
Sensors 2015, 15, 5820-5864; doi:10.3390/s150305820

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

Fortified Anonymous Communication Protocol for Location

Privacy in WSN: A Modular Approach

Abdel-Shakour Abuzneid 1,*, Tarek Sobh 1, Miad Faezipour 1, Ausif Mahmood 1 and John James 2

1 Computer Science and Engineering Department, University of Bridgeport, Bridgeport, CT 06604,

USA; E-Mails: sobh@bridgeport.edu (T.S.); mfaezipo@bridgeport.edu (M.F.);

Mahmood@bridgeport.edu (A.M.)
2 Department of Electrical Engineering & Computer Science, United States Military Academy,

West Point, NY 10996, USA; E-Mail: john.james@usma.edu

* Author to whom correspondence should be addressed; E-Mail: abuzneid@bridgeport.edu;

Tel.: +1-203-576-4113; Fax: +1-203-576-4401.

Academic Editor: Leonhard M. Reindl

Received: 19 November 2014 / Accepted: 2 March 2015 / Published: 10 March 2015

Abstract: Wireless sensor network (WSN) consists of many hosts called sensors. These

sensors can sense a phenomenon (motion, temperature, humidity, average, max, min, etc.)

and represent what they sense in a form of data. There are many applications for WSNs

including object tracking and monitoring where in most of the cases these objects need

protection. In these applications, data privacy itself might not be as important as the privacy

of source location. In addition to the source location privacy, sink location privacy should

also be provided. Providing an efficient end-to-end privacy solution would be a challenging

task to achieve due to the open nature of the WSN. The key schemes needed for end-to-end

location privacy are anonymity, observability, capture likelihood, and safety period. We

extend this work to allow for countermeasures against multi-local and global adversaries.

We present a network model protected against a sophisticated threat model: passive /active

and local/multi-local/global attacks. This work provides a solution for end-to-end anonymity

and location privacy as well. We will introduce a framework called fortified anonymous

communication (FAC) protocol for WSN.

Keywords: WSN; anonymity; privacy; source location privacy; sink privacy; contextual

privacy; routing privacy; temporal privacy; traffic privacy; observability; safety period

OPEN ACCESS

Sensors 2015, 15 5821

1. Introduction

Wireless sensor networks (WSNs) consist of many hosts called sensor nodes (SNs). A wireless sensor

device is a simple autonomous host device. It can sense a phenomenon, convert the sensed information

into a form of data, process the data and then transmit the data to a sink or a base-station (BS) for further

usage or analysis. The sensor host is very limited in terms of storage, cache memory, processing and

computing power, communication capabilities and battery lifetime [1–4]. There are many different

applications adopting sensor nodes. However, this work focus on monitoring and tracking applications

where sensor nodes monitor a certain area and track the presence of a certain object of interest such as

an animal in the wildlife, a patient or a doctor in a hospital, or a fellow soldier or a vehicle in the

battlefield. When the sensor node senses the object, it reports data to the sink (or to multiple sinks) either

directly or through other neighboring sensors. One of the most common applications discussed in source

location privacy (SLP) literature is the panda monitoring game [4,5]. When a sensor node detects a

panda in a certain area, it should report via a message transmitted through intermediate nodes to the sink.

In order to protect the panda from hunters or adversaries (ADVs), we need to implement in place an

efficient source location privacy scheme (SLP). In such a scenario, location privacy is much more

important than the confidentiality of the sensed data itself. Source location privacy is even more

important in military, homeland security, and law enforcement, in addition to many other civilian

applications [6]. In addition, base-station location privacy (BLP) is very crucial for every WSN since it

aggregates all the data.

2. Problem Statement

Privacy in WSN is typically categorized into two categories: data privacy and context privacy [7–10].

The data privacy includes data aggregation and data query. The context privacy includes routing

privacy, identity privacy, location privacy and timing privacy. In this work, we shall focus on using

anonymity to provide location privacy, which includes two subcategories, source location privacy

and base-station location privacy. One of the first works to classify context privacy was done by

Kamat et al. [11,12], where they addressed the panda hunter game. They claim that the routing scheme

is responsible for hiding source location of a subject. They have used two metrics to measure SLP: Safety

period and capture likelihood. Safety period is the number of messages a source sends before it is

captured. The capture likelihood is the probability that an adversary can capture the source within

a certain period. There are generally two ways to locate a source using passive attacks: Traffic

analysis [7,13] and packet tracing [7,14,15]. The traffic analysis can determine the source or sink

locations by analyzing the traffic. Packet tracing can also be used to find the source location since

adversaries may use radio-frequency localization techniques to perform a hop-by-hop trace. The

adversary can move quickly during packet trace. It could be used to trace mobile nodes due to its fast

response compared to traffic analysis [7,14]. We provide a framework that can be tested against other

solutions using the following metrics: (i) Security: the probability that the adversary successfully

identifies the source, the intermediary SNs or the sink; (ii) energy cost; (iii) storage and memory cost;

(iv) delivery time; (v) safety period: how long it takes the adversary to capture the first sensor node in

the network. Our proposed framework provides a modular system that could be configured for a variety

Sensors 2015, 15 5822

of network models and for a variety of threat models. The rest of this paper is organized as follows: in

Section 3, we give some background and literature survey. In Section 4, we will explain the suggested

system model, network model, threat model and the traffic model. In Section 5, we will introduce the

anonymity module. In Section 6, we will discuss the module of data authentication and integrity. In

Section 7, we will discuss temporal privacy. In Section 8, we will have a thorough security analysis. In

Section 9, we will have performance analysis and evaluation. In Section 10, we will summarize our work

and suggest some additional development to the framework in the future work.

3. Background and Literature Survey

There are many solutions that have been presented to solve the problems of SLP and BLP. Li et al. [8]

discussed some of the solutions for SLP but they did not aim to create a survey. The comprehensive

survey for SLP was presented in the work by Conti et al. [4], where they categorized the solutions into

eleven groups. They have discussed many solutions and compared them in terms of power consumption,

the attack/threat model, view of the network, exposed information, and efficiency in providing SLP.

They also discussed some issues that each solution exhibits.

Anonymity is an old issue that was discussed for mobile networks, Ad Hoc networks and Internets.

Recently, it has become a concern for WSNs. We have identified solutions for location privacy using

anonymity in WSN. We have included them chronologically in Table 1.

An important solution against a global adversary introduced by Chen et al. [16] called efficient

anonymous communication (EAC) provides sender, link and sink anonymity. We know that anonymity

is not enough to achieve fortified end-to-end privacy. There are some solutions based on fake data

sources where SNs send out fake packets to other nodes within the network. Some literature call them

dummy packets. A fake packet does not contain any real information about any real events but it helps

to obfuscate the real traffic and to divert the adversary by mimicking the presence of a fake source. The

literature shows reasonable solutions using fake sources. Some of them are designed to handle a local

adversary and some of them are suitable for a global adversary. Some of the literature presume a certain

routing scheme, topology, network and threat models. Ouyang et al. [17] introduced three different

solutions to handle the global adversary problem. The first solution is the globally optimal algorithm

(GOA). Each SN has a pseudo random number generator that defines the interval time. The second

solution by Ouyang et al. [17], is the heuristic greedy algorithm (HGA) where SNs follow the same

procedure as in GOA except that the SN does not know the complete topology, but it only has the

information of its location and the seeds of its neighbors. The third solution by Ouyang et al. [17] is the

probabilistic algorithm (PBA) where nodes still follow the procedure of HGA, except that they do not

send fake messages at the end of every interval. It uses probability p to decide whether to send a fake

message or not. The value of p will reduce the communication overhead at the expense of SLP.

We can enhance SLP and BLP by having temporal privacy against the hop-by-hop trace attack or

timing analysis attack [4]. There are some literature addressed this using issuing packet delay techniques.

Hong et al. [18] introduced probabilistic reshaping (PRESH) to counter the adversary that uses timing

analysis techniques and also introduced and upgraded PRESH to be extended probabilistic reshaping

(exPRESH) to counter such a scenario. The SN will delay the packet in its buffer again up to D time.

Kamat et al. [19] introduced rate controlled adaptive delaying (RCAD).

Sensors 2015, 15 5823

Table 1. Solutions for location privacy using anonymity [4]. SAS, Simple Anonymity

Scheme; CAS, Cryptographic Anonymity Scheme; HIR, Hashing-Based ID Randomization;

RHIR, Reverse HIR; APR, Anonymous Path Routing; ACS, Anonymous Communications

Scheme; DCARPS, Destination Controlled Anonymous Routing Protocol for Sensor Nets;

MAQ, Max Query Aggregation; PhID, Phantom ID; EAC, Efficient Anonymous

Communication.

No. Scheme
View of the

Adversary

Anonymity

Technique
Passive Attacks Active Attacks

1 SAS & CAS [20] Global Pseudonyms
Eavesdropping, SN compromise,

limited traffic analysis
-

2 HIR & RHIR [21] Global Pseudonyms Eavesdropping, SN compromise -

3 APR [22] Local Pseudonyms Eavesdropping, hops-tracing SN compromise

4
DCARPS & Global

DCARPS [6]
Global Pseudonyms Eavesdropping, hops-tracing -

5 ACS [23] Local Pseudonyms
Rate monitoring, time correlation,

identity analysis, hops-trace
-

6 MQA [24] Global Aggregation Eavesdropping, hops-tracing Packet injection

7 PhID [4,25] Local Pseudonyms Eavesdropping, traffic analysis -

8 EAC [16] Global Pseudonyms Eavesdropping, traffic analysis
DoS, SN compromise,

Traffic injection

In this work, we shall enhance EAC, the efficient anonymous communicating protocol [16,26]. An

extension to EAC called Enhanced Communication Protocol for Anonymity and Location Privacy in

WSN (E2AC) was presented in [27]. We will call our scheme FAC, a fortified anonymous communication

protocol for WSN. EAC does not handle the pseudonyms synchronization very well. There are many

situations where the system will get unsynchronized. It also could not handle multi-colluding adversaries

and lacks a mechanism for time correlation attack. Most of the other solutions do not handle global or

multi-colluding adversaries. Each of the different solutions focus on certain selected attack scenarios.

Our work is aimed to be comprehensive. We propose a solution against anonymity attacks, temporal

attacks, transmission rate-analysis attacks, and statistical attacks, which altogether will provide a

fortified source and sink location privacy.

4. System, Network, Threat and Traffic Models

In this work, a framework for end-to-end location privacy using anonymity and temporal privacy is

presented. The framework provides the following security elements: Sender anonymity, receiver

anonymity, link anonymity, SLP, BLP, data privacy, safety period, and energy preservation. We use sink

and BS alternatively throughout this work. The system would be fed with inputs such as the nature of

the adversaries in the network, the residual energy in the SNs, the desired lifetime or safety period. We

assume bi-directional links where two nodes are considered neighbors if and only if they can hear each

other [6].The network considers one sink, which collects/aggregates sensed data (stimuli) from all the

SNs. The sink works as an interface for WSN to the wired network [20]. Data packets generated by SNs

are ultimately destined uplink to the sink and never destined to another SN. However, it could go through

Sensors 2015, 15 5824

a multi-hop path. Control packets can be sent from the sink, downlink, to the SNs by unicast or by

broadcast messages. To enhance BLP, the sink acts like any other SN in the network while

communicating with the SNs to make it absolutely indistinguishable. Most of the literature show that the

operation of WSN network goes through two or more phases. However, generally speaking, the WSN

runs in three phases: Pre-deployment phase, setup phase, and communication phase. We assume that the

SNs have the ability to obfuscate the addresses at the MAC level header [20,28]. All sensors are time

synchronized using time synchronization protocol [20].

The WSN will need a protocol for network topology discovery that allows the sink to view the global

topology of the network without revealing the location of the sink [6]. The adversary nodes have very

strong capabilities compared to the SNs. They are resource-rich; sufficient energy supply,

computation/processing capabilities, and unlimited storage memory. An adversary could run both

passive and active attacks. We presume Kerchhoff’s Principle [29] for our framework, where the

adversary knows everything about the system except the keys and IDs. The framework will be able to

handle both passive and active attacks. We presume that only few compromised nodes could coexist at

one time due to the implementation of intrusion detection system (IDS) [16,30–33]. We assume a global

adversary, which can monitor the traffic of the entire network and can determine the node responsible

for the initial transmission, as in Figure 1.

Figure 1. The view of adversary in WSN: local, global and multi-local.

Assuming a global adversary means: (a) the worst-case scenario for area coverage where colluding

sensors can cooperate to cover the whole network area [34]; and (b) the worst-case scenario for timing

where the coverage area of the adversary is not known to the privacy protocol at any time [34]. We also

assume that the adversary is capable of observing transmissions over extended periods. It is, however,

not able to break the encryption algorithms or the hash functions used for securing data during

transmission. We presume abundant traffic where sensors detect and transmit many packets such as in

the applications of environment monitoring. Such networks can resist global eavesdroppers easily

comparted to scarce traffic networks due to the volume of transmissions that could happen at one time.

