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Abstract: Wireless sensor network (WSN) consists of many hosts called sensors. These 

sensors can sense a phenomenon (motion, temperature, humidity, average, max, min, etc.) 

and represent what they sense in a form of data. There are many applications for WSNs 

including object tracking and monitoring where in most of the cases these objects need 

protection. In these applications, data privacy itself might not be as important as the privacy 

of source location. In addition to the source location privacy, sink location privacy should 

also be provided. Providing an efficient end-to-end privacy solution would be a challenging 

task to achieve due to the open nature of the WSN. The key schemes needed for end-to-end 

location privacy are anonymity, observability, capture likelihood, and safety period. We 

extend this work to allow for countermeasures against multi-local and global adversaries. 

We present a network model protected against a sophisticated threat model: passive /active 

and local/multi-local/global attacks. This work provides a solution for end-to-end anonymity 

and location privacy as well. We will introduce a framework called fortified anonymous 

communication (FAC) protocol for WSN.  

Keywords: WSN; anonymity; privacy; source location privacy; sink privacy; contextual 

privacy; routing privacy; temporal privacy; traffic privacy; observability; safety period 
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1. Introduction 

Wireless sensor networks (WSNs) consist of many hosts called sensor nodes (SNs). A wireless sensor 

device is a simple autonomous host device. It can sense a phenomenon, convert the sensed information 

into a form of data, process the data and then transmit the data to a sink or a base-station (BS) for further 

usage or analysis. The sensor host is very limited in terms of storage, cache memory, processing and 

computing power, communication capabilities and battery lifetime [1–4]. There are many different 

applications adopting sensor nodes. However, this work focus on monitoring and tracking applications 

where sensor nodes monitor a certain area and track the presence of a certain object of interest such as 

an animal in the wildlife, a patient or a doctor in a hospital, or a fellow soldier or a vehicle in the 

battlefield. When the sensor node senses the object, it reports data to the sink (or to multiple sinks) either 

directly or through other neighboring sensors. One of the most common applications discussed in source 

location privacy (SLP) literature is the panda monitoring game [4,5]. When a sensor node detects a 

panda in a certain area, it should report via a message transmitted through intermediate nodes to the sink. 

In order to protect the panda from hunters or adversaries (ADVs), we need to implement in place an 

efficient source location privacy scheme (SLP). In such a scenario, location privacy is much more 

important than the confidentiality of the sensed data itself. Source location privacy is even more 

important in military, homeland security, and law enforcement, in addition to many other civilian 

applications [6]. In addition, base-station location privacy (BLP) is very crucial for every WSN since it 

aggregates all the data. 

2. Problem Statement 

Privacy in WSN is typically categorized into two categories: data privacy and context privacy [7–10]. 

The data privacy includes data aggregation and data query. The context privacy includes routing 

privacy, identity privacy, location privacy and timing privacy. In this work, we shall focus on using 

anonymity to provide location privacy, which includes two subcategories, source location privacy  

and base-station location privacy. One of the first works to classify context privacy was done by  

Kamat et al. [11,12], where they addressed the panda hunter game. They claim that the routing scheme 

is responsible for hiding source location of a subject. They have used two metrics to measure SLP: Safety 

period and capture likelihood. Safety period is the number of messages a source sends before it is 

captured. The capture likelihood is the probability that an adversary can capture the source within  

a certain period. There are generally two ways to locate a source using passive attacks: Traffic  

analysis [7,13] and packet tracing [7,14,15]. The traffic analysis can determine the source or sink 

locations by analyzing the traffic. Packet tracing can also be used to find the source location since 

adversaries may use radio-frequency localization techniques to perform a hop-by-hop trace. The 

adversary can move quickly during packet trace. It could be used to trace mobile nodes due to its fast 

response compared to traffic analysis [7,14]. We provide a framework that can be tested against other 

solutions using the following metrics: (i) Security: the probability that the adversary successfully 

identifies the source, the intermediary SNs or the sink; (ii) energy cost; (iii) storage and memory cost; 

(iv) delivery time; (v) safety period: how long it takes the adversary to capture the first sensor node in 

the network. Our proposed framework provides a modular system that could be configured for a variety 
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of network models and for a variety of threat models. The rest of this paper is organized as follows: in 

Section 3, we give some background and literature survey. In Section 4, we will explain the suggested 

system model, network model, threat model and the traffic model. In Section 5, we will introduce the 

anonymity module. In Section 6, we will discuss the module of data authentication and integrity. In 

Section 7, we will discuss temporal privacy. In Section 8, we will have a thorough security analysis. In 

Section 9, we will have performance analysis and evaluation. In Section 10, we will summarize our work 

and suggest some additional development to the framework in the future work. 

3. Background and Literature Survey 

There are many solutions that have been presented to solve the problems of SLP and BLP. Li et al. [8] 

discussed some of the solutions for SLP but they did not aim to create a survey. The comprehensive 

survey for SLP was presented in the work by Conti et al. [4], where they categorized the solutions into 

eleven groups. They have discussed many solutions and compared them in terms of power consumption, 

the attack/threat model, view of the network, exposed information, and efficiency in providing SLP. 

They also discussed some issues that each solution exhibits.  

Anonymity is an old issue that was discussed for mobile networks, Ad Hoc networks and Internets. 

Recently, it has become a concern for WSNs. We have identified solutions for location privacy using 

anonymity in WSN. We have included them chronologically in Table 1. 

An important solution against a global adversary introduced by Chen et al. [16] called efficient 

anonymous communication (EAC) provides sender, link and sink anonymity. We know that anonymity 

is not enough to achieve fortified end-to-end privacy. There are some solutions based on fake data 

sources where SNs send out fake packets to other nodes within the network. Some literature call them 

dummy packets. A fake packet does not contain any real information about any real events but it helps 

to obfuscate the real traffic and to divert the adversary by mimicking the presence of a fake source. The 

literature shows reasonable solutions using fake sources. Some of them are designed to handle a local 

adversary and some of them are suitable for a global adversary. Some of the literature presume a certain 

routing scheme, topology, network and threat models. Ouyang et al. [17] introduced three different 

solutions to handle the global adversary problem. The first solution is the globally optimal algorithm 

(GOA). Each SN has a pseudo random number generator that defines the interval time. The second 

solution by Ouyang et al. [17], is the heuristic greedy algorithm (HGA) where SNs follow the same 

procedure as in GOA except that the SN does not know the complete topology, but it only has the 

information of its location and the seeds of its neighbors. The third solution by Ouyang et al. [17] is the 

probabilistic algorithm (PBA) where nodes still follow the procedure of HGA, except that they do not 

send fake messages at the end of every interval. It uses probability p to decide whether to send a fake 

message or not. The value of p will reduce the communication overhead at the expense of SLP.  

We can enhance SLP and BLP by having temporal privacy against the hop-by-hop trace attack or 

timing analysis attack [4]. There are some literature addressed this using issuing packet delay techniques. 

Hong et al. [18] introduced probabilistic reshaping (PRESH) to counter the adversary that uses timing 

analysis techniques and also introduced and upgraded PRESH to be extended probabilistic reshaping 

(exPRESH) to counter such a scenario. The SN will delay the packet in its buffer again up to D time. 

Kamat et al. [19] introduced rate controlled adaptive delaying (RCAD). 
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Table 1. Solutions for location privacy using anonymity [4]. SAS, Simple Anonymity 

Scheme; CAS, Cryptographic Anonymity Scheme; HIR, Hashing-Based ID Randomization; 

RHIR, Reverse HIR; APR, Anonymous Path Routing; ACS, Anonymous Communications 

Scheme; DCARPS, Destination Controlled Anonymous Routing Protocol for Sensor Nets; 

MAQ, Max Query Aggregation; PhID, Phantom ID; EAC, Efficient Anonymous 

Communication.  

No. Scheme 
View of the 

Adversary 

Anonymity 

Technique 
Passive Attacks Active Attacks 

1 SAS & CAS [20] Global Pseudonyms 
Eavesdropping, SN compromise, 

limited traffic analysis 
- 

2 HIR & RHIR [21] Global Pseudonyms Eavesdropping, SN compromise - 

3 APR [22] Local Pseudonyms Eavesdropping, hops-tracing SN compromise 

4 
DCARPS & Global 

DCARPS [6] 
Global Pseudonyms Eavesdropping, hops-tracing - 

5 ACS [23] Local Pseudonyms 
Rate monitoring, time correlation, 

identity analysis, hops-trace 
- 

6 MQA [24] Global Aggregation Eavesdropping, hops-tracing Packet injection 

7 PhID [4,25] Local Pseudonyms Eavesdropping, traffic analysis - 

8 EAC [16] Global Pseudonyms Eavesdropping, traffic analysis 
DoS, SN compromise, 

Traffic injection 

In this work, we shall enhance EAC, the efficient anonymous communicating protocol [16,26]. An 

extension to EAC called Enhanced Communication Protocol for Anonymity and Location Privacy in 

WSN (E2AC) was presented in [27]. We will call our scheme FAC, a fortified anonymous communication 

protocol for WSN. EAC does not handle the pseudonyms synchronization very well. There are many 

situations where the system will get unsynchronized. It also could not handle multi-colluding adversaries 

and lacks a mechanism for time correlation attack. Most of the other solutions do not handle global or 

multi-colluding adversaries. Each of the different solutions focus on certain selected attack scenarios. 

