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Abstract: Optical resonant cavity sensors are gaining increasing interest as a potential 

diagnostic method for a range of applications, including medical prognostics and 

environmental monitoring. However, the majority of detection demonstrations to date have 

involved identifying a “known” analyte, and the more rigorous double-blind experiment,  

in which the experimenter must identify unknown solutions, has yet to be performed. This 

scenario is more representative of a real-world situation. Therefore, before these devices 

can truly transition, it is necessary to demonstrate this level of robustness. By combining a 

recently developed surface chemistry with integrated silica optical sensors, we have  

performed a double-blind experiment to identify four unknown solutions. The four 

unknown solutions represented a subset or complete set of four known solutions; as such, 

there were 256 possible combinations. Based on the single molecule detection signal, we  

correctly identified all solutions. In addition, as part of this work, we developed noise 

reduction algorithms. 
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1. Introduction 

Over the past several decades, optical resonant cavities have demonstrated the ability to perform 

biological and chemical detection experiments for a wide range of applications [1–37]. While the initial 

focus was on spherical whispering gallery mode cavities, such as microdroplets [38,39] and silica 

microspheres [13,40], as lithography techniques became more broadly accessible, the variety of shapes and 

materials quickly expanded to include rings [12,41], toroids [10,42,43], photonic crystals [15,26,28,35], 

and many others. Additionally, as interest in pushing the detection sensitivity to the single molecule 

level has increased, the method of performing detection has experienced a rapid growth. While  

the initial demonstrations relied on detecting a refractive index change or fluorescence, more recent 

experiments involved detecting a change in the optical loss of the system [5], a phase change [44], 

back-scatter [6], or optical mode splitting [10,11]. However, the index change approach still remains 

the most straightforward method as it involves the minimum amount of equipment. 

One reason that whispering gallery mode optical cavities are ideally suited for refractometric 

detection is that the optical field is confined in a circulating orbit, allowing it to sample the surface 

multiple times [45]. The number of orbits is directly related to the quality factor, or Q, of the cavity.  

It was this repeated interaction which first inspired researchers to develop these devices into sensors. 

Namely, the sampling results in an amplification of the signal through several distinct mechanisms:  

(1) every interaction acts as a unique detection event (detection is proportional to the number of 

circulations, which is proportional to Q); (2) the detection signal is proportional to the interaction 

strength of the particle and the optical field (detection is related to the intensity of the optical field at 

the surface); and (3) detection is performed by tracking the linewidth (detection is proportional to Q). 

Therefore, even a simple, intuitive analysis of this system leads one to determine that geometry and Q 

play critical roles in the overall sensing signals. 

Given the increased interest in using these devices in diagnostics applications [1], we have 

performed a double-blind experiment at the single molecule level using silica optical resonant cavities. 

This type of experiment is standard practice in the pharmaceutical industry (also called double-blind, 

placebo-controlled) [46,47] and is widely recognized as the most rigorous approach to validate the 

reliability of a sensor’s response because it removes the experimenter’s bias. However, to our knowledge, 

such a study has yet to be performed with ultra-high-Q cavities at the single molecule level to date. 

Namely, unlike previous work in the field of resonant cavity sensing, which injected known solutions 

and demonstrated detection of those known analytes, we have injected unknown solutions, and 

successfully identified their contents based solely on the generated signal. 

2. Experimental Section 

Double-blind experiments are the classic method for verifying a diagnostic device’s ability to 

perform accurate identification of a chemical or biological species. In this type of experiment, a series 

of solutions will be prepared by one researcher (e.g., a, b, c). This series will be given to a second 

person who will mix and re-name the solutions (e.g., 1, 2, 3). They will also create a key that will be 

placed in a sealed envelope until the end of the experiment (e.g., 1 = c, 2 = a, 3 = b). The re-named set 

of solutions will be given to the researchers who are performing the experiment. Once the experiment 
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is over, the researchers email both the first and second set of researchers their guess as to the identity 

of the solutions. At that point, the second person reveals the answers. 

There are several variations on this general paradigm, depending on the complexity or difficulty 

desired. For example, the researchers could be told that each solution is unique. Alternatively, they 

could be given a long list of solutions and told that their solutions are a subset. Depending on the 

amount of information provided to the experimenter, the probability of arriving at the correct answer 

rapidly diminishes. 

2.1. Double-Blind Strategy 

In the present series of detection experiments, we are given a total of eight solutions: (1) four known 

solutions and (2) four unknown solutions. The four known solutions provide a ruler and are labeled 

with their contents: phosphate buffered saline buffer (PBS, 10 mM, pH 7.0, Sigma Aldrich), bovine 

serum albumin (BSA, 66 kDa, Sigma Aldrich), Streptavidin (SA, 60 kDa, Sigma Aldrich), and 

Streptavidin-labelled polystyrene beads (SA-PS beads, 100 nm pre-functionalization, Sigma Aldrich). 

The second set of four solutions is the unknown samples. All reagents (PBS) needed to create the 

dilutions are also supplied. It should be noted that only after the double-blind process is completed are 

we told the material molecular weight and manufacturer. This approach removes any bias. We are told 

that the unknown set of solutions represent either a subset or complete set of the known solutions. 

Based on this paradigm, there are 256 possible combinations. Therefore, it is highly unlikely that  

the correct answer would be arrived at by chance. 

Our approach for identifying the different solutions is outlined in Figure 1. Specifically, it is 

straightforward to determine if a solution contained buffer or SA-PS beads. Determining if a solution 

contained BSA or SA required more finesse, as these molecules are approximately the same molecular 

weight. Therefore, we had to employ a surface functionalization capable of discriminating between 

BSA and SA. We chose biotin for two reasons: (1) it would improve the reliability of the SA-PS bead 

detection and (2) it is extremely robust, thus removing environmental instability as a potentially 

confounding variable. 