The framework is built of many blocks of functions and protocol. We have adopted some of the solutions

provided in the literature such as solutions for localization and time synchronization. Figure 2 provides a

Sensors 2015, 15 5825

list of all the blocks that we have provided solutions for and the blocks that we have adopted. The BS will be

able to control the network by assigning the value of different parameters.

Figure 2. Adopted and provided modules for the framework.

5. Module I: Anonymity

The communication process is divided into three phases, namely: Pre-deployment phase, setup phase

and communication phase.

5.1. Pre-Deployment Phase

Prior to actual distribution of the SNs in the field of application, the SNs need to be tested, fully

charged, and preloaded with some parameters. We will use subcase letters i and j to describe source and

intermediary nodes consecutively. We will use BS to describe the sink or the base station. Table 2

summarizes all the parameters and terms used in this work.

Table 2. Reference of important parameters and terms used by FAC.

Notation Definition Source

IDi ID of sensor i Preloaded

ai Random number shared between SNi & BS Preloaded

bi Random number shared between SNi & neighbors Preloaded

ci Random number shared between SNi & neighbors Preloaded

Sensors 2015, 15 5826

Table 2. Cont.

Notation Definition Source

H1 Hash function to create pseudonyms and the keys Preloaded

H Hash function to create data digest Preloaded

ki↔bs Pair-wise key shared between SNi & BS Preloaded

kbi Broadcast key for SNi Preloaded

fkbi Fake broadcast key for SNi Preloaded

N Number of SNs in WSN Learned

Ni Number of neighboring for SNi Calculated

HCi↔bs Hop-count between SNi & BS Learned

PIDi Pseudonym ID shared between SNi & BS Calculated

BPIDi Broadcast pseudonym ID Calculated

ai↔j Random value shared between SNi & SNj Calculated

ki↔j Pair-wise key shared between SNi & SNj Calculated

OHPID i↔j Pseudonym ID shared between SNi & SNj Calculated

APIDi ACK pseudonym ID for SNi Calculated

FBPIDi Fake broadcast pseudonym ID Calculated

Ti Table in SNi for shared parameters Calculated

TIME_STAMP Time stamp Calculated

SEQ_NO Sequence number for a message Calculated

TTL Time to live Calculated

MCG_LGTH Message size Calculated

𝚫𝒓𝒆𝒔𝒊𝒅𝒖𝒂𝒍 Residual energy Calculated

 XOR Operation Operation

|| Concatenation operation Operation

5.2. Setup Phase

It is typical to presume the WSN is considered secure for some short period after the deployment of

sensors and before the steady communication phase. Zhu et al. [35] presented that WSN has a lower

bound on the time interval (Tmin) before the adversary is able to compromise a SN. During this time, the

sensors can communicate and exchange all needed information safely. The sink needs to know the

location of all the SNs participating in the WSN. Likewise, the SNs need to know their relative locations

to the sink and to their neighbors. There are many localization schemes which, are proposed in the

literature [16,20,36,37]. We presume the network will adopt one of the available efficient localization

schemes. Localization allows each SN to know its smallest hop-count to the BS (HCi↔bs).

5.2.1. Creating Pseudonyms

The key idea is to use pseudonyms instead of using real IDs for the SNs and the BS during

communication. Therefore, one disposable pseudonym per one transmission is used. This way, the ADV

cannot trace back to the source using multiple messages containing the real ID. There are five kinds of

transmissions that could happen in the WSN: (i) Multi- hop transmission between SNi and BS;

(ii) transmission between two sensor neighbors i and j; (iii) broadcast sent by SNi or BS;

(iv) acknowledgement; and (v) fake broadcast. The process starts by creating a pseudonym ID for each

SNi, we call it for short (PIDi) which is computed using Equation (1):

Sensors 2015, 15 5827

PIDi = H1(IDi  ai) (1)

The SNi can calculate the broadcast pseudonym ID (BPIDi) according to Equation (2):

BPIDi = H1(IDi  bi) (2)

The SNi can calculate the fake broadcast pseudonym ID (FBPIDi) according to Equation (3):

FBPIDi = H1(IDi  ci) (3)

SNi should, by now, know its entire neighbor set (Ni). SNi will send a broadcast discovery message

(Mdiscovery), to exchange parameters with all one-hop neighbors. The format of the message is stated in

Equation (4):

Mdiscovery = Kdis(TTL || IDi || ki↔bs || kbi || fkbi || ai || bi || ci || Δi || HCi↔bs) (4)

where TTL should be 1 for this transmission. Kdis is a shared common encryption key to secure the

discovery message. SNi will receive also a similar broadcast message from SNj and from all other

neighbors. Both SNi and SNj will calculate a new random value (ai↔j) according to Equation (5):

ai↔j = H1(IDi  IDj) (5)

Both SNi and SNj will calculate also a new pair-wise key ki↔j according to Equation (6):

ki↔j = H1(ki↔bs  kj↔bs) (6)

SNi also calculates broadcast pseudonym ID for SNj (BPIDj) according to expression Equation (2)

since SNi has already received the values of IDj and bj through Mdiscovery. It also calculates the one-hop

pseudonym ID (OHPID i↔j) shared between SNi and SNj as expressed in Equation (7):

OHPID i↔j = H1(ai  aj) (7)

Finally, acknowledgement pseudonym ID for SNi (APIDi) will be calculated according to Equation (8):

APIDi =H1(IDi) (8)

SNi will create a table (Ti) which contains the shared values with the neighbors as listed in Table 3.

In conclusion, we have replaced the ID with quintuple pseudonyms to reference the SN during

the communication.

Table 3. Shared values among sensor neighbors. If SNi has Ni neighbors, then Ti will have Ni tuples.

Information in Ti Per Each Neighbor Tuple for SNj

Shared random number ai↔j

Shared broadcast random number bj

Shared fake broadcast random number cj

Shared broadcast key BPIDj

Shared fake broadcast key FPIDj

Shared one-hop key ki↔j

Current one-hop pseudonym ID OHPID i↔j

Link direction linki→j

Residual energy level Δj

Sensors 2015, 15 5828

5.2.2. Deleting Security Information

After storing all required pseudonyms, parameters and keys in Ti, it would be the time to delete all

unnecessary information from SNi memory for the purpose of security [27]. In addition, it will release

some memory storage space [16,26]. Most importantly, SNi will delete IDi and HCi↔bs, which could be

critical information for the adversary. In addition, SNi shall delete all discovery messages.

5.3. Communication Phase

During the communication phase, when sensing and sending data to the BS takes place, there are

seven operations that continue until network lifetime ends. These operations are: (i) Sense and send

a message to a neighbor; (ii) forward a message hop-by-hop; (iii) broadcast a real message;

(iv) acknowledgement; (v) broadcast a fake message; (vi) SN removal; and (vii) SN addition. A SN will

have three roles, in terms of data transmission, during the communication phase: (i) Role as a sensor;

(ii) as a message forwarder; and (iii) as a broadcaster. In the following sections, we will use SNi as a

source node and SNj as a neighbor to the source.

5.3.1. Transmission as a Sensor

When SNi senses data, it needs to send a message hop-by-hop to the BS. The SNi only recognizes

itself by its (PIDi), and the BS will recognize the source of the message by its PIDi as well. Thus, the

PIDi of the source needs to be included in the message until the BS receives it. Consequently, the PID

of a sensor will be updated after every transmission. The SNi needs to select one neighbor from Ni to

forward the message to it. The selection process goes through a probabilistic protocol, which guarantees

that SNi does not use one neighbor all the time when forwarding its data; first, for routing privacy, and

second for increasing the lifetime of the WSN. SNi will form the message in the following format:

Mi→j = OHPIDi↔j || Eki→j (PIDi || Eki↔bs (Di)) (9)

where Di includes the sensed data. Once SNi knows that the message (Mi→j) is delivered to the the

neighbor, it needs to dispose of the current pseudonym PIDi and issue a new one for the next transmission

as indicated in Equation (10):

PIDi = H1(PIDi  ai) (10)

In addition, both SNi and SNj will dispose of the current OHPIDi→j and issue a new one for the next

communication between the two neighbors according to Equation (11):

OHPIDi→j = H1(OHPIDi→j  ai→j) (11)

The message (M) will then be reformatted by the recipient SNj and again forwarded to the next node,

say SNr, and so on, until it gets to the BS. If SNj was the BS, then the BS uses the shared one-hop key

between the sensor and the BS, to decrypt the data and to get the PIDi, which the BS can use to recognize

the source SNi. Only at this point of time, BS can update the value of PIDi of SNi. It also reads the data

(Di) which the BS can decrypt using ki↔bs.

Sensors 2015, 15 5829

5.3.2. Transmission as a Forwarder

When SNi sends the message one-hop uplink to the neighbor SNj, then SNj needs to forward the

message to another intermediary node. Upon receiving Mi→j, SNj will match OHPIDi→j in its table, Tj.

If there is no match, then the message definitely is not addressed for SNj and it will be dropped

immediately. If it matches, then the message is decrypted using ki→j. The message will be forwarded to

SNr after (M) is reformatted as in Equation (12):

Mj→r = OHPIDj↔r || Ekj→r (PIDi || Eki↔bs (Di)) (12)

Right after the data is received by SNj and forwarded to the next one-hop SNr, the SNj updates the

pseudonym OHPIDi↔j. SNj now is ready to exchange another message with SNi using the new

pseudonym OHPIDi↔j. However, SNj is not yet ready to send data to SNr since SNr does not update the

OHPIDj↔r until (Di) is forwarded to the next hop, say NSv. See Figure 3 for the sequence of transmissions

for a message from SNi to the BS.

(a)

(b)

(c)

Figure 3. The sequence of a message transmission from SNi to the BS. (a) SNj receives a

message from SNi; (b) SNj forwards the message to a neighbor SNr; (c) BS receives the

message and processes it.

SNj

SNvSNu

SNi

SNr

Mij = Padding || OHPIDij || Ekij (APIDi || PIDi || Ekibs (Di))

OHPIDij = H(OHPIDij  aij)

Receiving Acknowledgement from SNj (Mjr)

PIDi = H(PIDi  ai)

BS

time

SNi

SNv

SNu

SNj

SNr Mjr = APIDi || OHPIDjr || Ekjr (APIDj || PIDi || Ekibs (Di))

OHPIDij = H(OHPIDij  aij)

Sending Acknowledgement to SNj (Mrbs)

BS OHPIDjr = H(OHPIDjr ajr)

time

Mrbs = APIDj || OHPIDrbs || Ekrbs (APIDr || PIDi || Ekibs (Di))

OHPIDrbs = H(OHPIDrbs arbs)

BS Sends Aacknowledgment to SNr

SNi

SNu

SNj

SNr

BS

SNv

PIDi = H(PIDi  ai)

OHPIDjr = H(OHPIDjr ajr)

time

Sensors 2015, 15 5830

5.3.3. Acknowledgement

As expected in data networks, message could be lost or could be corrupted. In either case,

retransmission is required. Because SNs change PIDs after each transmission, synchronizing PIDs is

crucial. Updating the pseudonyms depends on successful message delivery. Ideally, the source should

update the pseudonyms only after making sure the BS receives the data. However, the lack of direct

connection between the source and the BS makes it a bit complicated process.

The BS cannot send direct acknowledgement to the source if it is multiple hops away. We have to

depend on multiple acknowledgements along the path between the source and the BS. SNi needs to

calculate the Acknowledgement pseudonym ID (APIDi) according to Equation (13):

APIDi = H1(APIDi  bi) (13)

The message will be sent out to the neighbor with the current value for APIDi. Thus, we will rewrite

Mi→j as it appears in Equation (14):

Mi→j = Padding || OHPIDi↔j || Eki→j (APIDi || PIDi || Eki↔bs (Di)) (14)

Padding is added to make sure all the one-hop messages have the same size to prevent size correlation

attacks. When SNj receives the message, it will reformat the message as in expression Equation (15) and

then send it to SNr:

Mj→r = APIDi || OHPIDj↔r || Ej→r (APIDj || PIDi || Eki↔bs (Di)) (15)

The transmission of Mj→r should be heard by all the neighbors including both SNi and SNr. If SNi

hears the message and reads (APIDi), the SNi knows that Mi→j was received correctly by SNj. Only at

this time, SNi updates the value of OHPIDi↔j. PIDi will get updated, as well, since SNi is the source of

the message. This is exhibited in Figure 4. Here are two scenarios:

Scenario 1: The packet sent by SNi is lost or got corrupted. In this case, SNj considers nothing

happened, so it will not forward any message onward. Meanwhile, SNi will wait for () time to expire.