Our work is aimed to be comprehensive. We propose a solution against anonymity attacks, temporal 

attacks, transmission rate-analysis attacks, and statistical attacks, which altogether will provide a 

fortified source and sink location privacy. 

4. System, Network, Threat and Traffic Models 

In this work, a framework for end-to-end location privacy using anonymity and temporal privacy is 

presented. The framework provides the following security elements: Sender anonymity, receiver 

anonymity, link anonymity, SLP, BLP, data privacy, safety period, and energy preservation. We use sink 

and BS alternatively throughout this work. The system would be fed with inputs such as the nature of 

the adversaries in the network, the residual energy in the SNs, the desired lifetime or safety period. We 

assume bi-directional links where two nodes are considered neighbors if and only if they can hear each 

other [6].The network considers one sink, which collects/aggregates sensed data (stimuli) from all the 

SNs. The sink works as an interface for WSN to the wired network [20]. Data packets generated by SNs 

are ultimately destined uplink to the sink and never destined to another SN. However, it could go through 
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a multi-hop path. Control packets can be sent from the sink, downlink, to the SNs by unicast or by 

broadcast messages. To enhance BLP, the sink acts like any other SN in the network while 

communicating with the SNs to make it absolutely indistinguishable. Most of the literature show that the 

operation of WSN network goes through two or more phases. However, generally speaking, the WSN 

runs in three phases: Pre-deployment phase, setup phase, and communication phase. We assume that the 

SNs have the ability to obfuscate the addresses at the MAC level header [20,28]. All sensors are time 

synchronized using time synchronization protocol [20]. 

The WSN will need a protocol for network topology discovery that allows the sink to view the global 

topology of the network without revealing the location of the sink [6]. The adversary nodes have very 

strong capabilities compared to the SNs. They are resource-rich; sufficient energy supply, 

computation/processing capabilities, and unlimited storage memory. An adversary could run both 

passive and active attacks. We presume Kerchhoff’s Principle [29] for our framework, where the 

adversary knows everything about the system except the keys and IDs. The framework will be able to 

handle both passive and active attacks. We presume that only few compromised nodes could coexist at 

one time due to the implementation of intrusion detection system (IDS) [16,30–33]. We assume a global 

adversary, which can monitor the traffic of the entire network and can determine the node responsible 

for the initial transmission, as in Figure 1.  

 

Figure 1. The view of adversary in WSN: local, global and multi-local.  

Assuming a global adversary means: (a) the worst-case scenario for area coverage where colluding 

sensors can cooperate to cover the whole network area [34]; and (b) the worst-case scenario for timing 

where the coverage area of the adversary is not known to the privacy protocol at any time [34]. We also 

assume that the adversary is capable of observing transmissions over extended periods. It is, however, 

not able to break the encryption algorithms or the hash functions used for securing data during 

transmission. We presume abundant traffic where sensors detect and transmit many packets such as in 

the applications of environment monitoring. Such networks can resist global eavesdroppers easily 

comparted to scarce traffic networks due to the volume of transmissions that could happen at one time. 

The framework is built of many blocks of functions and protocol. We have adopted some of the solutions 

provided in the literature such as solutions for localization and time synchronization. Figure 2 provides a 
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list of all the blocks that we have provided solutions for and the blocks that we have adopted. The BS will be 

able to control the network by assigning the value of different parameters. 

 

Figure 2. Adopted and provided modules for the framework.  

5. Module I: Anonymity 

The communication process is divided into three phases, namely: Pre-deployment phase, setup phase 

and communication phase. 

5.1. Pre-Deployment Phase 

Prior to actual distribution of the SNs in the field of application, the SNs need to be tested, fully 

charged, and preloaded with some parameters. We will use subcase letters i and j to describe source and 

intermediary nodes consecutively. We will use BS to describe the sink or the base station. Table 2 

summarizes all the parameters and terms used in this work. 

Table 2. Reference of important parameters and terms used by FAC.  

Notation Definition Source 

IDi ID of sensor i Preloaded 

ai Random number shared between SNi & BS Preloaded 

bi Random number shared between SNi & neighbors Preloaded 

ci Random number shared between SNi & neighbors Preloaded 
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Table 2. Cont. 

Notation Definition Source 

H1 Hash function to create pseudonyms and the keys Preloaded 

H Hash function to create data digest Preloaded 

ki↔bs Pair-wise key shared between SNi & BS Preloaded 

kbi Broadcast key for SNi Preloaded 

fkbi Fake broadcast key for SNi Preloaded 

N Number of SNs in WSN Learned 

Ni Number of neighboring for SNi Calculated 

HCi↔bs Hop-count between SNi & BS Learned 

PIDi Pseudonym ID shared between SNi & BS Calculated 

BPIDi Broadcast pseudonym ID Calculated 

ai↔j Random value shared between SNi & SNj Calculated 

ki↔j Pair-wise key shared between SNi & SNj Calculated 

OHPID i↔j Pseudonym ID shared between SNi & SNj Calculated 

APIDi ACK pseudonym ID for SNi Calculated 

FBPIDi Fake broadcast pseudonym ID Calculated 

Ti Table in SNi for shared parameters Calculated 

TIME_STAMP Time stamp Calculated 

SEQ_NO Sequence number for a message Calculated 

TTL Time to live Calculated 

MCG_LGTH Message size Calculated 

𝚫𝒓𝒆𝒔𝒊𝒅𝒖𝒂𝒍 Residual energy Calculated 

 XOR Operation Operation 

|| Concatenation operation Operation 

5.2. Setup Phase 

It is typical to presume the WSN is considered secure for some short period after the deployment of 

sensors and before the steady communication phase. Zhu et al. [35] presented that WSN has a lower 

bound on the time interval (Tmin) before the adversary is able to compromise a SN. During this time, the 

sensors can communicate and exchange all needed information safely. The sink needs to know the 

location of all the SNs participating in the WSN. Likewise, the SNs need to know their relative locations 

to the sink and to their neighbors. There are many localization schemes which, are proposed in the 

literature [16,20,36,37]. We presume the network will adopt one of the available efficient localization 

schemes. Localization allows each SN to know its smallest hop-count to the BS (HCi↔bs). 

5.2.1. Creating Pseudonyms 

The key idea is to use pseudonyms instead of using real IDs for the SNs and the BS during 

communication. Therefore, one disposable pseudonym per one transmission is used. This way, the ADV 

cannot trace back to the source using multiple messages containing the real ID. There are five kinds of 

transmissions that could happen in the WSN: (i) Multi- hop transmission between SNi and BS;  

(ii) transmission between two sensor neighbors i and j; (iii) broadcast sent by SNi or BS;  

(iv) acknowledgement; and (v) fake broadcast. The process starts by creating a pseudonym ID for each 

SNi, we call it for short (PIDi) which is computed using Equation (1):  
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PIDi = H1(IDi  ai) (1) 

The SNi can calculate the broadcast pseudonym ID (BPIDi) according to Equation (2): 

BPIDi = H1(IDi  bi) (2) 

The SNi can calculate the fake broadcast pseudonym ID (FBPIDi) according to Equation (3): 

FBPIDi = H1(IDi  ci) (3) 

SNi should, by now, know its entire neighbor set (Ni). SNi will send a broadcast discovery message 

(Mdiscovery), to exchange parameters with all one-hop neighbors. The format of the message is stated in 

Equation (4): 

Mdiscovery = Kdis(TTL || IDi || ki↔bs || kbi || fkbi || ai || bi || ci || Δi || HCi↔bs) (4) 

where TTL should be 1 for this transmission. Kdis is a shared common encryption key to secure the 

discovery message. SNi will receive also a similar broadcast message from SNj and from all other 

neighbors. Both SNi and SNj will calculate a new random value (ai↔j) according to Equation (5): 

ai↔j = H1(IDi  IDj) (5) 

Both SNi and SNj will calculate also a new pair-wise key ki↔j according to Equation (6): 

ki↔j = H1(ki↔bs  kj↔bs) (6) 

SNi also calculates broadcast pseudonym ID for SNj (BPIDj) according to expression Equation (2) 

since SNi has already received the values of IDj and bj through Mdiscovery. It also calculates the one-hop 

pseudonym ID (OHPID i↔j) shared between SNi and SNj as expressed in Equation (7): 

OHPID i↔j = H1(ai  aj) (7) 

Finally, acknowledgement pseudonym ID for SNi (APIDi) will be calculated according to Equation (8): 

APIDi =H1(IDi) (8) 

SNi will create a table (Ti) which contains the shared values with the neighbors as listed in Table 3. 