 

Figure 1. The decision tree used for differentiating between the four samples. Depending 

on the result from the first experiment using unfunctionalized devices, a second experiment 

using biotin-functionalized devices might be performed to further analyze a sample’s 

contents. This hierarchical approach of prioritizing decision-making is commonly used in 

Artificial Intelligence. 
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2.2. Solution Preparation 

All solutions are provided to the Armani Lab by an independent observer. The four known solutions 

(PBS buffer, BSA, SA, and SA-PS beads) are at a concentration of 1 nM. Extra PBS buffer is also 

given to the Armani Lab to allow dilutions of the four unknown solutions to be made. The remaining 

four solutions are labeled Dog, Cat, Pig, and Cow, and are also at 1 nM. 

A series of solutions for detection experiments are made using serial dilution to 10 aM, 500 aM, 10 fM, 

and 10 pM using the provided PBS buffer. Based on previous work, we focused on the 500 aM and 1 fM 

solutions, and the results from the 1 fM measurements are presented here. The results from the 10 pM 

experiments were also used to cross-verify the results for the Cat solution. For that solution, we were 

concerned that the protein might have precipitated out of the PBS, resulting in an incorrect initial or 

starting concentration. Solutions were stored in the refrigerator until the experiments, at which point 

they were allowed to warm up to room temperature before testing. 

2.3. Device Fabrication and Functionalization 

Two different cavities are used in the present work: microspheres and microtoroids (Figure 2a,b). 

The toroidal cavities are fabricated using the standard three-step method, which is summarized as 

follows [48,49]. First, circular oxide pads are lithographically defined on a silicon wafer. Then, oxide 

microdisks are undercut using xenon difluoride. Finally, toroidal microcavities are formed using a 

carbon dioxide reflow process. Final device diameters ranged from 95 to 105 μm. The silica microspheres 

are fabricated from optical fiber by first removing the protective polymer layer from standard optical 

fiber. Next, it is reflowed in a carbon dioxide laser. Final device diameters ranged from 180 to 200 μm. 

These device diameters are chosen to minimize the radiation losses, which can occur if the device size 

shrinks below a critical radius [50–52]. 

 

Figure 2. Scanning electron microscope image of a (a) toroid and a (b) microsphere 

resonator; (c) Rendering of the testing set-up with key components indicated. The liquid 

chamber consists of a steel holder and a glass cover slip. If a toroid is used in the experiments, 

then the injection port is located on the side. 

To functionalize the surface of the devices with biotin, we use a previously developed NHS-Ester 

chemistry method [53]. In this method, the silica surface is first hydroxylated using an oxygen plasma 

treatment. Then, the surface is aminated using chemical vapor deposition of 3-aminopropyltrimethoxysilane. 

Finally, the devices are incubated in a solution of N-hydroxysuccinimido-biotin in dimethylsulfoxide. 

This process forms stable amide bonds and a uniform layer of biotin on the device surface. However, 
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there are numerous other surface chemistry methods which have been developed and which could have 

been used to perform these experiments [54]. 

2.4. Device Characterization 

Before performing a detection experiment, the quality factor of a device is determined by measuring 

the resonant linewidth or full-width-half-max (FWHM) of the cavity in buffer. A tunable laser 

(Newport, Velocity series) is coupled into a tapered optical fiber, which is brought adjacent to the 

resonant cavity using a nanopositioning stage. The laser is scanned across the resonance, and the 

spectral resolution is determined by the scan range divided by the number of data points acquired by 

the oscilloscope over that range. For the present series of experiments, the total wavelength scan 

ranges from 1 nm to approximately 0.05 nm, and the PCI card acquires 300,000 data points evenly 

spaced over this range. Therefore, the spectral resolution ranges from of 3.334 fm to approximately 

0.166 fm. The evanescent optical field from the taper is coupled into the cavity, and the transmitted 

power is monitored and recorded on a NI PCI high-speed digitizer/oscilloscope with a temporal 

resolution of 250 MegaSamples/sec real-time. 

Both the fiber and the cavity are sandwiched between the sample stage and a coverslip, and the chamber 

is filled with approximately 350 μL of buffer (Figure 2c). The spectra is recorded in the under-coupled 

regime, allowing an accurate measurement of the cavity intrinsic Q [55]. All toroid measurements are 

performed at 633 nm, and all microsphere measurements are performed at 765 nm. All non-functionalized 

cavities have intrinsic Q factors above 10 million at the start of the experiments. 

2.5. Sensing Experiments Procedure 

The coupling is increased for the detection measurements. The output power during the detection 

measurements is greater than 1 mW (633 nm) or 2.3 mW (765 nm). At least 90% of the laser power is 

coupled into the cavity. It is important to note that at these circulating powers, nonlinear phenomena 

such as Raman lasing [56] and opto-thermal broadening [5] have been previously observed in these 

devices operating under these conditions (same size device at the same wavelength in buffer). 

To begin a detection measurement, the background signal is measured to establish the noise level. 

The minimum position and transmission error, the resonance is recorded for approximately 200 s at 10 Hz 

(10 points per second). After recording two noise measurements, the detection measurements are 

started. The LabView program begins recording the position of the peak just before the solution of 

interest is injected. The flow rate of each solution is set to be 50 μL/min. The solution is injected for 

two min, for a total injected volume of 100 μL, and then the flow is stopped. During this time,  

2000 data points are recorded. Then, the liquid chamber is flushed with excess buffer, and the experiment 

is repeated. We chose to flow the solutions across the device surface instead of relying purely on 

diffusion as it this approach allows a more controlled delivery of the material to the sensing device 

surface [57]. 

The results are partially analyzed immediately after the measurement to provide instruction according 

to the design tree outlined in Figure 1 as to the next experiment. After the unknown solutions are tested, 

the known solutions are used as a reference, assuming the device is still operational; namely the Q and 

the circulating power are not degraded and the taper is not broken. 
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2.6. Data Analysis Methods 

The two common approaches for performing resonant cavity detection are: (1) tracking the resonant 

cavity wavelength (x-axis position) and (2) tracking the transmission or coupling (y-axis position).  