It will send the message again with updated APIDi. Once the message is acknowledged according to the

procedure explained earlier, then PIDi, OHPIDi and APIDi will be updated. If it is intermediary SN, only

OHPIDi and APIDi is updated as exhibited in Figure 5.

Scenario 2: SNj receives the packet correctly; the new packet Mj→r is sent out which contains the

acknowledgement (APIDi), and SNj updated the value of OHPIDi↔j. However, SNi does not hear the

forwarded message Mj→r within time (). At this moment SNi does not know for sure if the message was

delivered (resembles scenario 1), or the acknowledgement is lost. It has to account for the worst case. A

copy of the message will be retransmitted to SNj with the current OHPIDi and updated APIDi. SNj can

recognize the message because of the value of old OHPIDi. After receiving the retransmitted message,

it now sends a direct acknowledgement to SNi as in Equation (16).

ACKij = APIDi|| Padding (16)

Sensors 2015, 15 5831

Figure 4. Using APIDi for acknowledgement with no errors.

Figure 5. Acknowledgement for a message with errors.

Figure 6 shows the process. BS is treated similar to a normal SN, so it has to acknowledge every

message it receives. After the message is delivered to the BS, and after the message is acknowledged,

the PIDi (of the source) will be updated on the BS tables while it has been already updated in the sensor

itself after the first acknowledgement.

Figure 6. Handling lost acknowledgement.

BSSNj SNu
BSSNf

Time

SNfSNuSNjSNi

Update PIDi &OHPIDi-j Update OHPIDi-j

Update OHPIDj-u Update OHPIDj-u

Update OHPIDu-f Update OHPIDu-f

Update OHPIDf-bs

&PIDi

Update OHPIDf-bs

Mi

Mj

Mf

Mu

ACKbs

7

BSSNj SNu
BSSNfSNfSNuSNjSNi

Update PIDi &OHPIDi-j Update OHPIDi-j

Update OHPIDj-u Update OHPIDj-u

Update OHPIDu-f Update OHPIDu-f

Update OHPIDf-bs

&PIDi

Update OHPIDf-bs

Mi

Mj

Mf

Mu

ACKbs

Mi

Time out

ACKj

Time

88

Update PIDi &OHPIDi-j Update OHPIDi-j

Update OHPIDj-u Update OHPIDj-u

Update OHPIDu-f
Update OHPIDu-f

Update OHPIDf-bs

&PIDi

Update OHPIDf-bs

Mi

Mj

Mf

Mu

ACKbs

Time out

Mi

ACKj

BSSNj SNu
BSSNfSNfSNuSNjSNi

Time

Sensors 2015, 15 5832

Both the SNi and the BS will be ready to exchange a new message. As long the new message does

not reach to the BS before the old PIDi is updated, the system will remain synchronized. This way, we

have a possible window of one message only. We propose implementing a sliding window mechanism

as exhibited in Figure 7 [27]. For each sensor, we can have a window of (W) slots.

Figure 7. Sliding window for received PIDs [27].

5.3.4. Transmission as a Broadcaster

Typically, the BS is required to broadcast a message for control and management purposes. Likewise,

a sensor might need to broadcast a message to the BS or to the neighbors for network setup, maintenance

and other management issues. The framework requires keeping all the messages indistinguishable

throughout the network, so all the messages need to have the same size. Each SN is preloaded with a

broadcast key (kbi) and assigned broadcast pseudonym (BPIDi). The broadcast message sent by SNi is

formatted as in Equation (17):

Mb = Padding || BPIDi || Ekbi(Db) (17)

All the neighbors will receive the broadcast message from a source SNi. SNi and the recipients will

update BPIDi according to Equation (18).

BPIDi = H1(BPIDi  bi) (18)

Upon receiving the broadcast message (Mb), SNj decrypts the message using (kbi) stored in the table

(Tj). It then encrypts it again using (kbj) and broadcasts (Mb) to its one-hop neighbors set (Nj) as in

Equation (19):

Mb = BPIDi || BPIDj || Ekbj(Db) (19)

When the BS receives a broadcast message, it is ultimately the destination, so intuitively it does not

need to broadcast the message again. Our proposed framework assumes that the BS behaves similar to

a normal sensor. To maintain this pre-course, we require the BS to broadcast the message again for

acknowledgement purpose. Thus, we introduce the limited broadcast where the BS will be able to

broadcast to only one hop (TTL = 1).

Sensors 2015, 15 5833

5.3.5. Limited Broadcast Messages

A sensor inside network maze can only recognize the neighboring sensors and the BS. When SN

broadcasts a message uplink (towards the BS), then all neighbors should hear it. The neighbor should

broadcast the message again if and only if the message comes from a SN with a bigger hop-count (HC).

This will conserve a lot of unnecessary traffic and energy dissipation. The broadcast message will

contain (TTL = HC). The value will keep decreasing by one until it gets to the BS. In contrast, the

downlink broadcast messages (by the BS to the SNs) should have (TTL = 0) where the intermediary

sensors would rebroadcast the message if and only if it comes from a neighbor with a smaller (HC).

A special case when (TTL = 1) where the message will be broadcasted to one-hop neighbors only. FAC

also may adopted a more sophisticated optimized flooding algorithm for wireless multi-hop network,

such as CDS-based algorithms [38,39].

5.3.6. Fake Broadcast Message

The sensors need to send fake messages to prevent time correlation, rate analysis and statistical

analysis. A fake message is technically a one-hop broadcast message. However, to prevent correlation,

the message needs to behave similar to real messages. Therefore, the message needs to be encrypted and

have similar size as the real message to make it completely indistinguishable. Since it has to carry a

dummy data, it will contain the residual energy (Δ) of the issuing sensor. This information will be

extracted by the recipient neighbors and saved in the related tuple in the table (T). The fake broadcast

message sent by SNi is as in Equation (20):

Mf = Padding || FPIDi || Ekfi(i) (20)

All the neighbors will receive the fake broadcast message from SNi. SNi and the recipients will then

update FPIDi according to Equation (21):

FPIDi = H1(FPIDi  ci) (21)

There is no need to worry about the pseudonyms synchronization since the main purpose of the fake

messages is to show activity in idle sensors to obfuscate real messages.

5.4. SN Removal

There are many reasons why a sensor should be removed from WSN. For instance, when the battery

of a sensor is about to deplete, it should refrain from participation. This would protect against data loss

and maintain the pseudonyms synchronized. In some other cases, WSN use IDS [40,41] to protect

against active attacks, so once a sensor is captured, it must be banished from the network. Procedurally,

if SNi opts to be removed, it will send a message to the BS as in Equation (22):

Mi→j = OHPIDi↔j || Eki→j (PIDi || Eki↔bs (Dremove)) (22)

where (Dremove) is a command to banish the sensor. The tuple of the SNi in the BS tables will be disabled

permanently. In addition, SNi will send a broadcast message to the neighbors as in Equation (23):

Mb = Padding || BPIDi || Ekbi(Dremove) (23)

Sensors 2015, 15 5834

Once the neighbors get the message (Dremove), they will delete the tuple related to SNi from the table

(T) and banish the sensor. The BS for sensor removal could use the same process.

5.5. SN Addition

To add a new sensor to the network, the sensor will be preloaded with the required parameters: IDi,

ai, bi, ci, H1, ki↔bs and kbi, and fkbi. Right after deployment, the sensor calculates the shared parameters

with its neighbors. The BS should be trusted to run the process. The BS will send special key (kadd) to

all the neighbors. SNi will be preloaded with the same key as well. SNi and the neighbors will use this

special key to authenticate with each other. Initially, the BS sends the following message to the one-hop

neighbors of the new sensor as in Equation (24):

Mb = Padding || BPIDbs || Ekb-bs(Dadd) (24)

where (Dadd) is expressed in Equation (25):

Dadd = hc || kadd (25)

The initial value for hc is zero. It will be incremented every time the message is forwarded.

5.6. Contribution of Anonymity Module

Other works have provided anonymity using pseudonyms and aggregation to provide SN anonymity

while very few provided BS anonymity. Our anonymity module has contributed with an innovative

approach by using 100% anonymous communication. We have provided to have anonymous real, fake,

acknowledgment, unicast and broadcast message transmission. Moreover, we have provided anonymous

transmission for the BS by providing limited onion encryption. Compromising a SN in some other works

would lead to the discovery of the pseudonyms, which are, related the SN, which could help the

adversary to carry further attacks. In our module, capturing a SN will not lead to pseudonyms’ leakage.

The module will fight against local, multi-local and global adversary. Although, some solutions claimed

fighting global anonymity, keeping the pseudonyms synchronized was not possible. We have provided

a complete mechanism for synchronization, secure sensor addition and removal. The module will fight

both passive and active attacks. A complete anonymity and security analysis is be provided in Section

8. Section 9, explains how the solution remains light compared to the other works.

6. Module II: Data Authentication and Integrity

The data is encrypted before transmission to protect against passive attacks such as eavesdropping.

For active attacks, such as data and transaction falsification, message authentication is required. The two

important security aspects to achieve: (i) Verify that the content of the message is not altered and;

(ii) the source is authentic. We could achieve authentication by either using a message authentication

code (MAC), or one-way hash function (OWH). MAC would require the sender (SNi) and receiver (BS)

to share a secret key. The authentication code is calculated as MAC = F (k, D). DES or other algorithms

can be used to generate the code. The OWH also accepts a variable size message (D) as input and

produces a fixed sized digest MD = H (D) as output. Examples for OWH are SHA, MD5, Whirlpool and

HMAC. The advantage of OWH over MAC is the fact that it does not use encryption, which is quite

Sensors 2015, 15 5835

slow. Comes in the middle, HMAC which is a MAC derived from OWH such as SHA-1. It could be

expressed as: MD = HMAC (K, D).

If we opt to use HMAC as an example, the (Mi→j) will be rewritten as in Equation (26):

Mi→j = APIDi || OHPIDi↔j || Eki→j (APIDi || PIDi || Eki↔bs (Di)) || HMACki↔bs (PIDi || Di) (26)

The key (ki↔bs) is shared between SNi and the BS. The message could be authenticated with MD

using OWH as in Equation (27):

Mi→j = APIDi || OHPIDi↔j || Eki→j (APIDi || PIDi || Eki↔bs (Di) || H(PIDi || Eki↔bs (Di))) (27)

As it is transparent from expression Equation (27), we need more processing time and therefore more

power consumption because we have encrypted a sizable packet. There is a tradeoff between higher

security and energy conservation. The first approach is more appropriate. Authentication for the

broadcast messages is done as in Equation (28):

Mb = Padding || BPIDi || Ekbi(Db) || HMACkbi(Db)) (28)

Alternatively, it can be achieved using Equation (29):

Mb = Padding || BPIDi || Ekbi(Db || H(kbi || Db)) (29)

The message could contain other important information such as sequence number (similar to the

well-known HDLC and TCP protocols) and time stamp. The receiver uses the sequence number to verify

the order of messages. Time stamp is used to check the delay threshold. Both checks will enhance protection

against various active attacks. The message core data (Di) could have the following format:

Di = SEQ_NO || TIME_STAMP || MSG_LGTH || SENSED_DATA (30)

Providing authentication to protect against active attacks is crucial in any communication. The

innovation of our authentication module is by providing message authentication for every transmission

in the network without limiting it to real messages unlike many other works proposed. The adversary

can utilize any captured transmission to launch attacks against the network, which could include real,

fake and acknowledgement messages. Our module can use MAC, OWHF and HMAC according to the

security needs of the WSN. The network can adjust the parameters according to the security situation

using adaptive framework. Integrating the authentication module with the anonymity module without

hindering the performance of either one is a necessity, which we have achieved in this work.

7. Module III: Temporal Privacy

WSN could suffer from time correlation attacks [11,13,14,23,42] by observing the time between

correlative packets sent and received in a certain neighborhood. The adversary can trace forward and

backward the messages until they reach to the BS or to the source. Hence, hiding temporal information

is crucial for both anonymity and location privacy. Using routing schemes to protect against time

correlation attacks is found to be efficient to certain extent where local adversary usually has limited

mobility and partial view of the network traffic. However, routing based schemes do not work for global

adversary where the traffic of the whole network can be easily monitored with a full spatial view and the

adversaries can collude together to promptly detect the origin and time information of the event [18,34].

A mechanism is required to divert attention of the adversary when there is event-driven transmissions,

Sensors 2015, 15 5836

especially with the presence of global adversary [43]. Figure 8 exhibits a probabilistic distribution for

the fake messages.

Figure 8. Nodes transmit fake messages according to a probabilistic distribution. When real

messages are sent, the system should maintain the required distribution by delaying some

fake messages [34,44].