In conclusion, we have replaced the ID with quintuple pseudonyms to reference the SN during  

the communication. 

Table 3. Shared values among sensor neighbors. If SNi has Ni neighbors, then Ti will have Ni tuples. 

Information in Ti Per Each Neighbor Tuple for SNj 

Shared random number ai↔j 

Shared broadcast random number bj 

Shared fake broadcast random number cj 

Shared broadcast key BPIDj 

Shared fake broadcast key FPIDj 

Shared one-hop key ki↔j 

Current one-hop pseudonym ID OHPID i↔j 

Link direction linki→j 

Residual energy level Δj 
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5.2.2. Deleting Security Information 

After storing all required pseudonyms, parameters and keys in Ti, it would be the time to delete all 

unnecessary information from SNi memory for the purpose of security [27]. In addition, it will release 

some memory storage space [16,26]. Most importantly, SNi will delete IDi and HCi↔bs, which could be 

critical information for the adversary. In addition, SNi shall delete all discovery messages. 

5.3. Communication Phase 

During the communication phase, when sensing and sending data to the BS takes place, there are 

seven operations that continue until network lifetime ends. These operations are: (i) Sense and send  

a message to a neighbor; (ii) forward a message hop-by-hop; (iii) broadcast a real message;  

(iv) acknowledgement; (v) broadcast a fake message; (vi) SN removal; and (vii) SN addition. A SN will 

have three roles, in terms of data transmission, during the communication phase: (i) Role as a sensor; 

(ii) as a message forwarder; and (iii) as a broadcaster. In the following sections, we will use SNi as a 

source node and SNj as a neighbor to the source. 

5.3.1. Transmission as a Sensor 

When SNi senses data, it needs to send a message hop-by-hop to the BS. The SNi only recognizes 

itself by its (PIDi), and the BS will recognize the source of the message by its PIDi as well. Thus, the 

PIDi of the source needs to be included in the message until the BS receives it. Consequently, the PID 

of a sensor will be updated after every transmission. The SNi needs to select one neighbor from Ni to 

forward the message to it. The selection process goes through a probabilistic protocol, which guarantees 

that SNi does not use one neighbor all the time when forwarding its data; first, for routing privacy, and 

second for increasing the lifetime of the WSN. SNi will form the message in the following format: 

Mi→j = OHPIDi↔j || Eki→j (PIDi || Eki↔bs (Di)) (9) 

where Di includes the sensed data. Once SNi knows that the message (Mi→j) is delivered to the the 

neighbor, it needs to dispose of the current pseudonym PIDi and issue a new one for the next transmission 

as indicated in Equation (10): 

PIDi = H1(PIDi  ai) (10) 

In addition, both SNi and SNj will dispose of the current OHPIDi→j and issue a new one for the next 

communication between the two neighbors according to Equation (11): 

OHPIDi→j = H1(OHPIDi→j  ai→j) (11) 

The message (M) will then be reformatted by the recipient SNj and again forwarded to the next node, 

say SNr, and so on, until it gets to the BS. If SNj was the BS, then the BS uses the shared one-hop key 

between the sensor and the BS, to decrypt the data and to get the PIDi, which the BS can use to recognize 

the source SNi. Only at this point of time, BS can update the value of PIDi of SNi. It also reads the data 

(Di) which the BS can decrypt using ki↔bs. 
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5.3.2. Transmission as a Forwarder 

When SNi sends the message one-hop uplink to the neighbor SNj, then SNj needs to forward the 

message to another intermediary node. Upon receiving Mi→j, SNj will match OHPIDi→j in its table, Tj. 

If there is no match, then the message definitely is not addressed for SNj and it will be dropped 

immediately. If it matches, then the message is decrypted using ki→j. The message will be forwarded to 

SNr after (M) is reformatted as in Equation (12): 

Mj→r = OHPIDj↔r || Ekj→r (PIDi || Eki↔bs (Di)) (12) 

Right after the data is received by SNj and forwarded to the next one-hop SNr, the SNj updates the 

pseudonym OHPIDi↔j. SNj now is ready to exchange another message with SNi using the new 

pseudonym OHPIDi↔j. However, SNj is not yet ready to send data to SNr since SNr does not update the 

OHPIDj↔r until (Di) is forwarded to the next hop, say NSv. See Figure 3 for the sequence of transmissions 

for a message from SNi to the BS. 

 

(a) 

 

(b) 

 

(c) 

Figure 3. The sequence of a message transmission from SNi to the BS. (a) SNj receives a 

message from SNi; (b) SNj forwards the message to a neighbor SNr; (c) BS receives the 

message and processes it. 
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5.3.3. Acknowledgement 

As expected in data networks, message could be lost or could be corrupted. In either case, 

retransmission is required. Because SNs change PIDs after each transmission, synchronizing PIDs is 

crucial. Updating the pseudonyms depends on successful message delivery. Ideally, the source should 

update the pseudonyms only after making sure the BS receives the data. However, the lack of direct 

connection between the source and the BS makes it a bit complicated process. 

The BS cannot send direct acknowledgement to the source if it is multiple hops away. We have to 

depend on multiple acknowledgements along the path between the source and the BS. SNi needs to 

calculate the Acknowledgement pseudonym ID (APIDi) according to Equation (13): 

APIDi = H1(APIDi  bi) (13) 

The message will be sent out to the neighbor with the current value for APIDi. Thus, we will rewrite 

Mi→j as it appears in Equation (14):  

Mi→j = Padding || OHPIDi↔j || Eki→j (APIDi || PIDi || Eki↔bs (Di)) (14) 

Padding is added to make sure all the one-hop messages have the same size to prevent size correlation 

attacks. When SNj receives the message, it will reformat the message as in expression Equation (15) and 

then send it to SNr: 

Mj→r = APIDi || OHPIDj↔r || Ej→r (APIDj || PIDi || Eki↔bs (Di)) (15) 

The transmission of Mj→r should be heard by all the neighbors including both SNi and SNr. If SNi 

hears the message and reads (APIDi), the SNi knows that Mi→j was received correctly by SNj. Only at 

this time, SNi updates the value of OHPIDi↔j. PIDi will get updated, as well, since SNi is the source of 

the message. This is exhibited in Figure 4. Here are two scenarios: 

Scenario 1: The packet sent by SNi is lost or got corrupted. In this case, SNj considers nothing 

happened, so it will not forward any message onward. Meanwhile, SNi will wait for () time to expire. 

It will send the message again with updated APIDi. Once the message is acknowledged according to the 

procedure explained earlier, then PIDi, OHPIDi and APIDi will be updated. If it is intermediary SN, only 

OHPIDi and APIDi is updated as exhibited in Figure 5. 

Scenario 2: SNj receives the packet correctly; the new packet Mj→r is sent out which contains the 

acknowledgement (APIDi), and SNj updated the value of OHPIDi↔j. However, SNi does not hear the 

forwarded message Mj→r within time (). At this moment SNi does not know for sure if the message was 

delivered (resembles scenario 1), or the acknowledgement is lost. It has to account for the worst case. A 

copy of the message will be retransmitted to SNj with the current OHPIDi and updated APIDi. SNj can 

recognize the message because of the value of old OHPIDi. After receiving the retransmitted message, 

it now sends a direct acknowledgement to SNi as in Equation (16). 

ACKij = APIDi|| Padding (16) 
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Figure 4. Using APIDi for acknowledgement with no errors.  

 

Figure 5. Acknowledgement for a message with errors. 

Figure 6 shows the process. BS is treated similar to a normal SN, so it has to acknowledge every 

message it receives. After the message is delivered to the BS, and after the message is acknowledged, 

the PIDi (of the source) will be updated on the BS tables while it has been already updated in the sensor 

itself after the first acknowledgement.  

 

Figure 6. Handling lost acknowledgement.  
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Both the SNi and the BS will be ready to exchange a new message. As long the new message does 

not reach to the BS before the old PIDi is updated, the system will remain synchronized. This way, we 

have a possible window of one message only. We propose implementing a sliding window mechanism 

as exhibited in Figure 7 [27]. For each sensor, we can have a window of (W) slots. 

 

Figure 7. Sliding window for received PIDs [27]. 

5.3.4. Transmission as a Broadcaster 

Typically, the BS is required to broadcast a message for control and management purposes. Likewise, 

a sensor might need to broadcast a message to the BS or to the neighbors for network setup, maintenance 

and other management issues. The framework requires keeping all the messages indistinguishable 

throughout the network, so all the messages need to have the same size. Each SN is preloaded with a 

broadcast key (kbi) and assigned broadcast pseudonym (BPIDi). The broadcast message sent by SNi is 

formatted as in Equation (17): 

Mb = Padding || BPIDi || Ekbi(Db) (17) 

All the neighbors will receive the broadcast message from a source SNi. SNi and the recipients will 

update BPIDi according to Equation (18). 