It is extremely difficult to track both in parallel using the standard resonant cavity-testing set-up, which 

relies on an external oscilloscope (wavelength tracking) or a power meter (transmission). However, 

when acquiring data at high acquisition speeds and high input powers, changes in coupling can give 

rise to small wavelength changes, leading to a high error rate or background noise. To solve this 

problem, we replaced the external oscilloscope with an integrated PCI high-speed digitizer/oscilloscope 

card. Using this integrated system in combination with a custom LabView data acquisition code,  

we are able to record both the wavelength and the transmission simultaneously. We can then apply a 

post-processing filter and remove all wavelength shift data where the transmission fluctuated by more 

than a predetermined amount. An image graphically explaining this analysis process is shown in Figure 3. 

 

Figure 3. Image of the data analysis path. (a) The resonant wavelength red-shifts as proteins 

bind on the surface. Additionally, the transmission changes due to coupling instabilities; 

(b) if the four results in part (a) are re-plotted on a dual y-axis graph, the relationship 

between the wavelength and the transmission becomes apparent. Additionally, it becomes 

clear that this relationship can convolute the data analysis; (c) by applying a filter to remove 

coupling variations, the relationship between wavelength and time becomes evident. 

Once the variation in coupling is removed from the data, the results are further analyzed by plotting 
the normalized resonant wavelength shift (Δλ), or λi − λo, where λi is the ith resonant wavelength and 

λo is the initial resonant wavelength value. From these results, the instantaneous shift (δλ) is determined 
(λi − λi−1) and plotted as a histogram. However, this histogram includes instantaneous shifts for both the 

binding events and the noise. Therefore, this analysis is performed for both the detection experiments 

and for the control noise measurements. The histogram of the noise is fit to a Gaussian, and the 3σ 

value is determined. This decision represents our focus on optimizing the device and data analysis for 

minimum false-positives. However, it also means that some of our binding events will be excluded 
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from analysis because they will fall within the 3σ value. Finally, the instantaneous shift from the noise 

is removed from the detection results, leaving only the signal from the protein binding. 

3. Results and Discussion 

3.1. Device Selection 

It is well-known that the resonant shift is dependent on the refractive index contrast and the mode 

volume. Recently, it was also demonstrated that the evanescent field extension into the environment 

plays a significant role. In the present series of measurements using two different device geometries, 

we also observe consistency issues, both in the resonant frequency shift due to binding, as well as  

the background noise due to thermal effects. For example, in toroidal cavities, it is possible to achieve 

an athermal condition by balancing the positive thermo-optic coefficient of silica and the negative 

thermo-optic coefficient of water. However, due to the difference in optical mode profile and overlap 

with the environment, this condition is not possible with spheres. This change gives rise to a completely 

different background noise profile and thermal drift behavior. 

Therefore, while the toroidal data or sphere data is self-consistent, comparing between device 

geometries is problematic. Investigations are currently underway to elucidate all of the different 

contributors, both geometry-specific parameters as well as others. However, at this time, it is not 

appropriate to directly compare results between devices given the previous work in the field, which has 

shown these numerous geometry-specific dependencies. As such, to facilitate the discussion of  

the results, we are focusing on the toroid data for the present work. 

3.2. Wavelength Shift and Background Noise 

At the start of every experiment, a background noise measurement is performed, and representative 

instantaneous noise histograms are shown in Figure 4. It is important to note that researchers in this 

field frequently interchange the names instantaneous shift (δλ) and the normalized shift (Δλ) with the 

term resonant wavelength shift. However, as can be seen in Figure 4a,b, these are distinct values and 

represent the results from different calculations. The results in Figure 4b can be more clearly understood 

if plotted as a histogram, where the y-axis represents the number of times that a single δλ value occurs 

(Figure 4c). As expected from a noise data set, it is very symmetric and exhibits a Gaussian distribution 

around the δλ = 0 point. For all sensing measurements, we set the noise threshold at 3 standard deviations 

(3σ) of the mean of this histogram. 3σ accounts for 99.7% of the noise. This experimentally-derived 

value is used to calculate the signal:noise (SNR) for each detection result. This thresholding approach 

works well, assuming a Gaussian noise distribution. 

However, because detection measurements can be performed either during the day or at night, it is 

useful to compare the noise during these two times. The data in Figure 4a–c are taken during the day 

whereas the data in Figure 4d are taken at night. 
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Figure 4. Noise measurements. (a) Normalized resonant wavelength shift (Δλ) measured 

during the day; (b) instantaneous resonant wavelength shift (δλ) of part (a); (c) histogram 

of the values in part (b); (d) histogram of values of an instantaneous resonant wavelength 

shift (δλ) measured at night. 

As can be observed, the noise during the day is significantly higher (nearly twice) than the noise in 

the evening. Given this dependence, the noise is measured for each experiment uniquely. While this 

noise could be attributed to a range of noise sources, given the reproducibility of the data and  

the uniformity of the noise, we believe it is due to the air conditioning, which is reduced in the evening 

due to California energy saving regulations. At the time of these experiments, both lasers and the 

accompanying detectors were under one year old; therefore, noise due to the laser or the grating 

degradation was minimal. These findings inspired several subsequent investigations into the noise 

limitations in these types of experiments and experimental set-ups and alternative methods of analyzing 

the detection signal to circumvent these limitations [44,58,59]. 

3.3. Detection Measurements 

Representative detection results and the resulting histograms from all four unknown solutions are 

shown in Figures 5–8. Each measurement is shown with the noise data set, and the results will be 

discussed individually. 