The distribution of events changes which could be a reason for the adversary to detect the event timing

and thereafter the source of the event. The message distribution (both real and fake) needs to be adjusted

to prevent time correlation. In some applications, such as monitoring and surveillance, we cannot

guarantee a certain event distribution. The literature talk about three ways to maintain an obfuscated

message distribution: (i) By issuing message delays; and (ii) by issuing fake messages; and (ii) by using

both delays and fake messages. Using delays works well against local adversary but might not be suitable

for time sensitive networks. In contrast, using fake messages is required to protect against multi-local

and global adversary, however, it is very expensive in terms of energy dissipation. Furthermore,

adversary with good statistical analysis can easily detect the message distribution if the scheme is not

designed carefully [34]. Some work in the literature clearly differentiates between two terms: the event

(of transmission) and the interval (of transmission). If every interval has only one transmission, then

event and interval are the same, however, this might not be the case when we have multiple transmissions

during one interval. So, the anonymity level depends on the capability of the adversary to distinguish

between real and fake transmissions. This means, given multiple transmissions by a SN, the adversary

must be unable to distinguish, with significant confidence, between transmissions carry real data and

transmissions carry fake data. Alomair et al. [34] suggested that transmission “indistinguishability” is

not enough. They claim that indistinguishability is achieved when adversary monitoring the network

over multiple time intervals, in which some intervals contain real event transmissions and others do not,

is unable to determine, with significant confidence, which of the intervals contain the real traffic. If intervals

are indistinguishable, the individual transmissions within the interval should also be indistinguishable.

We should have a mechanism to quantify anonymity while it is used, in the literature, in different

ways. However, in our work, anonymity means how to prevent the adversary from knowing the source

of the message. In other words, the adversary could know that a particular sensor sent a message at one

time, but it should not know that sensor is the source of the message. By delaying the real messages and

Time

Time

Fake MSG

Event

Real MSG

Nodes transmit fake messages according

to a probabilistic distribution.

The system should maintain similar

distribution by delaying the fake messages.

Delay

Sensors 2015, 15 5837

by issuing multiple messages at one interval would mislead the adversary. As an example, for one

transmission and one adversary, where the adversary can guess either the message is real or fake without

any anonymity measurement taken, it should be 0.5 (either fake or real). Let us presume ѱ donates one

adversary strategy for breaching the anonymity of the system among a set of strategies. Let us presume

Pr is the probability that the adversary succeeds using strategy. The anonymity A as defined in [34]

with the existence of a strategy, is presented in Equation (31):

A: = 1 – Pr, where 0 ≤ Pr ≤ 1 (31)

If we presume that  represents all possible strategies for the adversary to breach the anonymity of

the WSN, the accumulated anonymity will be as in Equation (32):

A: = min (A), where  ∈  (32)

It is very important to increase anonymity for every individual SN in the network especially with the

presence of multi-local or global adversaries. Presence of colluding adversaries could cause the

anonymity to drop exponentially [34]. Take Figure 9 as an example, where WSN has a moving Panda

from point “a”, to “b”, to “c”, then finally to “d” where each location has a SN to report the Panda’s

movement. If the anonymity of each sensor is A = 0.8, then the anonymity at node “b” is A = 0.82 = 0.64

and at point “d” is A = 0.84 = 0.41. Having global adversary makes it super necessary to design a strong

anonymity model which can resist the time correlation attack [42].

In this work, we assume the worst case for time correlation attacks which is a global or laptop-class

adversary attacks [17]. Having an anonymity scheme to protect against the global adversary will be very

expensive solution in terms of energy preservation and thus the lifetime of the network. In the following

two subsections, we propose two schemes, the simple global anti temporal (SGAT) and the energy

controlled anti temporal (ECAT).

Figure 9. Having multiple colluding nodes will reduce system anonymity exponentially [34,42,44].

7.1. Simple Global Anti Temporal Scheme (SGAT)

When an event-driven message is sent out, the adversary can trace back the message to the SN or

forward to the BS. Sending few other transmissions in the network within the range of the adversary

confuses it and prevents the adversary from having known path to follow. In this work, we presume the

lifetime of the network (Ω) is divided into a number of intervals (I) and each interval time is (), where:

A

C
B

BS
D

A=0.80

A=0.64
A=0.51

A=0.41

Sensors 2015, 15 5838

Ω = I × ωi (33)

The value of Ω can be predicted as a range between a minimum value (worst case) Ωmin and a

maximum value (best case) Ωmax. It all depends on how real/fake transmissions are facilitated. The SNs

will send either a fake or a real message during one interval. The message is sent at the end of each

interval or it is adjusted to be sent during the interval to create some variable delays through the route to

the BS, which would confuse the adversary more and would prevent it from gaining useful knowledge

about the network based on time correlation. SNi that has sensed the event or received the real data from

another SNj, will send the real message (Mr) through a hop-by-hop path to the BS, and some other nodes

will send fake messages (Mf) during the same time to disrupt the adversary. There are two questions:

How long the message will be held in the SN after it is sensed? Simplistically, Mr and Mf are sent at the

end of the interval I. The time from arrival of the data to the end of the period time (τw) expressed in

Equation (34):

τw = i − ta where: t0 ≤ ta ≤ ts ≤ i (34)

where: t0 is the beginning of the interval Ii, ta is the arrival time, t0 ≤ ta.

Ideally, the message will be sent immediately after it is sensed or received which makes τw = 0.

Theoretically, τw could be a value: 0 ≤ τ w ≤i as exhibited in Figure 10.

How many SNs in the network will send fake message during one interval time and which ones?

Simplistically, every SN in the network, which is in the range of the adversary and in the range of source

SN, should send a fake message while SNs that have real messages will send the real messages only.

Figure 10. Timing for receiving a real message and then sending it out during the interval

period assigned to the sensor node. The total delay will include the processing time,

transmission time and the withhold time [42].

There are many technical issues regarding the determination of the optimal configuration for both

questions mentioned earlier. For instance, it is not possible for the neighboring nodes to know in advance

when a SN is going to sense an event. It is a completely unpredictable random-distribution for the events.

The need to transmit fake messages becomes even much more crucial if we do not have busy-network.

Therefore, all SNs with no real messages need to send fake messages during the interval Ii, in the worst

t0 itsta t0: Interval Start Time

ta: MSG Arrival Time

ts: MSG Send Time

i: Interval Time

w

w: MSG Withhold Time

t0 i

ts

ta

w

d = w + trans + proc

Sensors 2015, 15 5839

case, or only selected nodes according to a probabilistic protocol. Having high number of fake message

transmissions will reduce the lifetime of the network in favor of privacy. Doing the reverse will

jeopardize the privacy of the sensor nodes. The adversary could learn the mechanism of sending real and

fake messages at the end of the interval. However, it is not very dangerous if the network sends enough

fake messages at the same time. Having variable withhold time (τw) is useful for privacy and for reducing

the average network delay. The delivery time (τd) presuming that the message is always sent at the end

of the interval Ii is:

τd = τw + τtrans + τproc (35)

where: τd is delivery time, τtrans is transmission time, τproc is processing time.

If we presume τ proc is much smaller than τtrans, then τd can be rewritten as the following:

τd = τw + τtrans (36)

If the message needs to go through (U) hops to the BS, and if we assume that the transmission only

happens at the end of the Interval Ii, then ts, equals to i, and the total delivery time (τd-total) can be

calculated according to the expression below [42]:

τ𝑑−𝑡𝑜𝑡𝑎𝑙 = ∑ 𝜏𝑤𝑢

𝑈

𝑢=1

+ 𝜏𝑡𝑟𝑎𝑛𝑠𝑢
 (37)

Having ts equals to i; i.e., sending message at the end of the interval, will increase the delay of the

delivery presuming that every τtrans is equal [42]. Thus, optimizing τd-total is a function of τw according to

Equation (38):

τ𝑑−𝑡𝑜𝑡𝑎𝑙 = f(𝜏𝑤) = ∑ 𝜏𝑤𝑢

𝑈

𝑢=1

 (38)

Each SN will be informed during the setup phase about i for the lifetime of the network. The BS

also can alter this value by broadcast when the conditions of the WSN changes (closed-loop control).

The value of i should be calculated to achieve at least the minimum expected lifetime span Ωmin without

jeopardizing the privacy and data integrity. Thus:

Ωhigh-th ≥ Ωi ≥ Ωlow-th (39)

where Ωhigh-th is the highest possible value for Ωi and, Ωlow-th is the lowest expected value for Ωi. When

SN does not have a real message to send before the end of the interval period Ii, it will send a fake

message according to the procedure explained in the anonymity module. When SN has a real message,

it will send it to one node from the neighborhood set (Ni).

7.1.1. Security Analysis

The adversary sees every SN sending a message at a fixed data rate at any one time. It also cannot

distinguish any message from the rest of the messages in the network since none has similar ID. If we

have N nodes in the WSN, the probability that one adversary can locate the sending node is:

𝑃𝑟 =
1

𝑁
 (40)

Sensors 2015, 15 5840

We can calculate anonymity as:

𝚨 = 𝟏 − 𝑷𝒓 (41)

7.1.2. Delivery Time

Message follows hop-by-hop path until it gets to the BS as exhibited in Figure 11. In this scheme, the

message waits until the end of the interval. The delay will be calculated according to the expression

below [42]:

τ𝑑−𝑡𝑜𝑡𝑎𝑙 = 𝜏𝑤0
+ (HC − 1) ∗ 𝜔𝑖 + 𝜏𝑡𝑟𝑎𝑛𝑠𝑢

 (42)

It axiomatic that most delay accumulates from holding the message until the end of the interval periods.

Figure 11. Total delay required to send a message from source to the BS through (U) hopes [42].

7.1.3. Energy Cost

We presume in this scheme that every node would send one message at the end of each interval. The

message could be either real or fake. If we have (N) nodes in the WSN, then we expect (N) messages

during each interval Ii. The energy spent for transmission is almost constant since we have fixed size

messages. However, we can evaluate how expensive it would be to use fake messages for privacy

enhancement. If we have (Q) percent of the nodes send real messages at each interval, then we are

wasting (1-Q) percent of the energy and of the bandwidth.

We can adjust the amount of energy consumed by increasing the interval period i. However,

increasing i, would increase the delays. If a SN receives multiple messages in one interval, then it will

queue the messages for transmission. Because the SN needs to wait until the end of the interval, it could

arrange the messages in a queue and send them randomly at the end of interval. This should also increase

the privacy and security of the data. It could also select a different forward node for each message. In

conclusion, SGAT is energy-expensive due to sending fake/real messages by every node per each

interval of time. However, SGAT provides the maximum message entropy. Figure 12 exhibits the network

transmissions for two consecutive intervals.

BSSNi SNj
SNu

SNf

ta ta

w0 i i i ta

Sensors 2015, 15 5841

(a) (b)

Figure 12. Anonymity with fake messages. (a) Sensors sense events and send real messages

while the rest send fake messages. With Fake MSG’s: 𝑃𝑟 =
1

𝑁
=

1

48
= 2%, Without Fake

MSG’s: 𝑃𝑟 =
1

𝑛
=

1

11
= 9%; (b) Sensors send or forward real messages will not send fake

messages. The more the network gets busy the less fake messages are transmitted.

7.2. Energy Controlled Anti Temporal Scheme (ECAT)

There are three major drawbacks in SGAT: (i) Having fixed interval time i while it is possible to

adjust the value for a better traffic and energy control; (ii) not considering the residual energy as a metric

for selecting the forward hop; (iii) high rate of traffic due to fake messages.

7.2.1. Changing i from Fixed to Variable

Having a fixed interval time, i could be a glitch for network performance. If i is set to be a large

value, then the delay will be high which could be a serious problem in some time sensitive applications.

If i is set to be a small value, then a huge amount of fake messages will be sent at the end of each

interval, which will reduce the lifetime of SNs and accordingly the lifetime of the WSN. We propose

that we have variable i as presented in [17]. Every node will be calculating its i using a pseudo-random

number generator (PRNG). We suggest a uniform distribution algorithm such as multiplicative

congruential algorithm [45,46], which is the basis for many of the random number generators in use

today. Lehmer’s generators [47] involve three integer parameters, r, s, and m, and an initial value, x0,

called the seed. A sequence is generated by the following modified formula:

Xk+1 = b × ((r·Xk + s) mod m + f) (43)

The result of the modified PRNG will be a sequence of integer values between (b × f) and (b × (m +

f − 1)). Each SN needs to be preloaded with the seed ×0, r, s, m, b and f values. The seed range is 0 to

(m − 1) and it is uniformly assigned to the sensor nodes. If b = 2, f = 1 and m = 4 then sequence of four

intervals will be: i ϵ [2,4,6,8] time-units as exhibited in Figure 13. We could have up to (m!) different

sequences that are uniformly distributed on the SNs. For instance, we can have Equation (24) different

sequences for our example and if we have Equation (48) nodes in the network, so each sequence should

be provided to two nodes only.

BS

Real MSG
Fake MSG

BS

Real MSG

Forward MSG

Fake MSG

Sensors 2015, 15 5842

Figure 13. The generation of the sequence of intervals assigned for each sensor. The

sequence keeps repeating for the sensor. Fake messages transmitted only at the end of the

interval. However, real message could be transmitted at any subinterval.