BPIDi = H1(BPIDi  bi) (18) 

Upon receiving the broadcast message (Mb), SNj decrypts the message using (kbi) stored in the table 

(Tj). It then encrypts it again using (kbj) and broadcasts (Mb) to its one-hop neighbors set (Nj) as in 

Equation (19): 

Mb = BPIDi || BPIDj || Ekbj(Db) (19) 

When the BS receives a broadcast message, it is ultimately the destination, so intuitively it does not 

need to broadcast the message again. Our proposed framework assumes that the BS behaves similar to 

a normal sensor. To maintain this pre-course, we require the BS to broadcast the message again for 

acknowledgement purpose. Thus, we introduce the limited broadcast where the BS will be able to 

broadcast to only one hop (TTL = 1). 
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5.3.5. Limited Broadcast Messages 

A sensor inside network maze can only recognize the neighboring sensors and the BS. When SN 

broadcasts a message uplink (towards the BS), then all neighbors should hear it. The neighbor should 

broadcast the message again if and only if the message comes from a SN with a bigger hop-count (HC). 

This will conserve a lot of unnecessary traffic and energy dissipation. The broadcast message will 

contain (TTL = HC). The value will keep decreasing by one until it gets to the BS. In contrast, the 

downlink broadcast messages (by the BS to the SNs) should have (TTL = 0) where the intermediary 

sensors would rebroadcast the message if and only if it comes from a neighbor with a smaller (HC).  

A special case when (TTL = 1) where the message will be broadcasted to one-hop neighbors only. FAC 

also may adopted a more sophisticated optimized flooding algorithm for wireless multi-hop network, 

such as CDS-based algorithms [38,39]. 

5.3.6. Fake Broadcast Message 

The sensors need to send fake messages to prevent time correlation, rate analysis and statistical 

analysis. A fake message is technically a one-hop broadcast message. However, to prevent correlation, 

the message needs to behave similar to real messages. Therefore, the message needs to be encrypted and 

have similar size as the real message to make it completely indistinguishable. Since it has to carry a 

dummy data, it will contain the residual energy (Δ) of the issuing sensor. This information will be 

extracted by the recipient neighbors and saved in the related tuple in the table (T). The fake broadcast 

message sent by SNi is as in Equation (20): 

Mf = Padding || FPIDi || Ekfi(i) (20) 

All the neighbors will receive the fake broadcast message from SNi. SNi and the recipients will then 

update FPIDi according to Equation (21): 

FPIDi = H1(FPIDi  ci) (21) 

There is no need to worry about the pseudonyms synchronization since the main purpose of the fake 

messages is to show activity in idle sensors to obfuscate real messages. 

5.4. SN Removal 

There are many reasons why a sensor should be removed from WSN. For instance, when the battery 

of a sensor is about to deplete, it should refrain from participation. This would protect against data loss 

and maintain the pseudonyms synchronized. In some other cases, WSN use IDS [40,41] to protect 

against active attacks, so once a sensor is captured, it must be banished from the network. Procedurally, 

if SNi opts to be removed, it will send a message to the BS as in Equation (22): 

Mi→j = OHPIDi↔j || Eki→j (PIDi || Eki↔bs (Dremove)) (22) 

where (Dremove) is a command to banish the sensor. The tuple of the SNi in the BS tables will be disabled 

permanently. In addition, SNi will send a broadcast message to the neighbors as in Equation (23): 

Mb = Padding || BPIDi || Ekbi(Dremove)  (23) 
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Once the neighbors get the message (Dremove), they will delete the tuple related to SNi from the table 

(T) and banish the sensor. The BS for sensor removal could use the same process. 

5.5. SN Addition 

To add a new sensor to the network, the sensor will be preloaded with the required parameters: IDi, 

ai, bi, ci, H1, ki↔bs and kbi, and fkbi. Right after deployment, the sensor calculates the shared parameters 

with its neighbors. The BS should be trusted to run the process. The BS will send special key (kadd) to 

all the neighbors. SNi will be preloaded with the same key as well. SNi and the neighbors will use this 

special key to authenticate with each other. Initially, the BS sends the following message to the one-hop 

neighbors of the new sensor as in Equation (24): 

Mb = Padding || BPIDbs || Ekb-bs(Dadd)  (24) 

where (Dadd) is expressed in Equation (25): 

Dadd = hc || kadd (25) 

The initial value for hc is zero. It will be incremented every time the message is forwarded. 

5.6. Contribution of Anonymity Module 

Other works have provided anonymity using pseudonyms and aggregation to provide SN anonymity 

while very few provided BS anonymity. Our anonymity module has contributed with an innovative 

approach by using 100% anonymous communication. We have provided to have anonymous real, fake, 

acknowledgment, unicast and broadcast message transmission. Moreover, we have provided anonymous 

transmission for the BS by providing limited onion encryption. Compromising a SN in some other works 

would lead to the discovery of the pseudonyms, which are, related the SN, which could help the 

adversary to carry further attacks. In our module, capturing a SN will not lead to pseudonyms’ leakage. 

The module will fight against local, multi-local and global adversary. Although, some solutions claimed 

fighting global anonymity, keeping the pseudonyms synchronized was not possible. We have provided 

a complete mechanism for synchronization, secure sensor addition and removal. The module will fight 

both passive and active attacks. A complete anonymity and security analysis is be provided in Section 

8. Section 9, explains how the solution remains light compared to the other works. 

6. Module II: Data Authentication and Integrity 

The data is encrypted before transmission to protect against passive attacks such as eavesdropping. 

For active attacks, such as data and transaction falsification, message authentication is required. The two 

important security aspects to achieve: (i) Verify that the content of the message is not altered and;  

(ii) the source is authentic. We could achieve authentication by either using a message authentication 

code (MAC), or one-way hash function (OWH). MAC would require the sender (SNi) and receiver (BS) 

to share a secret key. The authentication code is calculated as MAC = F (k, D). DES or other algorithms 

can be used to generate the code. The OWH also accepts a variable size message (D) as input and 

produces a fixed sized digest MD = H (D) as output. Examples for OWH are SHA, MD5, Whirlpool and 

HMAC. The advantage of OWH over MAC is the fact that it does not use encryption, which is quite 
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slow. Comes in the middle, HMAC which is a MAC derived from OWH such as SHA-1. It could be 

expressed as: MD = HMAC (K, D). 

If we opt to use HMAC as an example, the (Mi→j) will be rewritten as in Equation (26): 

Mi→j = APIDi || OHPIDi↔j || Eki→j (APIDi || PIDi || Eki↔bs (Di)) || HMACki↔bs (PIDi || Di) (26) 

The key (ki↔bs) is shared between SNi and the BS. The message could be authenticated with MD 

using OWH as in Equation (27): 

Mi→j = APIDi || OHPIDi↔j || Eki→j (APIDi || PIDi || Eki↔bs (Di) || H(PIDi || Eki↔bs (Di))) (27) 

As it is transparent from expression Equation (27), we need more processing time and therefore more 

power consumption because we have encrypted a sizable packet. There is a tradeoff between higher 

security and energy conservation. The first approach is more appropriate. Authentication for the 

broadcast messages is done as in Equation (28): 

Mb = Padding || BPIDi || Ekbi(Db) || HMACkbi(Db)) (28) 

Alternatively, it can be achieved using Equation (29): 

Mb = Padding || BPIDi || Ekbi(Db || H(kbi || Db)) (29) 

The message could contain other important information such as sequence number (similar to the  

well-known HDLC and TCP protocols) and time stamp. The receiver uses the sequence number to verify 

the order of messages. Time stamp is used to check the delay threshold. Both checks will enhance protection 

against various active attacks. The message core data (Di) could have the following format: 

Di = SEQ_NO || TIME_STAMP || MSG_LGTH || SENSED_DATA (30) 

Providing authentication to protect against active attacks is crucial in any communication. The 

innovation of our authentication module is by providing message authentication for every transmission 

in the network without limiting it to real messages unlike many other works proposed. The adversary 

can utilize any captured transmission to launch attacks against the network, which could include real, 

fake and acknowledgement messages. Our module can use MAC, OWHF and HMAC according to the 

security needs of the WSN. The network can adjust the parameters according to the security situation 

using adaptive framework. Integrating the authentication module with the anonymity module without 

hindering the performance of either one is a necessity, which we have achieved in this work. 