3.3.1. Cat Solution 

Figure 5a–c is the background noise measurements. Based on a fit to the histogram shown in Figure 

5c, it was determined that the 3σ noise is 0.00502 pm. This value is plotted as dashed lines on Figure 

5b,e. Figure 5d–f is the detection results using an unfunctionalized cavity upon the introduction of the 

Cat solution. During these measurements, the Q and the input power did not change. 
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It is important to note that the background noise was not removed in these measurements, as  

the magnitude of the noise-based shift is similar to that of solution-induced shift. This relationship is 

clearly observed by comparing Figure 5c,f or looking at the dashed lines in Figure 5e. 

As a result, the SNR is approximately 1. An SNR of 1 is conventionally defined in the radar 

community as an undetectable signal. In the present work, that would translate to a “blank” solution, or 

the buffer. Therefore, based on the previously defined decision tree (Figure 1), the Cat solution is buffer. 

 

Figure 5. Cat solution: (a–c) background and (d–f) detection experiments. (a) Background 

wavelength shift (Δλ) results; (b) background instantaneous wavelength shift (δλ) results 

calculated from part (a) data. The dashed line is the 3σ noise level determined in part (c); 

(c) histogram of background δλ results calculated from part (b) data. Based on these 

results, the 3σ noise is 0.00502 pm; (d) wavelength shift (Δλ) upon injection of Cat solution; 

(e) instantaneous wavelength shift (δλ) results calculated from part (d) data. The dashed 

line is the 3σ noise level determined from the histogram shown in part (c); (f) histogram of δλ 

results shown in part (e). The background noise has not been subtracted from the histogram. 

3.3.2. Cow Solution 

Figure 6a–c is the background noise measurements. Based on a fit to the histogram shown in  

Figure 6c, it was determined that the 3σ noise is 0.00429 pm. This value is plotted as dashed lines on 

Figure 6b,d inset, and 6e inset. Figure 6d–f are the detection results using an unfunctionalized cavity 

upon the introduction of the Cow solution. During the injection, the Q and the transmitted power 

steadily decreased, most likely due to the agglomeration of the microparticles on the taper and  

the microcavity. Additionally, an increase in scattering at the surface of the cavity was observed during 

the experiments with a top view optical microscope and camera. This power and Q decrease limited 

the duration of experiments using these solutions. 
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As can be observed in Figure 6, the results from the Cow solution demonstrate two distinctly 

different shifts: a small shift (~0.007 pm) and a large shift (~0.2 pm). We concluded that the small shift 

is due to free streptavidin in the solution and the large shift is due to the SA-functionalized PS bead 

complex. This bi-magnitude shift was un-intended in the initial experimental design; however, it did 

reveal the ability of the method to detect impurities in a solution. This effect was further studied in 

subsequent work, looking into both binding rates and mass transport related effects [60]. Because of 

the dual signal, two different signal:noise calculations should be performed. Based on the raw data,  

for the large bead-streptavidin complex, the SNR is ~47 and for the streptavidin, the SNR is ~2. 

 

Figure 6. Cow solution: (a–c) background and (d–f) detection experiments. (a) Background 

wavelength shift (Δλ) results; (b) background instantaneous wavelength shift (δλ) results 

calculated from part (a) data. The dashed line is the 3σ noise level determined in part (c); 

(c) histogram of background δλ results calculated from part (b) data. Based on these 

results, the 3σ noise is 0.00429 pm; (d) wavelength shift (Δλ) upon injection of Cow 

solution. Inset: Instantaneous wavelength shift (δλ) results calculated from this data.  

The dashed line is the 3σ noise level determined from the histogram shown in part (c);  

(e) wavelength shift (Δλ) during first 30 s upon injection of Cow solution (region indicated 

in green in part (d)), highlighting small shifts. Inset: Instantaneous wavelength shift (δλ) 

results calculated from this data. The dashed line is the 3σ noise level determined from the 

histogram shown in part (c); (f) histogram of δλ results shown in part (d). The background 

noise has been subtracted from the histogram. Both the small and the large shifts are evident. 

3.3.3. Dog Solution 

In initial detection experiments characterizing Dog solution with unfunctionalized devices, shifts of 

approximately 0.01 pm are observed. This magnitude could correspond to either BSA or streptavidin. 
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Therefore, to differentiate between BSA and streptavidin, the Dog solution is tested with a  

biotin-functionalized device. During the injection and detection measurements, the Q and transmitted 

power did not change. 

Figure 7a–c is the background noise measurements using a functionalized device. Based on a fit to 

the histogram shown in Figure 7c, it was determined that the 3σ noise is 0.00552 pm. This value is 

plotted as dashed lines on Figure 7b,e. Figure 7d–f is the detection results. 

As can be observed in Figure 7, the small shifts, which are indicative of small protein binding 

events, are still present. Based on the decision tree outlined in Figure 1, we conclude that the Dog 

solution contains streptavidin. Based on the raw data, the SNR is ~2. 

 

Figure 7. Dog solution: (a–c) background and (d–f) detection experiments. (a) Background 

wavelength shift (Δλ) results; (b) background instantaneous wavelength shift (δλ) results 

calculated from part (a) data. The dashed line is the 3σ noise level determined in part (c); 

(c) histogram of background δλ results calculated from part (b) data. Based on these results, 

the 3σ noise is 0.00552 pm; (d) wavelength shift (Δλ) upon injection of Dog solution;  

(e) instantaneous wavelength shift (δλ) results calculated from part (d) data. The dashed 

line is the 3σ noise level determined from the histogram shown in part (c); (f) histogram of 

δλ results shown in part (e). The background noise has been subtracted from the histogram. 