Each node will be dynamically assigned an interval value, which needs to change after each

transmission. Taking the example above, the first
1

𝑚
 th (more or less) of the sensors will send data after

2 time-units. Then, the second
1

𝑚
 th will transmit after 4 time-units, and so on. At any point of time, the

adversary will be faced by enough transmissions in the network that it could divert its attention far away

from the SNs sending real data. By having (m) interval values where each SN will be generating one i

using the PRNG, we have reduced the average interval time from max to ave. That is explained in the

inequality Equation (44):

𝑚𝑎𝑥 > 𝑎𝑣𝑒 =
𝑇1 + ⋯ + 𝑇𝑚

𝑚
> 𝑚𝑖𝑛 (44)

Considering the earlier example, we have max = 8, min = 2 and ave = 5. That is: we have reduced

the delay interval by 37.5%. If m = 8, then delay reduced by 44%. The transmission of real and fake

messages is exhibited in Figure 14.

Figure 14. SN is assigned a sequence of intervals, which repeat until sensor lifetime ends.

At the end of each interval, the sensor sends a fake message if it does not have an event to

report. This should cause different delay times depending on the event relative arrival time

and the length of the interval.

SN assigned four discrete

intervals:i ∈ [4, 2,6, 8]

m = 4

= 20 time-unites

base =2 time-unites

max = 8 time-unites

ave =

1=4 2=2 3=6 4=8 2=2 3=6 4=81=4

i Intervals

Transmission of

Mf at the end of

i Interval

Transmission of MR at the end of

any sub Interval. For example:

3 has three sub intervals

SN assigned four discrete
intervals:
i ∈ [4, 2,6, 8] time-units

Mf transmitted at end of the
intervals if there is no Mr.
One MSG always transmitted
at end of the interval.

Time

Fake MSG

Event

Real MSG

4 42 6 628

Delay

Sensors 2015, 15 5843

7.2.2. Reducing the Amount of Fake Messages and Delay for Real Messages

We have created a mechanism for dynamic interval allocation. Let us call  the big interval which

has subintervals i. It still makes sense to send fake messages at the end of each interval. However,

having the real message wait until the end of the interval time, as exhibited in Figure 15, is not

commendable because it increases the delay at each node. Let us presume the current subinterval i is

the maximum, which is 8 time-units according to the example discussed earlier. Let us presume that the

message was sensed at 2 time-units and it is ready to be sent at 4 time-units. Following the SGAT rules,

it still needs to wait for another 4 time-units to be sent out! However, we know for sure that many other

nodes have different i subinterval values. Thus, during the time subintervals 2, 4, 6, and 8 there is

enough traffic in the network. We propose that when the data is ready, the SNi should send the data

during the next subinterval slot within the current interval i. Consequently, if we are at interval

max = 8 which has four subintervals at (2, 4, 6, and 8), and for our example, at 6 time-units the data can

be sent out. This way, we save about 2 time-units delay while we can guarantee that the adversary will not

be able to infer the source of transmission because we have enough traffic distributed in the network.

Figure 15. Any node assigned subinterval ωi = 2 will send a fake message if it does not

have a real message to report. All the nodes in the network can send real messages within

any subinterval.

If we select higher values for , then we can further reduce the number of fake messages transmitting

at one subinterval, however, we are increasing the average delay as well. Selecting a value for  could

be a tool to adjust security versus energy conservation. We have improved the fake message efficacy

(FME) [27,42] which could be calculated as indicated below:

Sensors 2015, 15 5844

FME =
∑

 
SIi

− mi=m
i=1

∑
 
SIi

i=m
i=1

 (45)

where  is the big interval value, (SIi) the subinterval value, (m) the total number of subintervals. For

example, if SN assigned a sequence 𝜔𝑖 ∈ [4, 6, 2, 8], fake messages could be sent at the following

subintervals [4, 10, 12, 20, 24, 30, 32,], and the real messages could be sent at the following sub

intervals [2, 4, 6, 8, 10, 12,]. By substituting i = 8, SIi = 2 and m = 4, FME will be 60%. Figure 14

exhibits the transmission of fake and real messages for two consecutive subintervals.

7.2.3. Energy Conservation by Forwarding Messages to Energy-Rich SNs

When a node senses data or receives data that needs to be forwarded to the BS, it has to select the

next one-hop node from the neighborhood set Ni. During the setup phase, each SNi has information about

the hop-distance for each of the neighbors stored in its table Ti. Typically, there are three sets: one set

where the hop-distance is less than its own (uplink set), a set where the hop-distance equals to itself

(equal-link set) and a set where the hop-distance is larger than itself (downlink set). Choosing a node

randomly or by round robin from the uplink set will be ideal in terms of delays since it will give the

shortest path to the BS. However, that will cause the nodes in this set to consume more energy compared

to the other two sets of the neighbors. After each transmission, the SN consumes some energy. The

residual energy for SNi will be calculated as below:

Δ𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 =
Δ𝑐𝑢𝑟𝑟𝑒𝑛𝑡

Δ𝑖𝑛𝑖𝑡𝑖𝑎𝑙
 (46)

Each node will calculate its residual energy and share it with its one-hop neighbors. When the node

sends fake messages, it will send its residual energy with it. The neighbor SNj will store the value in its

Tj for each of its neighboring nodes. This way, any sensor node will have some information about the

residual energy level for its immediate neighbors. Figure 16 exhibits the mechanism for selecting the

forward node.

Figure 16. How to choose the forwarding node according to the energy levels of the

neighbors. The sensor calculates the average energy levels for all the neighbors. Then it will

select a neighbor, which has energy level higher than the calculated average energy, from

uplink nodes if it is available. If not, then from equal-link nodes and then from downlink nodes.

HHGG

FF

EE DD

CC

BB
SN

BS
= 0.4

HC=2

= 0.2

HC=2

= 0.6

HC=4

= 0.5

HC=5

= 0.5

HC=4

= 0.6

HC=3

= 0.7

HC=3

= 0.5

Choose >=

AVG from:

uplink nodes

If not then from:

equal-link

If not then from:

downlink

Sensors 2015, 15 5845

7.2.4. Handling Rate Attack

Figure 17. Higher transmission rate next to the BS. The figure exhibits about 20 transmissions

near by the BS while one other area has 9 transmissions for the same period. This could be

a bed for rate attack where the ADV can locate the BS [42].

Figure 18. The area coverage of a central sink is higher than a peripherally sink. To balance

the higher data rate nearby the sink, we acquire a higher density sensor distribution.

One issue that WSN with one sink could suffer from is having higher transmission rate next to the

BS where messages ultimately need to reach out to the BS as the final destination. In contrast, periphery

sensors far from the BS could have light transmission rates. Figure 17 illustrates the issue. This could

jeopardize the location privacy of the BS. One solution is to have multiple sinks distributed in the

network. This contradicts with the pre assumptions we set for our framework so we will not address this

solution in this work. The framework needs to maintain similar average rate among all the sensors. This

BS

1 unit

1 unit

1 unit1 unit

1 unit

Area = 1 sq. unites

1
 u

n
it

Higher Density Area

BS

1 unit1 unit

Area = 1/2 sq. unites

Higher Density Area

An

An

Af

Af

Sensors 2015, 15 5846

could be achieved by increasing the number of fake messages transmitted by less busy nodes, which

means increasing the bandwidth usage and the power consumption. We need also to reduce the fake

messages sent by busy nodes or delay the real messages to maintain similar rates. The latter is achieved

automatically since the sensors do not send fake messages when they have real messages. However, this

could be better tuned for average busy nodes as well. Having balanced rate in the WSN could help to

maintain balanced average lifetime for the nodes in the network. Presuming that all the nodes are

heterogeneous in terms of energy would mean that busy nodes would be depleted sooner that could

create an empty coverage area or a buffer zone between the sink and the peripheral SNs. This makes it

a double fold problem. The first approach is to select a suitable location for the BS in the network map.

Most of the literature shows a side location for the BS. It is maybe because it is more suitable for the

applications in hand where the BS is connected to the backbone network in a reachable area and sensors

are unattended in out of reach areas. Figure 18 exhibits that the coverage area of a central BS is much

better than a side BS. The density of nodes closer to the BS should be higher. The range of transmission

for sensors in higher density areas may need adjustment to control energy dissipation. We could have

multiple density areas around the BS where the density is reduced, as it gets distant from the BS. Figure

18 exhibits only two density areas for simplicity. If the storage of the sensor is not big enough, which is

unrealistic case with increasing storage technology in the sensors, then the sensor does not need to

include all the neighbors in the tables. The network will be divided into two areas, near (An) and far (Af).

The framework will set average transmission rate (ATR) thresholds, Rmax and Rmin. Sensors in An will

be loaded with Rmax where the sensors need to queue messages to maintain the threshold. In reverse,

sensors in Af will be loaded with Rmin to maintain the lower threshold by sending more fake messages

as needed. The sensor will calculate its average transmission rate over a period of time Tatr, which is

preset by the framework.

7.3. Contribution of Temporal and Rate Privacy Module

Our innovation in this module is by providing both temporal and rate privacy. Many works have

provided solutions for temporal privacy by either using delays or fake messages, but few has addressed

the rate privacy as an independent threat to the WSN. In our module, we have used delay and fake

messages to provide an efficient solution for such attacks. We took in consideration, the need to reduce

the delays in the real-time applications and the necessity to reduce the energy dissipation. In addition,

very few works has addressed the rate privacy for the BS presuming it is physically protected. In this

framework, we always considered the BS as a normal sensor node, which requires privacy. Section 9

provides a thorough analysis and simulation for the delays, entropy and energy. The three modules

of anonymity, authentication, temporal/rate privacy altogether will provide source, link and sink

location privacy.

8. Anonymity and Security Analysis

We need to analyze FAC for both passive and active adversary attacks. The adversary (ADV) model

has a global view of the network. ADV could target the source, intermediary and BS nodes. Usually,

ADV starts by monitoring transmission somewhere in the network and then attempts to acquire sources

(downlink direction) or BS (uplink direction). Passive attack is ordinarily the base for active attack. Once

Sensors 2015, 15 5847

ADV determines the identity and location of a source or the BS, it consequently can launch various

active attacks against certain nodes or disrupt the operation of the entire WSN. The main strength of

passive ADV is the fact that neither SNs nor the BS will know about their existence. Nonetheless, active

attacks can be detected if the framework instruments reasonable IDS. Any comprehensive solution for

location privacy should protect against anonymity attacks, temporal attacks and rate discovery attacks.

We believe that routing privacy is useful only against local advisory and once the WSN faced with a

global or a multi-local adversary, routing privacy is not crucial. Thus, we have chosen short-path routing

technique for this work. Any other routing protocols should be utilized to reduce delays and

energy consumption.

8.1. Security against Passive Attacks

SNs use disposable pseudonyms to identify each other instead of using real IDs. No real ID stored in

the sensor and no pseudonym is used more than once. Data is encrypted all the way from the source to

the BS using shared pair-wise keys. For eavesdropping and content analysis, ADV can intercept

messages without being able to read them because data is encrypted all the way to the BS. The only

information ADV can get from the captured messages is the pseudonyms: OHPID, BPID or FPID, which

are all temporary IDs and have no use except to calculate a new set of pseudonyms. Fortunately, the

ADV cannot get from the captured messages, important parameters ai↔j,bi or ci which are all required to

calculated new pseudonyms. Source PIDs are all encrypted during transmission. For hop-by-hop trace,

ADV can track a stream of messages from one node to another by overhearing the messages. The ADV

will be challenged with many real and fake transmissions throughout the WSN. Furthermore, each node

will retransmit the messages through different routes. For size-correlation, ADV will be able to

understand relationship between incoming and outgoing messages by analyzing sizes of the messages.

This attack does not work for our framework since all the messages have commensurate size. For identity

correlation, ADV cannot relate overheard identities to their nodes. It is not possible since SNs use

different pseudonyms every time a message is transmitted. For rate monitoring, ADV tries to collect

some statistical information about transmission rates. For instance, WSN will have a higher transmission

rate nearby the sink. This is handled by issuing fake messages to maintain a similar transmission rate.

For angle-of-arrival (AoA), ADV uses special hardware to determine the signal direction. The

framework did not account for specific countermeasure; however, it becomes a more serious issue with

mobile SNs. Furthermore, AoA would not perform well in our framework because of the uniform

message distribution by using real and fake messages. For received-signal-strength (RSS), ADV uses

special hardware to measure signal strength to calculate distance to the source. This is not an issue for

our framework since every transmitter has fixed transmission power and SNs are immobile.

8.2. Security against Active Attacks

In principle, we assume ADV knows encryption protocols used by the framework; however, the

framework needs to hide encryption keys and IDs. Active attacks can be categorized into soft and hard.

