSCCLTP and sOC_RLTP-576, while, its
dimensionality is far less than that of sSCCLTP.

* Because of the lower dimensionality, the time consumed for training and recognition for
SSCC_OC_RLTP-576 and sOC_RLTP-576 is also lower than that of the SCCLTP.

Table 9. Accuracy of infrared ATR (%) for the six methods under different training datasets.

Methods 10%2 20% 30% 40% 5S0% 60% 70% 80%  Leave-One-Out
sSCC_OC_RLTP-576  71.64 83.06 88.74 91.79 94.03 95.16 96.08 96.72 98.34
sOC_RLTP-576 69.24 81.61 87.57 9097 9329 9432 95.60 96.36 98.11
sCCLTP 66.50 79.05 85.88 89.80 9225 9355 94.64 95.29 97.63
SPG-lasso 7545 84.43 8851 91.10 92776 93.87 9454 95.23 96.87
Sparselab-lasso 75.65 8395 8795 90.24 9186 93.04 93.82 9443 95.84

Furthermore, we gave the confusion matrices of sSSCC_OC_RLTP-1152 and sCCLTP corresponding
to the leave-one-out experiment in Figure 10. The results show that the sSSCC_OC_RLTP-1152 result
has only one non-diagonal entry greater than 1% (Figure 10a), while SCCLTP has three non-diagonal
entries greater than 1% (Figure 10b). On the other hand, all of the diagonal entries of sSSCC_OC_RLTP
are greater than that of SCCLTP, which shows the better robustness of sSSCC_OC_RLTP.
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Figure 10. Confusion matrices of the SSCC_OC_RLTP and sCCLTP.

Finally, we give a brief comparison of sSSCC_OC_RLTP, sOC_RLTP and sCCLTP [22] on computing
complexity. Their complexity mainly contains two aspects: one is the feature extraction complexity, and
the other is the training and recognition complexity. The experimental results in Table 3 denote that the
feature extraction complexity of the proposed methods is lower than that of SCCLTP. The training and
recognition complexity for the three methods is associated with their dimensionalities according to the
dissimilarity measure (chi-square distance). By feature selection, the dimensionalities of the proposed
methods may be lower than that of the SCCLTP (1080). The comparison among them is given in
Tables 7-9. The results proved that the proposed methods can achieve better performance with far
less dimensionality than that of the SCCLTP. The feature selection step and the step of obtaining the two
thresholds « and 3 can be implemented off-line. Hence, they do not increase the computing complexity

of the real-time recognition of the infrared target.
4.2.6. The Impact of the Gray Variance on the Recognition Performance

In general, the gray values of the target are larger than that of the background for the infrared chips
that we chose in the experiments. It is obvious that the gray variance of each chip reflects the contrast
between the target and the background. On the one hand, the larger variance denotes greater contrast
between the target and its background. On the other hand, larger variance means the target in the chips is
easier to recognize. Therefore, such contrast reflects the signal-to-noise ratio of the chips to some extent.
In this case, the recognition rates in different variance ranges are able to prove the performance of the
different operators. We will further evaluate the methods’ performance by the gray variance of the chips.
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Table 10. The variance range of each target class.

Target Class 1 2 3 4 5 6 7 8 9 10

number of chips 729 660 691 753 702 733 735 759 437 731
min_variance 17.7 18.9 19.9 12.1 13.0 95 127 131 23.2 13.1
max_variance 143.6 1023 107.1 115.1 121.7 929 82.0 118.8 1199 1044

Firstly, the variance range and the number of chips of each target class is given in Table 10, where
min_variance and max_variance denote the minimum and maximum variance of each class. It is clear
that the variance range is maximum for the first target class and minimum for the seventh target class.
The maximum and minimum of the gray variance are 9.5 and 143.6 for the whole database.

By gray variance, the chips of each class are classified into five different ranges in this experiment,
which are (9.5, 35.0), (35.0, 46.8), (46.8, 58.5), (58.5, 70.3) and (70.3, 143.6). The numbers of chips
in each range are given in Table 11. Further, we give an example chip for each target class in different
variance ranges in Figure 11. For each range, we randomly selected almost 50% chips in each class as the
training data and the remaining as testing data, respectively. The three operators, sSSCC_OC_RLTP-576,
sOC_RLTP-576 and sCCLTP, are selected for feature description. The recognition rate in each range
averaged by 10 random trials is given in Table 12.

Table 11. Number of chips in each range.

Variance Range 9.5, 35.0) (35.0, 46.8) (46.8, 58.5) (58.5,70.3) (70.3, 143.6)

number of chips 1409 1747 1478 1009 1287
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Figure 11. Examples of targets in each variance range.

Table 12. The recognition rate in each range averaged by 10 random trials.

Variance Range 9.5, 35.0) (35.0, 46.8) (46.8, 58.5) (58.5,70.3) (70.3, 143.6)
sSCC_OC_RLTP-576 92.54 93.23 93.85 94.61 95.88
sOC_RLTP-576 91.88 92.39 93.02 93.45 94.17

sCCLTP 90.03 91.39 92.08 92.94 93.62
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It can be seen from Table 12 that the recognition rate is improved gradually with the increase
of the gray variance. The same conclusion can also be obtained from the confusion matrices of
sSCC_OC_RLTP-1152 and sCCLTP in Figure 10. Whether for sSSCC_OC_RLTP-1152 or sCCLTP,
the recognition rate of the seventh class is minimal, and that of the first class is maximal. We think the
variance range is the main reason.

5. Conclusions

This paper presents improved local ternary patterns (LTP) for ATR in infrared imagery. Firstly,
the RLTP and SCCP approaches are proposed to overcome the shortcomings of the LTP and CCP,
respectively. Combined with the advantage of OC_LBP, SCC_OC_RLTP is further introduced based
on RLTP and SCCP. Then, a simple, yet effective, blocking scheme and a feature selection method are
introduced to enhance its efficiency for ATR in infrared imagery. Experiments show that the proposed

operators can achieve competitive results compared with the state-of-the-art methods.
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