3.3.4. Pig Solution 

Figure 8a–c is the background noise measurements. Based on a fit to the histogram shown in  

Figure 8c, it was determined that the 3σ noise is 0.00489 pm. This value is plotted as dashed lines on 

Figure 8b,d inset, and 8e inset. Figure 8d–f are the detection results using an unfunctionalized cavity 

upon the introduction of the Pig solution. During the injection, the Q and the transmitted power 

steadily decreased and an increase in scattering on the cavity surface were observed. These effects 
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were most likely due to the agglomeration of the microparticles on the taper and the microcavity. This 

power and Q decrease limited the duration of experiments using these solutions. 

As can be observed in Figure 8, the results from the Pig solution demonstrate two distinctly 

different shifts: a small shift (~0.007 pm) and a large shift (~0.2 pm). We concluded that the small shift 

is due to the presence of free streptavidin in the solution and the large shift is due to the SA-functionalized 

PS bead complex. This bi-magnitude shift was un-intended in the initial experimental design; however, 

it did reveal the ability of the method to detect impurities in a solution. Because of the dual signal,  

two different signal:noise calculations should be performed. Based on the raw data, for the large  

bead-streptavidin complex, the SNR is ~40 and for the streptavidin, the SNR is ~1.5. It is important to 

note that because the Pig and the Cow solutions are both the PS-bead complex, by default, not all of  

the known solutions (buffer, BSA, SA, and PS bead complex) will be in the set of unknowns. 

 

Figure 8. Pig solution: (a–c) background and (d–f) detection experiments. (a) Background 

wavelength shift (Δλ) results; (b) background instantaneous wavelength shift (δλ) results 

calculated from part (a) data. The dashed line is the 3σ noise level determined in part (c); 

(c) Histogram of background δλ results calculated from part (b) data. Based on these 

results, the 3σ noise is 0.00489 pm; (d) wavelength shift (Δλ) upon injection of Pig 

solution. Inset: Instantaneous wavelength shift (δλ) results calculated from this data.  

The dashed line is the 3σ noise level determined from the histogram shown in part (c);  

(e) wavelength shift (Δλ) upon injection of Pig solution (region indicated in green in part (d)), 

highlighting small shifts. Inset: Instantaneous wavelength shift (δλ) results calculated from 

this data. The dashed line is the 3σ noise level determined from the histogram shown in 

part (c); (f) histogram of δλ results shown in part (d). The background noise has been 

subtracted from the histogram. Both the small and the large shifts are evident. 
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3.4. Summary of Measurements 

Table 1 summarizes all of the results and experimental observations. It also includes the prediction 

based on the experimental results and the actual solution from the sealed key. It is notable that  

the experimental results were able to accurately predict all four of the solutions. Based purely on 

probability, there is a 25% chance of identifying any single solution correctly. Given the limited 

information we were provided, the probability of identifying all four correctly is 0.4%. Therefore, this 

level of accuracy is truly based on the sensor’s performance. 

Table 1. Comparison of predicted and actual (known) solutions. 

Solution Buffer BSA SA SA-PS Bead Cat Dog Cow Pig 

Prediction     Buffer SA SA-PS bead SA-PS bead 

Actual     Buffer SA SA-PS bead SA-PS bead 

General 

observations 

and/or 

comments 

which led to 

this conclusion 

No shifts 

over noise 

level; no 

change in 

cavity Q 

δλ ~0.01 pm; 

minimal 

change in Q; 

minimal 

change in 

coupled power 

δλ ~0.01 pm; 

minimal 

change in Q; 

minimal 

change in 

coupled 

power 

δλ > 0.2 pm 

and smaller 

shifts; power 

and Q 

decrease; 

scattering 

observed 

No shifts 

over noise 

level; no 

change in 

cavity Q 

δλ  

~0.01 pm 

δλ > 0.2 pm 

and smaller 

shifts; power 

and Q decrease 

over numerous 

trials 

δλ > 0.2 pm 

and smaller 

shifts; power 

and Q decrease 

over numerous 

trials 

3.5. Circulating Power and Thermal Effects 

As was mentioned in the procedures, the present series of experiments used very high input powers. 

This approach will give rise to very high circulating power or circulating intensity inside the optical 

cavity. Specifically, the circulating power can be analytically calculated as:  

( )2 2
1

circ
eff meff

Q K
P

n R K

λ
π

=
+  

where λ is the resonant wavelength, neff is the effective refractive index, Q is the intrinsic cavity quality 

factor, K is the coupling constant and Rmeff is the effective radius of the mode. Rmeff is related to the 

cavity major and minor diameters. Due to material absorption, temperature gradients are created [61]. 

Therefore, this circulating power can be observed as a change in the resonant wavelength according to: 

( )( )( )
eff

dn
T T

n dT

λλ λεΔ = Δ + Δ  

where dn/dT is the effective thermo-optic coefficient, ΔT is the temperature change, and ε is the 

thermal expansion of the material. Typically, in dielectric systems, it is assumed that the index change 

dominates this equation. However, in certain situations, it has been shown that it is possible to remove 

the index-generated effect by balancing the positive dn/dT of silica with a negative dn/dT material, 

creating a net-zero dn/dT [62–66]. In sensing applications, this null shift is particularly desirable, as  

it will reduce the background signal. As can be seen throughout all of the noise measurements, we 

strived to achieve this neutrality condition by manipulating the optical field overlap between the silica 
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device (positive dn/dT) and water (negative dn/dT). Due to subtle variations in device geometry, we 

observed a range of behaviors, including blue and red shifts as well as the ideal neutrality condition. 

However, the magnitude of these shifts is minor when compared to the shifts that would be observed  

if the device was operating in air, which has a positive dn/dT. 

4. Conclusions/Outlook 

In the present work, we have successfully performed a double-blind experiment verifying the ability of 

optical resonant cavities to detect and to identify single molecules based on resonant wavelength shifts. 

Additionally, we developed several new data analysis methods, enabling sub-linewidth detection limits 

without employing complex experimental techniques, such as heterodyning [42,67] or back-scatter [6]. 