For soft-active attacks, ADV tries to compromise SNs to get some information related to security of the

sensors such as keys and IDs. Consequently, it will monitor all messages traversing through the

compromised nodes to discover the source and the BS locations. ADV hides its presence by acting

Sensors 2015, 15 5848

passively (soft) but once it captures privacy information, it reports the information to an external executer

to do further damages (such as killing the Panda in the Panda game). For that, it is harder for the IDS to

detect the attack. In hard-active attacks, ADV captures SNs and invasively forge messages, sent replay

messages etc. Moreover, ADV could load powerful devices with the captured credentials to launch more

catastrophic attacks. Hard-active attacks could be detected by IDS; however, it could depend very much

on the sophistication of the IDS used. With that, it remains very challenging to countermeasure hard-

active attacks. In the following two subsections, we will analyze the security of our framework against

active attacks.

8.2.1. Soft-Active Attacks

If ADV physically compromises SNi, then it captures two sets of information:

(i) Information related to the node itself: the current PID, the parameters used to calculate the

pseudonyms, the hash functions, the keys and other information as listed in Table 2.

(ii) Information related to the neighbors as listed in Table 3.

The ADV would have all it needs to issue new valid pseudonyms and to send messages out to

neighbors. Let us look closely at few scenarios:

Scenario 1: If ADV physically compromises SNi, and if SNj and SNr ϵ Ni, so SNi knows some

information about both SNj and SNr. However, it cannot calculate important information such as aj↔r

which is required for one-hop communication between SNj and SNr [16], because SNi would need IDj

and IDr which are both deleted permanently at the end of the setup phase. If SNi hears a message, it

cannot determine, with high confidence, the sender among neighbors while communicating with each

other. If SNi receives message from sources ∉ Ni, then it would not be able to determine the source.

Scenario 2: If ADV physically compromises multiple SNs, let us call it set Ncs, and collects number

of messages, let us call it set Ncm. Then, the number of compromised PIDs equal to Ncm since each

message has unique PID. If the source SNi ∉ Ncs, then ADV cannot know the source node [16,27].

Scenario 3: If the message sent, by source SNi as in scenario, 2 passes thought SNj ϵ Ncs or even

through multiple compromised nodes, it will not be able to correlate the captured PIDi with SNi.

Scenario 4: If a message sent by source SNi and ∀ SN ϵ Ni is also ϵ Ncs (all neighbors are

compromised), then ADV will be able to know that SNi is the source. It is unrealistic situation to have

many compromised nodes in one area. However, this proves single or few compromised nodes cannot

locate the identity of the source. In addition, a compromised node does not actually need to locate the

sources within its range since it can detect the objects of interest (Panda) knowing that the ultimate goal

of the adversary is to capture the object not the sensor reporting the object.

In summary, while we cannot prevent physical capturing of sensors, we need to make sure capturing

sensors do not have destructive effects on other sensors. It is clear that our anonymity model protects against

the avalanche or the domino effect behavior once one or few sensors are physically captured.

Sensors 2015, 15 5849

8.2.2. Hard-Active Attacks

If ADV physically compromises SNi then it can launch denial of service attacks (DoS), which is an

effort to temporarily or indefinitely suspend transmission in the network. It consumes the resources such

as bandwidth, memory, storage, and processor time. When ADV compromises SNs, it would be able to

send massive valid messages to consume system resources. The ADV will be able also to launch replay

attacks where ADV gets credentials of the some sensors and attempts to mimic the sensors to send

messages to other neighbors. The other attacks such as, forging attack, packet alternation, packet

dropping and packet injection are all only possible to physically captured nodes. However, it cannot

propagate easily behind neighbors. Nothing could be worse than having physically captured nodes where

ADV has full control over the sensors. Good IDS can detect such attacks and respond by removing the

compromised nodes immediately. The most danger tactic of hard-active attacks is to prevent the real

messages from following normal paths to the BS and force the messages to traverse through certain

routes. Our main contribution to handle this attack is to put in place a seamless and efficient protocol to

add and remove SNs while WSN in action.

8.3. Sink Security

ADV can learn that a sensor has received a message in two ways: (i) When the sensor retransmits the

message, which was tracked beforehand to another sensor; (ii) the ADV is able to make a correlation

between the captured ID and the physical recipient sensor. The adversary cannot locate the BS location

by compromising only one neighboring sensor because each transmission uses a different pseudonym.

It actually will need to compromise multiple colluding sensors along the path to the BS or many

neighbors of the BS. While we cannot prevent having many physically fallen sensors, our framework’s

goal is to delay the capturing of the BS if there are many colluding captured sensors in the WSN. A very

interesting scenario is exhibited in Figure 19. Let us presume SNr ϵ Ncs. It issues a message with Dbomb

such that: APIDr || OHPIDr↔u || Er→u (APIDr || PIDr || Ekr↔bs (Dbomb)). IF ADV compromise multiple

nodes along the path to the BS where each sensor decrypts the data to read this signature at every hop:

(PIDr || Ekr↔bs (Dbomb). Providing the colluding sensors, in the path to the BS, read similar signature

while it knows by design that every message should be directed uplink to the BS, the ADV could follow

through to the BS. Having multiple compromised paths (with compromised sensors) reading the same

pattern will give adversary more clues. Compromised nodes can even collude to force the real messages

to route through fixed suspected areas in effort to focus the capturing process, which becomes a function

of: (i) the size of the network; (ii) The traffic density; (iii) the number of compromised nodes. To solve

this issue, we have to wipe out the signature before each transmission. Thus, every message will be

forwarded to the next hop as below:

Mu→x = APIDu || OHPIDu↔x || Eu→x (APIDu || PIDr || PIDu || Eku↔bs (Ekr↔bs (Di))) (47)

We have added a multiple levels of encryption, which will be done at every hop using the shared key

between the hop and the BS. In addition, PID of the hop will be added in sequence so the BS can do the

decryption in sequence. This solution increases the size of the message proportionally to the number of

hops. We suggest having the onion encryption done for a distance of few hops, Oh. So, if

Sensors 2015, 15 5850

Oh = 2, then we have only two extra encryptions. In addition, we need to account for Oh PID’s added to

the message.

Figure 19. Hard-active Attack tries to get the BS by inserting a signature in the transmitted message.

We have implemented using Matlab a WSN of 100 SNs uniformly distributed over 30 × 30 area

where the average distance between the SNs 3.7 as in Figure 12. The nodes are homogeneous in terms

of initial energy. The WSN adopted one BS located at the side of the network. The SNs were preloaded

with all the initial pseudonyms, so the simulation started right at the communication phase.

Sensors issue real messages according to a normal distribution using SGAT. To simulate how the

network behaves to protect the BS, the simulation inserted some random compromised sensors. The

compromised sensors sent some bomb messages as exhibited in Figure 19 and colluded to track the

location of the BS. We have protected the BS by using the onion encryption so, we have simulated for

Oh equals to 1, 2 and 3. The adversary succeeds when it identifiers all the nodes forming the curve around

the BS; SNs have 1, 2 and 3 hc from the BS, consecutively. Figure 20 exhibits the number of

transmissions required before the adversary can succeed. It is clear that with higher value for Oh, the

network will be able to send more messages before the BS is compromised. Having a higher number of

compromised nodes in the WSN will make it faster to capture the BS, as well.

Figure 20. Protecting the BS by having onion encryption. Increasing Oh and decreasing the

number of compromised nodes will increase the total number of messages successfully

transmitted to the BS before it is captured.

Sensors 2015, 15 5851

8.4. Link Anonymity

Link anonymity is to prevent the ADV from knowing the relationship between the sender and the

receiver. If a message leaves a sender and subsequently leaves the recipient without change, the ADV

would know the relationship between the two nodes. This is secured in our framework since every

message is completely changed after each retransmission including the IDs. In addition, it maintains

fixed size. Applying different delays and different next-hop direction should also increase the privacy of

the link. Furthermore, the adversary cannot know if the link carries real or fake data.

8.5. Timing Privacy

By using fake messages at variable interval times and message delays, it becomes super hard for the

ADV to correlated messages being transmitted over the network as exhibited in Figure 12.

8.6. Routing Privacy

Although short-path routing is used in this framework, choosing the next hop is done according to

certain probabilistic algorithm, which accounts for the residual energy of the sensors and the usage

frequency to increase the route privacy, as exhibited in Figure 16. ADV cannot relate routes to nodes

due to the triple anonymity. Even if two messages for one sensor follow the exact same route, ADV

will see them as if they are two different routes since each hop along the route carries messages with

different PIDs.

8.7. Data Privacy

All the data is encrypted before transmission and encrypted again at every hop along the route to the

BS. A message digest will authenticate data. The only time data is not protected when the sensors are

physically compromised. The compromised nodes are able to inject data in the network. If ADV uses

the compromised nodes actively, a good IDS can detect the falsified data. The framework provides a

secure facility to remove compromised sensors and to add valid sensors, if needed, to the WSN.

8.8. SLP and BLP

SLP and BLP are achieved at first by having the triple anonymity (source, BS, link) which was argued

earlier. ADV cannot infer any information from the intercepted messages. Passive attacks will not

endanger the location privacy. However, strong active attacks could hinder the location privacy without

having good IDS. Secondly, we have provided a solution for temporal privacy using ECAT. Thirdly, we

have provided a solution for rate attacks. The three security measures will work hand in hand to provide

location privacy.

9. Performance Evaluation

In this section, we evaluate the performance of the FAC framework, including delays, energy

dissipation, data rate privacy, storage, processing, computational, and communication costs.

Sensors 2015, 15 5852

9.1. Delay

In SGAT, sensors transmit/forward the data at the end of the interval, which would cause a huge delay

considering the volume of messages that each sensor needs to transmit during the network

real-time operation. In addition, the messages traverse through multiple hops until it gets to the BS,

which makes the accumulated delays significant. The other alternative scheme is having the sensors

select one of the following subintervals () randomly to forward the message. This also will cause some

unnecessary delays although it could help in hiding the temporal behavior of the sensors. ECAT scheme

divides () into subintervals (), so the transmission will happen at the first available subinterval when

the message is ready. We have simulated a smaller network to the one descripted in Section 8.3 for the

transmission delays. It includes 48 SNs only with  distribution as presented in Figure 15. We have three

simulations using SGAT, ECAT, and random delays. Figure 21 shows that delay per one-transmission

increases throughout the network as the number of transmitted messages increases which could cause

unjustifiable delays especially in the real time applications. Figure 22 also shows the average delays for

the three schemes. It shows that using ECAT has improved delays by 64% compared to SGAT. The total

delay for one message from a source to a destination (BS) is calculated according to expression

Equation (37). It is a function of the distance from the BS (hc) which we technically have no control

over after sensors deployment. In addition, it is a function of the chosen () and () values for the

system. The larger the (), the more delays accumulated. We have simulated the same network using

ECAT for the total delay as exhibited in Figure 23. It shows that the delay rises as the hc increases and

as the size of the intervals widens. We conclude of these simulations that the performance of ECAT is

better than SGAT while it continues to provide a good temporal privacy. Using a fixed delay will reduces

the delays slightly but it provides a very week temporal privacy.

Figure 21. Total accumulated delay per one node increases as number of messages increases

in the WSN. ECAT sends the message only one subinterval after the message arrival. SGAT

sends the message at the end of the big interval . In between, the approach of selecting one

of the following subinterval randomly to send the message. Clearer image?

Sensors 2015, 15 5853

Figure 22. Average accumulated delay per one node. ECAT shows the good performance

of a minimum average delay since it sends the message only one subinterval after the

message arrival.

Figure 23. The accumulated delay is a function of the hop count (hc) and the size of .

9.2. Energy Cost

In our work, we will assume a simple energy dissipation model [27,42,48,49]. The radio dissipates Ԑ

nJ/bit for both transmission and reception by the sensors circuitry. Moreover, it consumes ԑ nJ/bit/m2 for

Sensors 2015, 15 5854

the transmitter amplifier to achieve an acceptable signal to noise ratio. Therefore, to transmit k bits for r

distance, the total transmission energy dissipation will be:

Et = k × Ԑ + k × r2 × ε (48)

In addition, the receiver would consume for reception of k-bit message:

Er = k × Ԑ (49)

SGAT assumes that every node would send one message at the end of each interval where the message

could be either real or fake. If we have N nodes in the network, then we expect N messages during each

interval. The energy spent for transmission or reception is similar per one message because we have

unified-size messages to prevent size correlation attacks by the adversary. If we have p percent of the

nodes issue or forward real data at each interval, then 1 − p percent of the energy and the bandwidth is

wasted on fake messages. We can adjust the amount of energy consumed by increasing the interval time

(). However, increasing (), would increase the delay. The consumption of transmitting fake messages

is a double fold since the transmitter will consume Et for every message and all the neighbors (Ni) will

consume (𝑁𝑖 × 𝐸𝑟). When the transmission range increases, Ni increases. The total energy consumed in

the network to send real and fake messages in one interval [48]:

ER = (N)(k × Ԑ + k × r2 × ε) + (N × 𝑁𝑖)(k × Ԑ) (50)

ECAT has improved the energy dissipation by reducing the amount of fake messages transmitted

while maintaining the required temporal security. The number of total messages transmitted per interval

has reduced from 100% to a certain percentage (p). We have simulated the WSN in Figure 15 as

presented in Section 9.1 using SCAT to calculate the energy dissipation. Figure 24 exhibits the total

energy dissipation per one message considering the transmitter, the recipients and the range of

transmission. The size of the messages is 8000 bits, Ԑ is 50 nJ/bit and ԑ is 100 pJ/bit/m2. The simulation

shows that the energy dissipation due to the increase of sensor range is marginal compared to the increase

in energy dissipation due to the increase of neighbors (Ni). However, increasing the range could increase

Ni if the WSN has uniform sensor distribution. We have also simulated the network to see how the

transmission of fake messages has improved using ECAT. Figure 25 exhibits the simulation of

40 subintervals (). The graph shows the maximum possible fake message at each subinterval ().