7. Module III: Temporal Privacy 

WSN could suffer from time correlation attacks [11,13,14,23,42] by observing the time between 

correlative packets sent and received in a certain neighborhood. The adversary can trace forward and 

backward the messages until they reach to the BS or to the source. Hence, hiding temporal information 

is crucial for both anonymity and location privacy. Using routing schemes to protect against time 

correlation attacks is found to be efficient to certain extent where local adversary usually has limited 

mobility and partial view of the network traffic. However, routing based schemes do not work for global 

adversary where the traffic of the whole network can be easily monitored with a full spatial view and the 

adversaries can collude together to promptly detect the origin and time information of the event [18,34]. 

A mechanism is required to divert attention of the adversary when there is event-driven transmissions, 
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especially with the presence of global adversary [43]. Figure 8 exhibits a probabilistic distribution for 

the fake messages.  

 

Figure 8. Nodes transmit fake messages according to a probabilistic distribution. When real 

messages are sent, the system should maintain the required distribution by delaying some 

fake messages [34,44].  

The distribution of events changes which could be a reason for the adversary to detect the event timing 

and thereafter the source of the event. The message distribution (both real and fake) needs to be adjusted 

to prevent time correlation. In some applications, such as monitoring and surveillance, we cannot 

guarantee a certain event distribution. The literature talk about three ways to maintain an obfuscated 

message distribution: (i) By issuing message delays; and (ii) by issuing fake messages; and (ii) by using 

both delays and fake messages. Using delays works well against local adversary but might not be suitable 

for time sensitive networks. In contrast, using fake messages is required to protect against multi-local 

and global adversary, however, it is very expensive in terms of energy dissipation. Furthermore, 

adversary with good statistical analysis can easily detect the message distribution if the scheme is not 

designed carefully [34]. Some work in the literature clearly differentiates between two terms: the event 

(of transmission) and the interval (of transmission). If every interval has only one transmission, then 

event and interval are the same, however, this might not be the case when we have multiple transmissions 

during one interval. So, the anonymity level depends on the capability of the adversary to distinguish 

between real and fake transmissions. This means, given multiple transmissions by a SN, the adversary 

must be unable to distinguish, with significant confidence, between transmissions carry real data and 

transmissions carry fake data. Alomair et al. [34] suggested that transmission “indistinguishability” is 

not enough. They claim that indistinguishability is achieved when adversary monitoring the network 

over multiple time intervals, in which some intervals contain real event transmissions and others do not, 

is unable to determine, with significant confidence, which of the intervals contain the real traffic. If intervals 

are indistinguishable, the individual transmissions within the interval should also be indistinguishable. 

We should have a mechanism to quantify anonymity while it is used, in the literature, in different 

ways. However, in our work, anonymity means how to prevent the adversary from knowing the source 

of the message. In other words, the adversary could know that a particular sensor sent a message at one 

time, but it should not know that sensor is the source of the message. By delaying the real messages and 
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by issuing multiple messages at one interval would mislead the adversary. As an example, for one 

transmission and one adversary, where the adversary can guess either the message is real or fake without 

any anonymity measurement taken, it should be 0.5 (either fake or real). Let us presume ѱ donates one 

adversary strategy for breaching the anonymity of the system among a set of strategies. Let us presume 

Pr is the probability that the adversary succeeds using strategy. The anonymity A as defined in [34] 

with the existence of a strategy, is presented in Equation (31): 

A: = 1 – Pr, where 0 ≤ Pr ≤ 1 (31) 

If we presume that  represents all possible strategies for the adversary to breach the anonymity of 

the WSN, the accumulated anonymity will be as in Equation (32):  

A: = min (A), where  ∈  (32) 

It is very important to increase anonymity for every individual SN in the network especially with the 

presence of multi-local or global adversaries. Presence of colluding adversaries could cause the 

anonymity to drop exponentially [34]. Take Figure 9 as an example, where WSN has a moving Panda 

from point “a”, to “b”, to “c”, then finally to “d” where each location has a SN to report the Panda’s 

movement. If the anonymity of each sensor is A = 0.8, then the anonymity at node “b” is A = 0.82 = 0.64 

and at point “d” is A = 0.84 = 0.41. Having global adversary makes it super necessary to design a strong 

anonymity model which can resist the time correlation attack [42].  

In this work, we assume the worst case for time correlation attacks which is a global or laptop-class 

adversary attacks [17]. Having an anonymity scheme to protect against the global adversary will be very 

expensive solution in terms of energy preservation and thus the lifetime of the network. In the following 

two subsections, we propose two schemes, the simple global anti temporal (SGAT) and the energy 

controlled anti temporal (ECAT). 

 

Figure 9. Having multiple colluding nodes will reduce system anonymity exponentially [34,42,44].  

7.1. Simple Global Anti Temporal Scheme (SGAT) 

When an event-driven message is sent out, the adversary can trace back the message to the SN or 

forward to the BS. Sending few other transmissions in the network within the range of the adversary 

confuses it and prevents the adversary from having known path to follow. In this work, we presume the 

lifetime of the network (Ω) is divided into a number of intervals (I) and each interval time is (), where: 
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Ω = I × ωi (33) 

The value of Ω can be predicted as a range between a minimum value (worst case) Ωmin and a 

maximum value (best case) Ωmax. It all depends on how real/fake transmissions are facilitated. The SNs 

will send either a fake or a real message during one interval. The message is sent at the end of each 

interval or it is adjusted to be sent during the interval to create some variable delays through the route to 

the BS, which would confuse the adversary more and would prevent it from gaining useful knowledge 

about the network based on time correlation. SNi that has sensed the event or received the real data from 

another SNj, will send the real message (Mr) through a hop-by-hop path to the BS, and some other nodes 

will send fake messages (Mf) during the same time to disrupt the adversary. There are two questions: 

How long the message will be held in the SN after it is sensed? Simplistically, Mr and Mf are sent at the 

end of the interval I. The time from arrival of the data to the end of the period time (τw) expressed in 

Equation (34): 

τw = i − ta  where: t0 ≤ ta ≤ ts ≤ i  (34) 

where: t0 is the beginning of the interval Ii, ta is the arrival time, t0 ≤ ta. 

Ideally, the message will be sent immediately after it is sensed or received which makes τw = 0. 

Theoretically, τw could be a value: 0 ≤ τ w ≤i as exhibited in Figure 10. 

How many SNs in the network will send fake message during one interval time and which ones? 

Simplistically, every SN in the network, which is in the range of the adversary and in the range of source 

SN, should send a fake message while SNs that have real messages will send the real messages only. 

 

Figure 10. Timing for receiving a real message and then sending it out during the interval 

period assigned to the sensor node. The total delay will include the processing time, 

transmission time and the withhold time [42].  

There are many technical issues regarding the determination of the optimal configuration for both 

questions mentioned earlier. For instance, it is not possible for the neighboring nodes to know in advance 

when a SN is going to sense an event. It is a completely unpredictable random-distribution for the events. 

The need to transmit fake messages becomes even much more crucial if we do not have busy-network. 

Therefore, all SNs with no real messages need to send fake messages during the interval Ii, in the worst 
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case, or only selected nodes according to a probabilistic protocol. Having high number of fake message 

transmissions will reduce the lifetime of the network in favor of privacy. Doing the reverse will 

jeopardize the privacy of the sensor nodes. The adversary could learn the mechanism of sending real and 

fake messages at the end of the interval. However, it is not very dangerous if the network sends enough 

fake messages at the same time. Having variable withhold time (τw) is useful for privacy and for reducing 

the average network delay. The delivery time (τd) presuming that the message is always sent at the end 

of the interval Ii is: 

τd = τw + τtrans + τproc (35) 

where: τd is delivery time, τtrans is transmission time, τproc is processing time. 

If we presume τ proc is much smaller than τtrans, then τd can be rewritten as the following: 

τd = τw + τtrans (36) 

If the message needs to go through (U) hops to the BS, and if we assume that the transmission only 

happens at the end of the Interval Ii, then ts, equals to i, and the total delivery time (τd-total) can be 

calculated according to the expression below [42]: 

τ𝑑−𝑡𝑜𝑡𝑎𝑙 =  ∑ 𝜏𝑤𝑢

𝑈

𝑢=1

+ 𝜏𝑡𝑟𝑎𝑛𝑠𝑢
 (37) 

Having ts equals to i; i.e., sending message at the end of the interval, will increase the delay of the 

delivery presuming that every τtrans is equal [42]. Thus, optimizing τd-total is a function of τw according to 

Equation (38): 

τ𝑑−𝑡𝑜𝑡𝑎𝑙 = f(𝜏𝑤) =  ∑ 𝜏𝑤𝑢

𝑈

𝑢=1

 (38) 

Each SN will be informed during the setup phase about i for the lifetime of the network. The BS 

also can alter this value by broadcast when the conditions of the WSN changes (closed-loop control). 