These measurements have already inspired numerous subsequent research efforts into signal optimization 

and noise analysis as well as surface chemistry engineering [54,58,59]. Therefore, in addition to 

impacting the immediate field of resonant cavity biosensing, these findings have already and will 

continue to advance the broader field of biological and chemical sensing. 

Acknowledgments 

The authors would like to thank Heather Hunt (University of Missouri), Simin Mehrabani, and 

Rasheeda Hawk (University of Southern California) for surface functionalization of the devices, 

Matthew Reddick for the development of the LabView program used to remove taper jitter, and  

Hong Seok Choi and Xiaomin Zhang for the fabrication of devices. The authors thank Richard Flagan 

and Jason Gamba (California Institute of Technology), and Ashley Gamba (independent observer) for 

their assistance in the double-blind experiment; namely, making the initial solutions (J.G.), renaming 

them (A.G.), and holding the sealed envelope (R.F.) as well as aiding in the floating experiment design 

(R.F). This work was supported by the National Science Foundation (DBI-0852581 and ENG-1028440).  

Author Contributions 

A.A., C.S. and M.C. conceived and designed the experiments; C.S. and M.C. prepared solutions;  

C.S. and M.C. performed the experiments; A.A.C.S. and M.C. analyzed the data; A.A.C.S. and M.C. 

wrote the paper. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Luchansky, M.S.; Bailey, R.C. High-Q optical sensors for chemical and biological analysis.  

Anal. Chem. 2012, 84, 793–821. 

2. Hunt, H.K.; Armani, A.M. Label-free biological and chemical sensors. Nanoscale 2010, 2,  

1544–1559. 



Sensors 2015, 15 6338 

 

 

3. Erickson, D.; Mandal, S.; Yang, A.H.J.; Cordovez, B. Nanobiosensors: Optofluidic, electrical and 

mechanical approaches to biomolecular detection at the nanoscale. Microfluid Nanofluid 2008, 4, 

33–52. 

4. Baaske, M.D.; Foreman, M.R.; Vollmer, F. Single-molecule nucleic acid interactions monitored 

on a label-free microcavity biosensor platform. Nat. Nanotech. 2014, 9, 933–939. 

5. Shao, L.B.; Jiang, X.F.; Yu, X.C.; Li, B.B.; Clements, W.R.; Vollmer, F.; Wang, W.; Xiao, Y.F.; 

Gong, Q.H. Detection of single nanoparticles and lentiviruses using microcavity resonance 

broadening. Adv. Mater. 2013, 25, 5616–5620. 

6. Knittel, J.; Swaim, J.D.; McAuslan, D.L.; Brawley, G.A.; Bowen, W.P. Back-scatter based 

whispering gallery mode sensing. Sci. Rep. 2013, 3, 2974. 

7. Hawk, R.M.; Chistiakova, M.V.; Armani, A.M. Monitoring DNA hybridization using optical 

microcavities. Opt. Lett. 2013, 38, 4690–4693. 

8. Dantham, V.R.; Holler, S.; Barbre, C.; Keng, D.; Kolchenko, V.; Arnold, S. Label-free detection of 

single protein using a nanoplasmonic-photonic hybrid microcavity. Nano Lett. 2013, 13, 3347–3351. 

9. Wilson, K.A.; Finch, C.A.; Anderson, P.; Vollmer, F.; Hickman, J.J. Whispering gallery mode 

biosensor quantification of fibronectin adsorption kinetics onto alkylsilane monolayers and 

interpretation of resultant cellular response. Biomaterials 2012, 33, 225–236. 

10. He, L.N.; Ozdemir, K.; Zhu, J.G.; Kim, W.; Yang, L. Detecting single viruses and nanoparticles 

using whispering gallery microlasers. Nat. Nanotechnol. 2011, 6, 428–432. 

11. Zhu, J.; Ozdemir, S.K.; Xiao, Y.-F.; Li, L.; He, L.; Chen, D.-R.; Yang, L. On-chip single 

nanoparticle detection and sizing by mode splitting in an ultrahigh-q microresonator. Nat. Photon. 

2009, 4, 46–49. 

12. Robinson, J.T.; Chen, L.; Lipson, M. On-chip gas detection in silicon optical microcavities.  

Opt. Express 2008, 16, 4296–4301. 

13. Ilchenko, V.S.; Maleki, L. Novel whispering-gallery resonators for lasers, modulators, and sensors. 

In Laser Resonators IV; Kudryashov, A.V., Paxton, A.H., Eds.; SPIE: Bellingham, WA, USA, 2001; 

Volume 4270, pp. 120–130. 

14. Avino, S.; Krause, A.; Zullo, R.; Giorgini, A.; Malara, P.; de Natale, P.; Loock, H.P.; Gagliardi, G. 

Direct sensing in liquids using whispering-gallery-mode droplet resonators. Adv. Opt. Mater. 

2014, 2, 1155–1159. 

15. Cubillas, A.M.; Unterkofler, S.; Euser, T.G.; Etzold, B.J.; Jones, A.C.; Sadler, P.J.; Wasserscheid, P.; 

Russell, P.S.J. Photonic crystal fibres for chemical sensing and photochemistry. Chem. Soc. Rev. 

2013, 42, 8629–8648. 

16. Delezoide, C.; Ledoux-Rak, I.; Nguyen, C.T. General approach for the sensitivity analysis and 

optimization of integrated optical evanescent-wave sensors. JOSA B 2014, 31, 851–859. 

17. Guo, Y.; Li, H.; Reddy, K.; Shelar, H.S.; Nittoor, V.R.; Fan, X. Optofluidic fabry-pérot cavity 

biosensor with integrated flow-through micro-/nanochannels. Appl. Phys. Lett. 2011, 98, 041104. 

18. Kim, K.H.; Bahl, G.; Lee, W.; Liu, J.; Tomes, M.; Fan, X.; Carmon, T. Cavity optomechanics on 

a microfluidic resonator with water and viscous liquids. Light Sci. Appl. 2013, 2, e110. 