For instance, the total fake messages during  = 10 is 16 messages while during  = 32 is 20 messages.

The mean of fake transmissions is 19.5 (compared to 48 messages in SGAT). The average fake messages

for the completely simulated period is 19.5 messages which shows about 59% reduction of possible fake

messages comparted to SGAT.

The number of fake message will be reduced further as the network gets busy transmitting real

messages since a sensor node do not send a fake message at a subinterval where it has a real message to

convey. We have simulated the same network with 70% probability of event occurrence. Figure 26

shows that the average fake messages has reduced to 5.85 messages, which is almost 88% reduction

from SGAT. This also will reduce the energy consumption significantly.

Sensors 2015, 15 5855

Figure 24. The energy dissipation increases as the number of neighbors and the sensor

transmission range increases. Simulation assumed message size of 8000 bits, Ԑ is 50 nJ/bit

and ԑ is 100 pJ/bit/m2.

Figure 25. A simulation for the maximum possible fake messages per subinterval using

ECAT. In SGAT, this number should be 48, which is one message per one sensor. ECAT

has reduced it significantly. The mean in this simulation is 19.5, which is about 59%

reduction of fake messages.

Sensors 2015, 15 5856

Figure 26. The average fake messages in a busy network with 70% of the slots occupied by

real messages. The reduction of fake messages transmission in ECAT is about 88%

compared to SGAT.

The most expensive operation for energy consumption is transmission of bits from one node to

another. We use two stages for air communication in our framework, (i) In the setup phase and; (ii) in

the communication phase. The data transmission during setup phase is minimal. During communication

phase, data will be forwarded hop-by-hop to the BS. Every packet is equally sized to prevent time and

size correlation. We have introduced a probabilistic fake message transmission scheme which none of

the other protocols adopted. Real messages are sent at the end of each subinterval time to prevent delays.

The cost per message at one interval time is:

Average Message Cost =
R + (N − R)Pr + A

R
 (51)

where R is the total number of SNs sending real messages at one subinterval time, Pr the probability of

sending fake message by SNs, and A is the average number of acknowledgements in one interval. None

of the other schemes addressed the issue of rate analysis attacks, which is one of the easiest attacks any

adversary can use. Using fake messages is an expensive solution. However, we have designed FAC to

be adaptive to the network traffic situation by using a closed-loop system. The sink can always increase

or decrease the amount of fake messages used according to the reports it is getting about the system

security. The threshold values of Rmin and Rmax are also adjustable according to the network situation.

9.3. Transmission Rate Privacy

To handle this issue, we have adopted two threshold values: Rmin and Rmax where the sensor needs to

keep its message transmission rate between these two values. The sensor needs to send real message at

the end of subinterval time slot. If it does not have a real message, then it needs to send a fake message

only if that time slot is scheduled to send a fake message according to ECAT protocol, otherwise no

Sensors 2015, 15 5857

transmission will happen and the slot remains idle. Ideally, the sensor has a real message at the

subinterval so it does not need to waste a slot by sending a fake message. The sensor can use this facility

to control the threshold data rate. For instance, if the rate is high (such as in areas nearby the BS), it can

replace fake messages with real messages which is a double fold beneficial. If all the fake messages are

already replaced and still there is real messages above the threshold, then the sensor is required to queue

the messages and delay the transmission to maintain same average message rate between Rmin and Rmax.

In contrast, if the message rate is low (as in the periphery sensors), then the sensor can transmit more

fake messages during idle slots. We have simulated the network in Figure 15 for ECAT and assigned the

Rmin to be thirteen messages for two consecutive () intervals (a total of 20 subintervals). We have

assigned the Rmax to be 13 messages during this period, which is seven less than the total number of

subintervals. That means we allow up to 13 real and fake messages during these two consecutive ()

intervals. Figure 27 exhibits the output of the simulation for four different individual transmissions.

For instance, the first transmission shows, 14 real messages (blue bar), 2 fake messages (light blue bar),

and four idle slots (green bar). The total real and fake messages is 16 (orange bar) which is above the

assigned threshold, thirteen, by three messages, which is expressed by the brown bar.

Figure 27. The simulation shows the total real messages, fake messages and idle slots. The

threshold rate is thirteen messages over Tatr period. For instance, the first transmission shows

total of sixteen messages, which is three above the threshold value. The sensor will cancel

three fake messages. The third set shows the number of transmissions at the threshold.

The SN will cancel three fake messages out of the four. In some worse cases, the sensors would need

to queue the messages for next slots. For instance, if there is 15 real messages during this time, the

system send only 13 messages and queue 2 messages for the next period. Ultimately, the overall message

rate during Tatr will be within the assigned thresholds.

Sensors 2015, 15 5858

We have simulated this approach extensively for (500), (1000), (1500) and (2000) transmissions as

exhibited in Figure 28. The first, third and fifth bar sets show the total amount of fake messages needed

to be replaced with real messages to maintain Rmin for the thresholds of th = 10, th = 11 and

th = 12 consecutively. For instance, a threshold of 10 means that the maximum number of messages

transmitted should be 10 (out of 20 in our simulation). The second, fourth and sixth bar sets also show

the number of messages which needed to be queued for the three consecutive threshold values.

Therefore, if we have real messages above the number of scheduled fake messages, then we have to

queue the messages for the next period of Tatr. Overall, this simulation exhibits a great preference since

we always would like to reduce the amount of fake messages and keep the bandwidth busy with real

messages whenever it is possible. In addition, the simulation exhibits very small messages need to be

queued (delayed). It shows as we increase the threshold value the less fake messages replacement or

delays is required. In summation, reducing the fake messages and keeping the delayed message minimal

is the goal, which ECAT clearly achieves.

Figure 28. Simulation for busy network with different Rmin threshold values th = 10, 11 and

12. F stands for the number of fake messages has been reduced and D stand for the number

of delayed messages to maintain Rmin. The simulation shows that the number of delayed

messages is minimal while it decreases as the threshold increases.

9.4. Storage Evaluation

There are two sets of information stored in a SNi: (i) information related to the sensor itself such as

random numbers: (ai, bi, ci), pseudonyms: (PIDi, BPIDi, FPIDi, APIDi), keys: (ki↔bs, bki, fbki);

(ii) information related to neighbors which include, random numbers: (ai↔j, bj, cj), pseudonyms:

(OHPIDi↔j, BPIDj, FPIDj), keys: (ki↔j), Misc: (linki↔j, j).

Sensors 2015, 15 5859

If we presume that the keys, the random numbers, the pseudonyms and the hash functions are all n

bits long in average, and the required bits for miscellaneous data altogether is two bytes, and the average

number of neighbors Nave, then the total storage memory required is:

Storage = 10n + (7n + 16) × Nave (52)

Chen et al. [16] indicated the storage for SAS, CAS, APR, DCARPS and EAC. We also calculated the

storage for PhID, ACS, HIR and RHIR. All are listed in Table 4. The size of storage increases

proportionally when the size of n increases. The most common hashing functions which are considered

very secure are: MD4 [50] which uses 128-bits digest, SHA-1 [50] which uses 160-bits digest, and

Whirlpool [50] which uses 512-bits digest [50].

Table 4. Performance Comparison. N is the total number of sensors; Nave is the average

number of neighbors; k (only for RHIR) is number of stored hash values where the SN stores

k hash values per one neighbor which are calculated in advance at setup phase.

No. Scheme Storage Cost (bits) Computation Cost

1 SAS 2nN + 4nNave + 16 No hashing operations

2 CAS 6n + 7nNave + 16 Two hashing orations and two encryptions

3 HIR 2n + 2nNave One hashing function

4 RHIR 2n + 2nNave + nkNave No hashing functions

5 APR 9n + 7nNave + 2N − 2Nave − 2 Six hashing functions

6 DCARPS 3n No hashing functions

7 ACS 5nNave Two hashing functions

8 PhID (3n + 2) × Nave Four hashing function

9 EAC 6n + 6nNave + 2 Four hashing operations

10 FAC 10n + (7n + 16) × Nave Four hashing operations & Oh encryptions

9.5. Processing and Computational Evaluation

Hash functions are used to calculate the pseudonyms and symmetric cryptography is used to encrypt

the messages. Because we need to calculate three pseudonyms and one acknowledgement pseudonym

after each transmission, using encryption to create pseudonyms was avoided since it requires more

processing power compared to hash functions. When a SN senses data, it needs to calculate four OWH

for PID, OHPID, and APID at the sender and OHPID at the receiver. If the system opts for data

authentication, then another hash function is needed. The source node needs only one encryption for the

data if Oh = 0, however, it needs Oh more encryptions if onion fashion is used. Each intermediary node

needs one decryption operation and then another encryption to issue the new message. Chen et al. [16]

indicates that SAS does not use hashing or encryption to create pseudonyms because it uses already

created pseudonyms from a space. The other scheme by Chen et al. [16], CAS, uses two hashing

operations and two encryption operations. APR uses at least six hashing functions. DCARPS uses

constant IDs, so no hashing functions or encryptions for creating IDs. EAC has four hashing operations.

It is clear that our framework needs a bit extra processing power due to the higher privacy and security

we have achieved. None of the other schemes can achieve privacy against global threats and active

adversary attacks. The power consumption due to the additional encryption operations is marginal

compared to the power consumption caused by data transmission. Figure 29 exhibits different storage

Sensors 2015, 15 5860

size for different privacy schemes, which are discussed throughout this work. It shows that the increase

in storage is linear and relatively comparable to the other protocols. The size of the storage would

increase when the number of neighbors increases. Each SN has limited flash memory size, which could

confine the maximum number of neighbors that a sensor can fit. As an example, TelosB mote [16,20]

has 1 MB external flash memory. Thus, if one neighbor node requires 1.2 k bits of storage memory, then

TelosB could fit more than 800 neighbors, which is very much more than what is needed in practical

networks. Although FAC shows a bit of increase in the storage required to store the pseudonyms but it

is the only one, among the discussed protocols in this work, provides a steady and functional anonymity

and location privacy under strong global and active attack. In addition, the current technology provides

sensors with sizable storage memory, which makes it not an issue at all.

Figure 29. Size of storage memory using different privacy schemes.

10. Conclusions and Future Work

FAC is a modular framework that provides source, link and sink anonymity. It also provides temporal

privacy and rate privacy. None of the previous related-work have a comprehensive solution for

anonymity and location privacy. The three modules provided in FAC are made work together to prevent

any statistical analysis attacks. The quadruple privacy (anonymity, temporal, rate, statistical) has

provided a fortified SLP and BLP. FAC has addressed both local and global adversary. We have used a

complex anonymity module where pseudonyms to replace real IDs are used. To provide temporal

privacy both delays and fake messages are used. The use of fake messages was adjusted to manage the

energy consumption. Two schemes are introduced, SGAT and ECAT. FAC is able to handle both

homogenous and heterogeneous sensor nodes. FAC is both energy-aware and delay-aware. We have

Sensors 2015, 15 5861

demonstrated that FAC can withstand passive and active attacks by presenting scenarios and provided

solutions. The memory cost was mathematically analyzed for the framework. The computational

complexity for encryptions and hash functions was analyzed. To provide security for the BS against

colluding active attacks, we have introduced onion encryptions. We have simulated the performance of

the framework. The future work would include enhancement on the fake messages probabilistic scheme.

In addition, we will implement FAC for different routing protocols such as clustered networks. We would

plug FAC in some civil and military applications for further analysis, development and improvement.

Author Contributions

Abdel-shakour Abuzneid has conducted the research work and simulations. The rest of the authors

contributed to framing the intellectual merit of the proposed contribution to the state-of-the-art. The

article was written by Abdel-shakour Abuzneid.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Eu, Z.A.; Tan, H.-P.; Seah, W.K.G. Design and Performance analysis of MAC Schemes for

Wireless Sensor Networks Powered by Ambient Energy Harvesting. Ad Hoc Netw. 2011, 9,

300–323.