The value of i should be calculated to achieve at least the minimum expected lifetime span Ωmin without 

jeopardizing the privacy and data integrity. Thus: 

Ωhigh-th ≥ Ωi ≥ Ωlow-th (39) 

where Ωhigh-th is the highest possible value for Ωi and, Ωlow-th is the lowest expected value for Ωi. When 

SN does not have a real message to send before the end of the interval period Ii, it will send a fake 

message according to the procedure explained in the anonymity module. When SN has a real message, 

it will send it to one node from the neighborhood set (Ni). 

7.1.1. Security Analysis 

The adversary sees every SN sending a message at a fixed data rate at any one time. It also cannot 

distinguish any message from the rest of the messages in the network since none has similar ID. If we 

have N nodes in the WSN, the probability that one adversary can locate the sending node is: 

𝑃𝑟 =  
1

𝑁
 (40) 
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We can calculate anonymity as: 

𝚨 = 𝟏 − 𝑷𝒓 (41) 

7.1.2. Delivery Time 

Message follows hop-by-hop path until it gets to the BS as exhibited in Figure 11. In this scheme, the 

message waits until the end of the interval. The delay will be calculated according to the expression 

below [42]:  

τ𝑑−𝑡𝑜𝑡𝑎𝑙 = 𝜏𝑤0
+ (HC − 1) ∗ 𝜔𝑖 + 𝜏𝑡𝑟𝑎𝑛𝑠𝑢

 (42) 

It axiomatic that most delay accumulates from holding the message until the end of the interval periods. 

 

Figure 11. Total delay required to send a message from source to the BS through (U) hopes [42].  

7.1.3. Energy Cost 

We presume in this scheme that every node would send one message at the end of each interval. The 

message could be either real or fake. If we have (N) nodes in the WSN, then we expect (N) messages 

during each interval Ii. The energy spent for transmission is almost constant since we have fixed size 

messages. However, we can evaluate how expensive it would be to use fake messages for privacy 

enhancement. If we have (Q) percent of the nodes send real messages at each interval, then we are 

wasting (1-Q) percent of the energy and of the bandwidth.  

We can adjust the amount of energy consumed by increasing the interval period i. However, 

increasing i, would increase the delays. If a SN receives multiple messages in one interval, then it will 

queue the messages for transmission. Because the SN needs to wait until the end of the interval, it could 

arrange the messages in a queue and send them randomly at the end of interval. This should also increase 

the privacy and security of the data. It could also select a different forward node for each message. In 

conclusion, SGAT is energy-expensive due to sending fake/real messages by every node per each 

interval of time. However, SGAT provides the maximum message entropy. Figure 12 exhibits the network 

transmissions for two consecutive intervals. 
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(a) (b) 

Figure 12. Anonymity with fake messages. (a) Sensors sense events and send real messages 

while the rest send fake messages. With Fake MSG’s: 𝑃𝑟 =
1

𝑁
=

1

48
= 2%, Without Fake 

MSG’s: 𝑃𝑟  =
1

𝑛
=

1

11
= 9%; (b) Sensors send or forward real messages will not send fake 

messages. The more the network gets busy the less fake messages are transmitted. 

7.2. Energy Controlled Anti Temporal Scheme (ECAT) 

There are three major drawbacks in SGAT: (i) Having fixed interval time i while it is possible to 

adjust the value for a better traffic and energy control; (ii) not considering the residual energy as a metric 

for selecting the forward hop; (iii) high rate of traffic due to fake messages. 

7.2.1. Changing i from Fixed to Variable 

Having a fixed interval time, i could be a glitch for network performance. If i is set to be a large 

value, then the delay will be high which could be a serious problem in some time sensitive applications. 

If i is set to be a small value, then a huge amount of fake messages will be sent at the end of each 

interval, which will reduce the lifetime of SNs and accordingly the lifetime of the WSN. We propose 

that we have variable i as presented in [17]. Every node will be calculating its i using a pseudo-random 

number generator (PRNG). We suggest a uniform distribution algorithm such as multiplicative 

congruential algorithm [45,46], which is the basis for many of the random number generators in use 

today. Lehmer’s generators [47] involve three integer parameters, r, s, and m, and an initial value, x0, 

called the seed. A sequence is generated by the following modified formula: 

Xk+1 = b × ((r·Xk + s) mod m + f) (43) 

The result of the modified PRNG will be a sequence of integer values between (b × f) and (b × (m + 

f − 1)). Each SN needs to be preloaded with the seed ×0, r, s, m, b and f values. The seed range is 0 to  

(m − 1) and it is uniformly assigned to the sensor nodes. If b = 2, f = 1 and m = 4 then sequence of four 

intervals will be: i ϵ [2,4,6,8] time-units as exhibited in Figure 13. We could have up to (m!) different 

sequences that are uniformly distributed on the SNs. For instance, we can have Equation (24) different 

sequences for our example and if we have Equation (48) nodes in the network, so each sequence should 

be provided to two nodes only.  

BS

Real MSG
Fake MSG

BS

Real MSG

Forward MSG

Fake MSG
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Figure 13. The generation of the sequence of intervals assigned for each sensor. The 

sequence keeps repeating for the sensor. Fake messages transmitted only at the end of the 

interval. However, real message could be transmitted at any subinterval.  

Each node will be dynamically assigned an interval value, which needs to change after each 

transmission. Taking the example above, the first 
1

𝑚
 th (more or less) of the sensors will send data after 

2 time-units. Then, the second 
1

𝑚
 th will transmit after 4 time-units, and so on. At any point of time, the 

adversary will be faced by enough transmissions in the network that it could divert its attention far away 

from the SNs sending real data. By having (m) interval values where each SN will be generating one i 

using the PRNG, we have reduced the average interval time from max to ave. That is explained in the 

inequality Equation (44): 

𝑚𝑎𝑥 > 𝑎𝑣𝑒 =
𝑇1 + ⋯ + 𝑇𝑚

𝑚
> 𝑚𝑖𝑛 (44) 

Considering the earlier example, we have max = 8, min = 2 and ave = 5. That is: we have reduced 

the delay interval by 37.5%. If m = 8, then delay reduced by 44%. The transmission of real and fake 

messages is exhibited in Figure 14. 

 

Figure 14. SN is assigned a sequence of intervals, which repeat until sensor lifetime ends. 

At the end of each interval, the sensor sends a fake message if it does not have an event to 

report. This should cause different delay times depending on the event relative arrival time 

and the length of the interval.  

SN assigned four discrete 
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7.2.2. Reducing the Amount of Fake Messages and Delay for Real Messages 

We have created a mechanism for dynamic interval allocation. Let us call  the big interval which 

has subintervals i. It still makes sense to send fake messages at the end of each interval. However, 

having the real message wait until the end of the interval time, as exhibited in Figure 15, is not 

commendable because it increases the delay at each node. Let us presume the current subinterval i is 

the maximum, which is 8 time-units according to the example discussed earlier. Let us presume that the 

message was sensed at 2 time-units and it is ready to be sent at 4 time-units. Following the SGAT rules, 

it still needs to wait for another 4 time-units to be sent out! However, we know for sure that many other 

nodes have different i subinterval values. Thus, during the time subintervals 2, 4, 6, and 8 there is 

enough traffic in the network. We propose that when the data is ready, the SNi should send the data 

during the next subinterval slot within the current interval i. Consequently, if we are at interval  

max = 8 which has four subintervals at (2, 4, 6, and 8), and for our example, at 6 time-units the data can 

be sent out. This way, we save about 2 time-units delay while we can guarantee that the adversary will not 

be able to infer the source of transmission because we have enough traffic distributed in the network. 

 

Figure 15. Any node assigned subinterval ωi = 2 will send a fake message if it does not 

have a real message to report. All the nodes in the network can send real messages within 

any subinterval. 

If we select higher values for , then we can further reduce the number of fake messages transmitting 

at one subinterval, however, we are increasing the average delay as well. Selecting a value for  could 

be a tool to adjust security versus energy conservation. We have improved the fake message efficacy 

(FME) [27,42] which could be calculated as indicated below: 
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FME =
∑

 
SIi

− mi=m
i=1

∑
 
SIi

i=m
i=1

 (45) 

where  is the big interval value, (SIi) the subinterval value, (m) the total number of subintervals. For 

example, if SN assigned a sequence 𝜔𝑖 ∈ [4, 6, 2, 8], fake messages could be sent at the following 

subintervals [4, 10, 12, 20, 24, 30, 32, .....], and the real messages could be sent at the following sub 

intervals [2, 4, 6, 8, 10, 12, ....]. By substituting i = 8, SIi = 2 and m = 4, FME will be 60%. Figure 14 

exhibits the transmission of fake and real messages for two consecutive subintervals. 