19. Kukura, P.; Celebrano, M.; Renn, A.; Sandoghdar, V. Single-molecule sensitivity in optical absorption 

at room temperature. J. Phys. Chem. Lett. 2010, 1, 3323–3327. 



Sensors 2015, 15 6339 

 

 

20. Langbein, W.; Chantada, L.; Nikolaev, N.I.; Ivanov, A.; Borri, P. Modelling the response of 

whispering-gallery-mode optical resonators for biosensing applications. In Proceedings of the 11th 

International Conference on Transparent Optical Networks (ICTON 2009), Azores, Portugal,  

28 June–2 July 2009. 

21. Lin, S.; Crozier, K.B. Planar silicon microrings as wavelength-multiplexed optical traps for storing 

and sensing particles. Lab Chip 2011, 11, 4047–4051. 

22. Loock, H.-P.; Wentzell, P.D. Detection limits of chemical sensors: Applications and misapplications. 

Sens. Actuators B Chem. 2012, 173, 157–163. 

23. Martinez-Cisneros, C.S.; Sanchez, S.; Xi, W.; Schmidt, O.G. Ultracompact three-dimensional 

tubular conductivity microsensors for ionic and biosensing applications. Nano Lett. 2014, 14, 

2219–2224. 

24. Morrissey, M.J.; Deasy, K.; Frawley, M.; Kumar, R.; Prel, E.; Russell, L.; Truong, V.G.;  

Nic Chormaic, S. Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other 

particles using optical nanofibers: A review. Sensors 2013, 13, 10449–10481. 

25. Piliarik, M.; Sandoghdar, V. Direct optical sensing of single unlabelled proteins and super-resolution 

imaging of their binding sites. Nat. Commun. 2014, 5, 4495. 

26. Posani, K.; Tripathi, V.; Annamalai, S.; Weisse-Bernstein, N.; Krishna, S.; Perahia, R.; Crisafulli, O.; 

Painter, O. Nanoscale quantum dot infrared sensors with photonic crystal cavity. Appl. Phys. Lett. 

2006, 88, 151104. 

27. Ryckeboer, E.; Bockstaele, R.; Vanslembrouck, M.; Baets, R. Glucose sensing by waveguide-based 

absorption spectroscopy on a silicon chip. Biomed. Opt. Express 2014, 5, 1636–1648. 

28. Smolka, S.; Barth, M.; Benson, O. Selectively coated photonic crystal fiber for highly sensitive 

fluorescence detection. Appl. Phys. Lett. 2007, 90, 111101. 

29. Soteropulos, C.E.; Zurick, K.M.; Bernards, M.T.; Hunt, H.K. Tailoring the protein adsorption 

properties of whispering gallery mode optical biosensors. Langmuir 2012, 28, 15743–15750. 

30. Stiebeiner, A.; Rehband, O.; Garcia-Fernandez, R.; Rauschenbeutel, A. Ultra-sensitive fluorescence 

spectroscopy of isolated surface-adsorbed molecules using an optical nanofiber. Opt. Express 

2009, 17, 21704–21711. 

31. Van Eeghem, A.; Werquin, S.; Vanderleyden, E.; Bienstman, P.; Dubruel, P. Functionalization of 

nanophotonic silicon-on-insulator biosensor chips for real-time DNA detection. In Proceedings of 

the European Conference on Novel Technologies for in vitro Diagnostics (DIATECH 2014), 

Leuven, Belgium, 6–8 October 2014; pp. 34–35. 

32. Ward, J.; Benson, O. Wgm microresonators: Sensing, lasing and fundamental optics with 

microspheres. Laser Photon. Rev. 2011, 5, 553–570. 

33. Ward, J.M.; Dhasmana, N.; Chormaic, S.N. Hollow core, whispering gallery resonator sensors. 

Eur. Phys. J. Spec. Top. 2014, 223, 1917–1935. 

34. Wiersig, J. Enhancing the sensitivity of frequency and energy splitting detection by using 

exceptional points: Application to microcavity sensors for single-particle detection. Phys. Rev. Lett. 

2014, 112, 203901. 

35. Yang, D.; Kita, S.; Liang, F.; Wang, C.; Tian, H.; Ji, Y.; Lončar, M.; Quan, Q. High sensitivity 

and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free 

sensing. Appl. Phys. Lett. 2014, 105, 063118. 



Sensors 2015, 15 6340 

 

 

36. Hawk, R.; Armani, A.M. Label-free detection of 5'hydroxymethylcytosine within cpg islands using 

optical sensors. Biosens. Bioelectron. 2015, 65, 198–203. 

37. Socorro, A.B.; Soltani, S.; Villar, I.D.; Corres, J.M.; Armani, A.M. Temperature sensor based on a 

hybrid ito-silica resonant cavity. Opt. Express 2015, 23, 1930–1937. 

38. Aardahl, C.L.; Foss, W.R.; Davis, E.J. The effects of optical resonances on raman analysis of 

liquid aerosols. J. Aerosol Sci. 1996, 27, 1015–1033. 

39. Eversole, J.D.; Lin, H.B.; Merritt, C.D.; Campillo, A.J. Absorption-spectroscopy using microdroplet 

resonance fluorescence intensities. Appl. Spectrosc. 1994, 48, 373–381. 

40. Rosenberger, A.T.; Rezac, J.P. Evanescent-wave sensor using microsphere whispering-gallery 

modes. In Laser Resonators III; Kudryashov, A.V., Paxton, A.H., Eds.; SPIE: Bellingham, WA, 

USA, 2000; Volume 3930, pp. 186–192. 

41. Yang, J.; Guo, L.J. Optical sensors based on active microcavities. IEEE J. Sel. Top.  

Quantum Electron. 2006, 12, 143–147. 