2. Noh, D.K.; Hur, J. Using a dynamic backbone for efficient data delivery in solar-powered WSNs.

J. Netw. Comput. Appl. 2012, 35, 1277–1284.

3. Li, Y.; Ren, J. Providing Source-Location Privacy in Wireless Sensor Networks. In Wireless

Algorithms, Systems, and Applications; Liu, B., Bestavros, A., Du, D.-Z., Wang, J., Eds.; Springer:

Berlin/Heidelberg, Germany, 2009; Volume 5682, pp. 338–347.

4. Conti, M.; Willemsen, J.; Crispo, B. Providing Source Location Privacy in Wireless Sensor

Networks: A Survey. IEEE Commun. Surv. Tutor. 2013, 15, 1238–1280.

5. Abbasi, A.; Khonsari, A.; Talebi, M.S. Source Location Anonymity for Sensor Networks.

In Proceediongs of the 6th IEEE Consumer Communications and Networking Conference,

Las Vegas, NV, USA, 10–13 January 2009.

6. Nezhad, A.A.; Miri, A.; Makrakis, D. Location privacy and anonymity preserving routing for

wireless sensor networks. Comput. Netw. 2008, 52, 3433–3452.

7. Yao, L.; Kang, L.; Shang, P.; Wu, G. Protecting the sink location privacy in wireless sensor

networks. Pers. Ubiquitous Comput. 2013, 17, 883–893.

8. Li, N.; Zhang, N.; Das, S.K.; Thuraisingham, B. Privacy preservation in wireless sensor networks:

A state-of-the-art survey. Ad Hoc Netw. 2009, 7, 1501–1514.

9. Yan, Z.; Zhang, P.; Vasilakos, A.V. A survey on trust management for Internet of Things. J. Netw.

Comput. Appl. 2014, 42, 120–134.

10. Jing, Q.; Vasilakos, A.; Wan, J.; Lu, J.; Qiu, D. Security of the Internet of Things: Perspectives and

challenges. Wirel. Netw. 2014, 20, 2481–2501.

Sensors 2015, 15 5862

11. Kamat, P.; Zhang, Y.; Trappe, W.; Ozturk, C. Enhancing Source-Location Privacy in Sensor

Network Routing. In Proceedings of the 25th IEEE International Conference on Distributed

Computing Systems (ICDCS), Columbus, OH, USA, 10 June 2005.

12. Ozturk, C.; Zhang, Y.; Trappe, W.; Ott, M. Source-Location Privacy for Networks of

Energy-Constrained Sensors. In Proceediongs of the Second IEEE Workshop on Software

Technologies for Future Embedded and Ubiquitous Systems, Vienna, Austria, 11–12 May 2004.

13. Jing, D.; Han, R.; Mishra, S. Countermeasures against Traffic Analysis Attacks in Wireless Sensor

Networks. In Proceediongs of the First International Conference on Security and Privacy for

Emerging Areas in Communications Networks, Washington, DC, USA, 5–9 September 2005.

14. Ying, J.; Shigang, C.; Zhan, Z.; Liang, Z. A novel scheme for protecting receiver's location privacy

in wireless sensor networks. IEEE Trans. Wirel. Commun. 2008, 7, 3769–3779.

15. Xinfeng, L.; Xiaoyuan, W.; Nan, Z.; Zhiguo, W.; Ming, G. Enhanced Location Privacy Protection

of Base Station in Wireless Sensor Networks. In Proceedings of the 5th International Conference

on Mobile Ad-hoc and Sensor Networks MSN, Fujian, China, 14–16 December 2009.

16. Chen, J.; Du, X.; Fang, B. An efficient anonymous communication protocol for wireless sensor

networks. Wirel. Commun. Mob. Comput. 2012, 12, 1302–1312.

17. Ouyang, Y.; Le, Z.; Liu, D.; Ford, J.; Makedon, F. Source Location Privacy against Laptop-Class

Attacks in Sensor Networks. In Proceedings of the 4th International Conference on Security and

Privacy in Communication Netowrks, Istanbul, Turkey, 22 September 2008; pp. 1–10.

18. Xiaoyan, H.; Pu, W.; Jiejun, K.; Qunwei, Z.; Jun, L. Effective Probabilistic Approach Protecting

Sensor Traffic. In Proceedings of the IEEE Military Communications Conference (MILCOM),

Atlantic City, NJ, USA, 17–20 October 2005.

19. Kamat, P.; Xu, W.; Trappe, W.; Zhang, Y. Temporal privacy in wireless sensor networks: Theory

and practice. ACM Trans. Sen. Netw. 2009, 5, 1–24.

20. Xue, G.; Misra, S. Efficient anonymity schemes for clustered wireless sensor networks. Int. J.

Sens. Netw. 2006, 1, 50–63.

21. Yi, O.; Zhengyi, L.; Yurong, X.; Triandopoulos, N.; Sheng, Z.; Ford, J.; Makedon, F. Providing

Anonymity in Wireless Sensor Networks. In Proceedings of the IEEE International Conference on

Pervasive Services, Istanbul, Turkey, 15–20 July 2007.

22. Jang-Ping, S.; Jehm-Ruey, J.; Ching, T. Anonymous Path Routing in Wireless Sensor Networks.

In Proceedings of the IEEE International Conference on Communications (ICC), Beijing, China,

19–23 May 2008.

23. Xi, L.; Xu, J.; Myong-Soon, P. Location Privacy against Traffic Analysis Attacks in Wireless

Sensor Networks. In Proceedings of the International Conference on Information Science and

Applications (ICISA), Seoul, Korea, 21–23 April 2010.

24. Di Pietro, R.; Viejo, A. Location privacy and resilience in wireless sensor networks querying.

Comput. Commun. 2011, 34, 515–523.

25. Park, J.-H.; Jung, Y.-H.; Ko, H.; Kim, J.-J.; Jun, M.-S. A Privacy Technique for Providing

Anonymity to Sensor Nodes in a Sensor Network. In Ubiquitous Computing and Multimedia

Applications; Kim, T.-H., Adeli, H., Robles, R.J., Balitanas, M., Eds.; Springer: Berlin/Heidelberg,

Germany, 2011; pp. 327–335.

Sensors 2015, 15 5863

26. Juan, C.; Hongli, Z.; Binxing, F.; Xiaojiang, D.; Lihua, Y.; Xiangzhan, Y. Towards Efficient

Anonymous Communications in Sensor Networks. In Proceedings of the IEEE Global

Telecommunications Conference (GLOBECOM), Houston, TX, USA, 5–9 December 2011.

27. Abuzneid, A.; Sobh, T.; Faezipour, M. An Enhanced Communication Protocol for Anonymity and

Location Privacy in WSN. In Proceedings of the IEEE Wireless Communications and Networking

Conference, New Orleans, LA, USA, country, 9–12 March 2015.

28. Kong, J.; Hong, X. ANODR: Anonymous on Demand Routing with Untraceable Routes for Mobile

ad-hoc Networks. In Proceedings of the 4th ACM International Symposium on Mobile ad hoc

Networking & Computing, Annapolis, MA, USA, 1–3 June 2003; pp. 291–302.

29. Kerckhoffs’ Principle. Available from: http://en.citizendium.org/wiki/Kerckhoffs%27_Principle

(accessed on 1 March 2015).

30. Yanchao, Z.; Wei, L.; Wenjing, L.; Yuguang, F. Location-based compromise-tolerant security

mechanisms for wireless sensor networks. IEEE J. Sel. Areas Commun. 2006, 24, 247–260.

31. Lu, R.; Lin, X.; Zhang, C.; Zhu, H.; Ho, P.; Shen, X. AICN: An Efficient Algorithm to Identify

Compromised Nodes in Wireless Sensor Network. In Proceedings of the IEEE International

Conference on Communications (ICC), Beijing, China, 19–23 May 2008.

32. Song, H.; Xie, L.; Zhu, S.; Cao, G. Sensor Node Compromise Detection: the Location Perspective.

In Proceedings of the 2007 International Conference on Wireless Communications and Mobile

Computing, Honolulu, HI, USA, 12 August 2007; pp. 242–247.

33. Tao, L.; Min, S.; Alam, M. Compromised Sensor Nodes Detection: A Quantitative Approach.

In Proceedings of the 28th International Conference on Distributed Computing Systems Workshops

(ICDCS), Beijing, China, 17–20 June 2008.

34. Alomair, B.; Clark, A.; Cuellar, J.; Poovendran, R. Toward a Statistical Framework for Source

Anonymity in Sensor Networks. IEEE Trans. Mob. Comput. 2013, 12, 248–260.

35. Zhu, S.; Setia, S.; Jajodia, S. LEAP+: Efficient security mechanisms for large-scale distributed

sensor networks. ACM Trans. Sen. Netw. 2006, 2, 500–528.

36. Mabrouki, I.; Belghith, A. E-SeRLoc: An Enhanced Serloc Localization Algorithm with Reduced

Computational Complexity. In Proceedings of the 9th International Wireless Communications and

Mobile Computing Conference (IWCMC), Sardinia, Italy, 1–5 July 2013.

37. Lazos, L.; Poovendran, R. SeRLoc: Secure Range-Independent Localization for Wireless Sensor

Networks. In Proceedings of the 3rd ACM Workshop on Wireless Security, 1 October 2004; ACM:

Philadelphia, PA, USA, 2004; pp. 21–30

38. Zheng, W.; Gao, S.; Qiu, L.; Zhang, W. A CDS-based Topology Control Algorithm in Energy

Efficient Clustering. In Proceedings of the 31st Chinese Control Conference (CCC), Hefei, China,

25–27 July 2012.

39. Hongwei, D.; Weili, W.; Qiang, Y.; Deying, L.; Wonjun, L.; Xuepeng, X. CDS-Based Virtual

Backbone Construction with Guaranteed Routing Cost in Wireless Sensor Networks. IEEE Trans.

Parallel Distrib. Syst. 2013, 24, 652–661.

40. Abduvaliyev, A.; Pathan, A.S.K.; Jianying, Z.; Roman, R.; Wai-Choong, W. On the Vital Areas of

Intrusion Detection Systems in Wireless Sensor Networks. IEEE Commun. Surv. Tutor. 2013, 15,

1223–1237.

Sensors 2015, 15 5864

41. YangXia, L.; Ye, G. A Survey on Intrusion Detection of Wireless Sensor Network. In Proceedings

of the 2nd International Conference on Information Science and Engineering (ICISE), Hangzhou,

China, 4–6 December 2010.

42. Abuzneid, A.; Sobh, T.; Faezipour, M. Temporal Privacy Scheme for End-to-End Location Privacy

in Wireless Sensor Networks. In IEEE Electrical, Electronics, Signals, Communiction &

Optimization, Visakhapatnam, Andhra Pradesh, India, 24–25 January 2015; pp. 2476–2481.

43. Mehta, K.; Donggang, L.; Wright, M. Location Privacy in Sensor Networks Against a Global

Eavesdropper. In Proceedings of the IEEE International Conference on Network Protocols (ICNP),

Beijing, China, 16–19 October 2007.

44. Alomair, B.; Clark, A.; Cuellar, J.; Poovendran, R. Statistical Framework for Source Anonymity in

Sensor Networks. In Proceedings of the IEEE Global Telecommunications Conference

(GLOBECOM), Miami, FL, USA, 6–10 December 2010.

45. Wu, P.-C. Multiplicative, congruential random-number generators with multiplier. ACM Trans.

Math. Softw. 1997, 23, 255–265.

46. Deng, L.-Y.; Rousseau, C.; Yuan, Y. Generalized Lehmer-Tausworthe Random Number

Generators. In Proceedings of the 30th Annual Southeast Regional Conference, Raleigh, NC, USA,

8 April 1992; pp. 108–115.

47. Payne, W.H.; Rabung, J.R.; Bogyo, T.P. Coding the Lehmer pseudo-random number generator.

ACM Commun. 1969, 12, 85–86.

48. Heinzelman, W.R.; Chandrakasan, A.; Balakrishnan, H. Energy-Efficient Communication Protocol

for Wireless Microsensor Networks. In Proceedings of the 33rd Annual Hawaii International

Conference on System Sciences, Hawaii, HI, USA, 4–7 January 2000.

49. Abuhelaleh, M.A.; Mismar, T.M.; Abuzneid, A.A. Armor-LEACH—Energy Efficient, Secure

Wireless Networks Communication. In Proceedings of 17th International Conference on Computer

Communications and Networks (ICCCN), St. Thomas, USVI, USA, 3–7 August 2008.

50. Stallings, W. Network Security Essentials Applications and Standards, 5th ed.; Prentice Hall: Upper

Saddle River, NJ, USA, 2014.

2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/4.0/).