7.2.3. Energy Conservation by Forwarding Messages to Energy-Rich SNs 

When a node senses data or receives data that needs to be forwarded to the BS, it has to select the 

next one-hop node from the neighborhood set Ni. During the setup phase, each SNi has information about 

the hop-distance for each of the neighbors stored in its table Ti. Typically, there are three sets: one set 

where the hop-distance is less than its own (uplink set), a set where the hop-distance equals to itself 

(equal-link set) and a set where the hop-distance is larger than itself (downlink set). Choosing a node 

randomly or by round robin from the uplink set will be ideal in terms of delays since it will give the 

shortest path to the BS. However, that will cause the nodes in this set to consume more energy compared 

to the other two sets of the neighbors. After each transmission, the SN consumes some energy. The 

residual energy for SNi will be calculated as below: 

Δ𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 =
Δ𝑐𝑢𝑟𝑟𝑒𝑛𝑡

Δ𝑖𝑛𝑖𝑡𝑖𝑎𝑙
 (46) 

Each node will calculate its residual energy and share it with its one-hop neighbors. When the node 

sends fake messages, it will send its residual energy with it. The neighbor SNj will store the value in its 

Tj for each of its neighboring nodes. This way, any sensor node will have some information about the 

residual energy level for its immediate neighbors. Figure 16 exhibits the mechanism for selecting the 

forward node. 

 

Figure 16. How to choose the forwarding node according to the energy levels of the 

neighbors. The sensor calculates the average energy levels for all the neighbors. Then it will 

select a neighbor, which has energy level higher than the calculated average energy, from 

uplink nodes if it is available. If not, then from equal-link nodes and then from downlink nodes.  
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7.2.4. Handling Rate Attack 

 

Figure 17. Higher transmission rate next to the BS. The figure exhibits about 20 transmissions 

near by the BS while one other area has 9 transmissions for the same period. This could be 

a bed for rate attack where the ADV can locate the BS [42].  

 

Figure 18. The area coverage of a central sink is higher than a peripherally sink. To balance 

the higher data rate nearby the sink, we acquire a higher density sensor distribution.  

One issue that WSN with one sink could suffer from is having higher transmission rate next to the 

BS where messages ultimately need to reach out to the BS as the final destination. In contrast, periphery 

sensors far from the BS could have light transmission rates. Figure 17 illustrates the issue. This could 

jeopardize the location privacy of the BS. One solution is to have multiple sinks distributed in the 

network. This contradicts with the pre assumptions we set for our framework so we will not address this 

solution in this work. The framework needs to maintain similar average rate among all the sensors. This 
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could be achieved by increasing the number of fake messages transmitted by less busy nodes, which 

means increasing the bandwidth usage and the power consumption. We need also to reduce the fake 

messages sent by busy nodes or delay the real messages to maintain similar rates. The latter is achieved 

automatically since the sensors do not send fake messages when they have real messages. However, this 

could be better tuned for average busy nodes as well. Having balanced rate in the WSN could help to 

maintain balanced average lifetime for the nodes in the network. Presuming that all the nodes are 

heterogeneous in terms of energy would mean that busy nodes would be depleted sooner that could 

create an empty coverage area or a buffer zone between the sink and the peripheral SNs. This makes it 

a double fold problem. The first approach is to select a suitable location for the BS in the network map. 

Most of the literature shows a side location for the BS. It is maybe because it is more suitable for the 

applications in hand where the BS is connected to the backbone network in a reachable area and sensors 

are unattended in out of reach areas. Figure 18 exhibits that the coverage area of a central BS is much 

better than a side BS. The density of nodes closer to the BS should be higher. The range of transmission 

for sensors in higher density areas may need adjustment to control energy dissipation. We could have 

multiple density areas around the BS where the density is reduced, as it gets distant from the BS. Figure 

18 exhibits only two density areas for simplicity. If the storage of the sensor is not big enough, which is 

unrealistic case with increasing storage technology in the sensors, then the sensor does not need to 

include all the neighbors in the tables. The network will be divided into two areas, near (An) and far (Af). 

The framework will set average transmission rate (ATR) thresholds, Rmax and Rmin. Sensors in An will 

be loaded with Rmax where the sensors need to queue messages to maintain the threshold. In reverse, 

sensors in Af will be loaded with Rmin to maintain the lower threshold by sending more fake messages 

as needed. The sensor will calculate its average transmission rate over a period of time Tatr, which is 

preset by the framework. 

7.3. Contribution of Temporal and Rate Privacy Module 

Our innovation in this module is by providing both temporal and rate privacy. Many works have 

provided solutions for temporal privacy by either using delays or fake messages, but few has addressed 

the rate privacy as an independent threat to the WSN. In our module, we have used delay and fake 

messages to provide an efficient solution for such attacks. We took in consideration, the need to reduce 

the delays in the real-time applications and the necessity to reduce the energy dissipation. In addition, 

very few works has addressed the rate privacy for the BS presuming it is physically protected. In this 

framework, we always considered the BS as a normal sensor node, which requires privacy. Section 9 

provides a thorough analysis and simulation for the delays, entropy and energy. The three modules  

of anonymity, authentication, temporal/rate privacy altogether will provide source, link and sink  

location privacy. 

8. Anonymity and Security Analysis 

We need to analyze FAC for both passive and active adversary attacks. The adversary (ADV) model 

has a global view of the network. ADV could target the source, intermediary and BS nodes. Usually, 

ADV starts by monitoring transmission somewhere in the network and then attempts to acquire sources 

(downlink direction) or BS (uplink direction). Passive attack is ordinarily the base for active attack. Once 
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ADV determines the identity and location of a source or the BS, it consequently can launch various 

active attacks against certain nodes or disrupt the operation of the entire WSN. The main strength of 

passive ADV is the fact that neither SNs nor the BS will know about their existence. Nonetheless, active 

attacks can be detected if the framework instruments reasonable IDS. Any comprehensive solution for 

location privacy should protect against anonymity attacks, temporal attacks and rate discovery attacks. 

We believe that routing privacy is useful only against local advisory and once the WSN faced with a 

global or a multi-local adversary, routing privacy is not crucial. Thus, we have chosen short-path routing 

technique for this work. Any other routing protocols should be utilized to reduce delays and  

energy consumption. 

8.1. Security against Passive Attacks 

SNs use disposable pseudonyms to identify each other instead of using real IDs. No real ID stored in 

the sensor and no pseudonym is used more than once. Data is encrypted all the way from the source to 

the BS using shared pair-wise keys. For eavesdropping and content analysis, ADV can intercept 

messages without being able to read them because data is encrypted all the way to the BS. The only 

information ADV can get from the captured messages is the pseudonyms: OHPID, BPID or FPID, which 

are all temporary IDs and have no use except to calculate a new set of pseudonyms. Fortunately, the 

ADV cannot get from the captured messages, important parameters ai↔j,bi or ci which are all required to 

calculated new pseudonyms. Source PIDs are all encrypted during transmission. For hop-by-hop trace, 

ADV can track a stream of messages from one node to another by overhearing the messages. The ADV 

will be challenged with many real and fake transmissions throughout the WSN. Furthermore, each node 

will retransmit the messages through different routes. For size-correlation, ADV will be able to 

understand relationship between incoming and outgoing messages by analyzing sizes of the messages. 

This attack does not work for our framework since all the messages have commensurate size. For identity 

correlation, ADV cannot relate overheard identities to their nodes. It is not possible since SNs use 

different pseudonyms every time a message is transmitted. For rate monitoring, ADV tries to collect 

some statistical information about transmission rates. For instance, WSN will have a higher transmission 

rate nearby the sink. This is handled by issuing fake messages to maintain a similar transmission rate. 

For angle-of-arrival (AoA), ADV uses special hardware to determine the signal direction. The 

framework did not account for specific countermeasure; however, it becomes a more serious issue with 

mobile SNs. Furthermore, AoA would not perform well in our framework because of the uniform 

message distribution by using real and fake messages. For received-signal-strength (RSS), ADV uses 

special hardware to measure signal strength to calculate distance to the source. This is not an issue for 

our framework since every transmitter has fixed transmission power and SNs are immobile. 

8.2. Security against Active Attacks 

In principle, we assume ADV knows encryption protocols used by the framework; however, the 

framework needs to hide encryption keys and IDs. Active attacks can be categorized into soft and hard. 

For soft-active attacks, ADV tries to compromise SNs to get some information related to security of the 

sensors such as keys and IDs. Consequently, it will monitor all messages traversing through the 

compromised nodes to discover the source and the BS locations. ADV hides its presence by acting 
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passively (soft) but once it captures privacy information, it reports the information to an external executer 

to do further damages (such as killing the Panda in the Panda game). For that, it is harder for the IDS to 

detect the attack. In hard-active attacks, ADV captures SNs and invasively forge messages, sent replay 

messages etc. Moreover, ADV could load powerful devices with the captured credentials to launch more 

catastrophic attacks. Hard-active attacks could be detected by IDS; however, it could depend very much 

on the sophistication of the IDS used. With that, it remains very challenging to countermeasure hard-

active attacks. In the following two subsections, we will analyze the security of our framework against 

active attacks. 