42. Maker, A.J.; Armani, A.M. Heterodyned toroidal microlaser sensor. Appl. Phys. Lett. 2013,  

103, 123302. 

43. Mehrabani, S.; Kwong, P.; Gupta, M.; Armani, A.M. Hybrid microcavity humidity sensor.  

Appl. Phys. Lett. 2013, 102, 241101. 

44. Cheema, M.I.; Mehrabani, S.; Peter, Y.-A.; Armani, A.M.; Kirk, A.G. Simultaneous measurement 

of quality factor and wavelength shift by phase shift microcavity ring down spectroscopy.  

Opt. Express 2012, 20, 9090–9098. 

45. Matsko, A.B.; Ilchenko, V.S. Optical resonators with whispering-gallery modes-part I: Basics. 

IEEE J. Sel. Top. Quantum Electron. 2006, 12, 3–14. 

46. Pitt, B.; Zannad, F.; Remme, W.J.; Cody, R.; Castaigne, A.; Perez, A.; Palensky, J.; Wittes, J.  

The effect of spironolactone on morbidity and mortality in patients with severe heart failure.  

N. Engl. J. Med. 1999, 341, 709–717. 

47. Sano, M.; Ernesto, C.; Thomas, R.G.; Klauber, M.R.; Schafer, K.; Grundman, M.; Woodbury, P.; 

Growdon, J.; Cotman, D.W.; Pfeiffer, E.; et al. A controlled trial of selegiline, alpha-tocopherol, 

or both as treatment for alzheimer’s disease. N. Engl. J. Med. 1997, 336, 1216–1222. 

48. Armani, D.K.; Kippenberg, T.J.; Spillane, S.M.; Vahala, K.J. Ultra-high-q toroid microcavity on a 

chip. Nature 2003, 421, 925–928. 

49. Maker, A.J.; Armani, A.M. Fabrication of silica ultra high quality factor microresonators. J. Vis. Exp. 

2012, doi:10.3791/4164. 

50. Armani, A.M.; Armani, D.K.; Min, B.; Vahala, K.J.; Spillane, S.M. Ultra-high-Q microcavity 

operation in H2O and D2O. Appl. Phys. Lett. 2005, 87, 151118. 

51. Vernooy, D.W.; Ilchenko, V.S.; Mabuchi, H.; Streed, E.W.; Kimble, H.J. High-Q measurements 

of fused-silica microspheres in the near infrared. Opt. Lett. 1998, 23, 247–249. 

52. Gorodetsky, M.L.; Savchenkov, A.A.; Ilchenko, V.S. Ultimate Q of optical microsphere resonators. 

Opt. Lett. 1996, 21, 453–455. 

53. Hunt, H.K.; Soteropulos, C.; Armani, A.M. Bioconjugation strategies for microtoroidal optical 

resonator. Sensors 2010, 10, 9317–9336. 

54. Hunt, H.K.; Armani, A.M. Bioconjugation strategies for label-free optical microcavity sensors. 

IEEE J. Sel. Top. Quantum Electron. 2014, 20, 6900213. 



Sensors 2015, 15 6341 

 

 

55. Yariv, A. Universal relations for coupling of optical power between microresonators and dielectric 

waveguides. Electron. Lett. 2000, 36, 321–333. 

56. Chistiakova, M.; Armani, A.M. Cascaded raman microlaser in air and buffer. Opt. Lett. 2012, 37, 

4068–4070. 

57. Gamba, J.M.; Flagan, R.C. Flow-enhanced transient response in whispering gallery mode biosensors. 

Appl. Phys. Lett. 2011, 99, 253705. 

58. Cheema, M.I.; Shi, C.; Armani, A.M.; Kirk, A.G. Optimizing the signal to noise ratio of 

microcavity sensors. IEEE Photon. Technol. Lett. 2014, 26, 2023–2026. 

59. Cheema, M.I.; Khan, U.A.; Armani, A.M.; Kirk, A.G. Towards more accurate microcavity sensors: 

Maximum likelihood estimation applied to a combination of quality factor and wavelength shifts. 

Opt. Express 2013, 21, 22817–22828. 

60. Shi, C.; Mehrabani, S.; Armani, A.M. Leveraging bimodal kinetics to improve detection specificity. 

Opt. Lett. 2012, 37, 1643–1645. 

61. Soltani, S.; Armani, A.M. Optothermal transport behavior in whispering gallery mode optical 

cavities. Appl. Phys. Lett. 2014, 105, 051111. 

62. Le, T.; Savchenkov, A.; Yu, N.; Maleki, L.; WH, S. Optical resonant sensors: A method to reduce 

the effect of thermal drift. Appl. Opt. 2009, 48, 458–463. 

63. Choi, H.-S.; Armani, A.M. Thermal non-linear effects in hybrid optical microresonators.  

Appl. Phys. Lett. 2010, 97, 223306. 

64. He, L.; Xiao, Y.F.; Dong, C.; Zhu, J.; Gaddam, V.; Yang, L. Compensation of thermal refraction 

effect in high-Q toroidal microresonator by polydimethylsiloxane coating. Appl. Phys. Lett. 2008, 

93, 201102. 

65. Rokhsari, H.; Spillane, S.M.; Vahala, K.J. Loss characterization in microcavities using the thermal 

bistability effect. Appl. Phys. Lett. 2004, 85, 3029–3031. 

66. Choi, H.S.; Ismail, S.; Armani, A.M. Studying polymer thin films with hybrid optical microcavities. 

Opt. Lett. 2011, 36, 2152–2154. 

67. Lu, T.; Lee, H.; Chen, T.; Herchak, S.; Kim, J.-H.; Fraser, S.E.; Flagan, R.C.; Vahala, K. High 

sensitivity nanoparticle detection using optical microcavities. Proc. Natl. Acad. Sci. USA 2011, 

108, 5976–5979. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