8.2.1. Soft-Active Attacks 

If ADV physically compromises SNi, then it captures two sets of information: 

(i) Information related to the node itself: the current PID, the parameters used to calculate the 

pseudonyms, the hash functions, the keys and other information as listed in Table 2. 

(ii) Information related to the neighbors as listed in Table 3. 

The ADV would have all it needs to issue new valid pseudonyms and to send messages out to 

neighbors. Let us look closely at few scenarios: 

Scenario 1: If ADV physically compromises SNi, and if SNj and SNr ϵ Ni, so SNi knows some 

information about both SNj and SNr. However, it cannot calculate important information such as aj↔r 

which is required for one-hop communication between SNj and SNr [16], because SNi would need IDj 

and IDr which are both deleted permanently at the end of the setup phase. If SNi hears a message, it 

cannot determine, with high confidence, the sender among neighbors while communicating with each 

other. If SNi receives message from sources ∉ Ni, then it would not be able to determine the source. 

Scenario 2: If ADV physically compromises multiple SNs, let us call it set Ncs, and collects number 

of messages, let us call it set Ncm. Then, the number of compromised PIDs equal to Ncm since each 

message has unique PID. If the source SNi ∉ Ncs, then ADV cannot know the source node [16,27]. 

Scenario 3: If the message sent, by source SNi as in scenario, 2 passes thought SNj ϵ Ncs or even 

through multiple compromised nodes, it will not be able to correlate the captured PIDi with SNi.  

Scenario 4: If a message sent by source SNi and ∀ SN ϵ Ni is also ϵ Ncs (all neighbors are 

compromised), then ADV will be able to know that SNi is the source. It is unrealistic situation to have 

many compromised nodes in one area. However, this proves single or few compromised nodes cannot 

locate the identity of the source. In addition, a compromised node does not actually need to locate the 

sources within its range since it can detect the objects of interest (Panda) knowing that the ultimate goal 

of the adversary is to capture the object not the sensor reporting the object. 

In summary, while we cannot prevent physical capturing of sensors, we need to make sure capturing 

sensors do not have destructive effects on other sensors. It is clear that our anonymity model protects against 

the avalanche or the domino effect behavior once one or few sensors are physically captured. 
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8.2.2. Hard-Active Attacks 

If ADV physically compromises SNi then it can launch denial of service attacks (DoS), which is an 

effort to temporarily or indefinitely suspend transmission in the network. It consumes the resources such 

as bandwidth, memory, storage, and processor time. When ADV compromises SNs, it would be able to 

send massive valid messages to consume system resources. The ADV will be able also to launch replay 

attacks where ADV gets credentials of the some sensors and attempts to mimic the sensors to send 

messages to other neighbors. The other attacks such as, forging attack, packet alternation, packet 

dropping and packet injection are all only possible to physically captured nodes. However, it cannot 

propagate easily behind neighbors. Nothing could be worse than having physically captured nodes where 

ADV has full control over the sensors. Good IDS can detect such attacks and respond by removing the 

compromised nodes immediately. The most danger tactic of hard-active attacks is to prevent the real 

messages from following normal paths to the BS and force the messages to traverse through certain 

routes. Our main contribution to handle this attack is to put in place a seamless and efficient protocol to 

add and remove SNs while WSN in action. 

8.3. Sink Security 

ADV can learn that a sensor has received a message in two ways: (i) When the sensor retransmits the 

message, which was tracked beforehand to another sensor; (ii) the ADV is able to make a correlation 

between the captured ID and the physical recipient sensor. The adversary cannot locate the BS location 

by compromising only one neighboring sensor because each transmission uses a different pseudonym. 

It actually will need to compromise multiple colluding sensors along the path to the BS or many 

neighbors of the BS. While we cannot prevent having many physically fallen sensors, our framework’s 

goal is to delay the capturing of the BS if there are many colluding captured sensors in the WSN. A very 

interesting scenario is exhibited in Figure 19. Let us presume SNr ϵ Ncs. It issues a message with Dbomb 

such that: APIDr || OHPIDr↔u || Er→u (APIDr || PIDr || Ekr↔bs (Dbomb)). IF ADV compromise multiple 

nodes along the path to the BS where each sensor decrypts the data to read this signature at every hop: 

(PIDr || Ekr↔bs (Dbomb). Providing the colluding sensors, in the path to the BS, read similar signature 

while it knows by design that every message should be directed uplink to the BS, the ADV could follow 

through to the BS. Having multiple compromised paths (with compromised sensors) reading the same 

pattern will give adversary more clues. Compromised nodes can even collude to force the real messages 

to route through fixed suspected areas in effort to focus the capturing process, which becomes a function 

of: (i) the size of the network; (ii) The traffic density; (iii) the number of compromised nodes. To solve 

this issue, we have to wipe out the signature before each transmission. Thus, every message will be 

forwarded to the next hop as below: 

Mu→x = APIDu || OHPIDu↔x || Eu→x (APIDu || PIDr || PIDu || Eku↔bs (Ekr↔bs (Di))) (47) 

We have added a multiple levels of encryption, which will be done at every hop using the shared key 

between the hop and the BS. In addition, PID of the hop will be added in sequence so the BS can do the 

decryption in sequence. This solution increases the size of the message proportionally to the number of 

hops. We suggest having the onion encryption done for a distance of few hops, Oh. So, if  
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Oh = 2, then we have only two extra encryptions. In addition, we need to account for Oh PID’s added to 

the message. 

 

Figure 19. Hard-active Attack tries to get the BS by inserting a signature in the transmitted message.  

We have implemented using Matlab a WSN of 100 SNs uniformly distributed over 30 × 30 area 

where the average distance between the SNs 3.7 as in Figure 12. The nodes are homogeneous in terms 

of initial energy. The WSN adopted one BS located at the side of the network. The SNs were preloaded 

with all the initial pseudonyms, so the simulation started right at the communication phase. 

Sensors issue real messages according to a normal distribution using SGAT. To simulate how the 

network behaves to protect the BS, the simulation inserted some random compromised sensors. The 

compromised sensors sent some bomb messages as exhibited in Figure 19 and colluded to track the 

location of the BS. We have protected the BS by using the onion encryption so, we have simulated for 

Oh equals to 1, 2 and 3. The adversary succeeds when it identifiers all the nodes forming the curve around 

the BS; SNs have 1, 2 and 3 hc from the BS, consecutively. Figure 20 exhibits the number of 

transmissions required before the adversary can succeed. It is clear that with higher value for Oh, the 

network will be able to send more messages before the BS is compromised. Having a higher number of 

compromised nodes in the WSN will make it faster to capture the BS, as well. 

 

Figure 20. Protecting the BS by having onion encryption. Increasing Oh and decreasing the 

number of compromised nodes will increase the total number of messages successfully 

transmitted to the BS before it is captured. 
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8.4. Link Anonymity 

Link anonymity is to prevent the ADV from knowing the relationship between the sender and the 

receiver. If a message leaves a sender and subsequently leaves the recipient without change, the ADV 

would know the relationship between the two nodes. This is secured in our framework since every 

message is completely changed after each retransmission including the IDs. In addition, it maintains 

fixed size. Applying different delays and different next-hop direction should also increase the privacy of 

the link. Furthermore, the adversary cannot know if the link carries real or fake data. 

8.5. Timing Privacy 

By using fake messages at variable interval times and message delays, it becomes super hard for the 

ADV to correlated messages being transmitted over the network as exhibited in Figure 12. 

8.6. Routing Privacy 

Although short-path routing is used in this framework, choosing the next hop is done according to 

certain probabilistic algorithm, which accounts for the residual energy of the sensors and the usage 

frequency to increase the route privacy, as exhibited in Figure 16. ADV cannot relate routes to nodes 

due to the triple anonymity. Even if two messages for one sensor follow the exact same route, ADV  

will see them as if they are two different routes since each hop along the route carries messages with  

different PIDs. 

8.7. Data Privacy 

All the data is encrypted before transmission and encrypted again at every hop along the route to the 

BS. A message digest will authenticate data. The only time data is not protected when the sensors are 

physically compromised. The compromised nodes are able to inject data in the network. If ADV uses 

the compromised nodes actively, a good IDS can detect the falsified data. The framework provides a 

secure facility to remove compromised sensors and to add valid sensors, if needed, to the WSN. 

8.8. SLP and BLP 

SLP and BLP are achieved at first by having the triple anonymity (source, BS, link) which was argued 

earlier. ADV cannot infer any information from the intercepted messages. Passive attacks will not 

endanger the location privacy. However, strong active attacks could hinder the location privacy without 

having good IDS. Secondly, we have provided a solution for temporal privacy using ECAT. Thirdly, we 

have provided a solution for rate attacks. The three security measures will work hand in hand to provide 

location privacy. 

9. Performance Evaluation 

In this section, we evaluate the performance of the FAC framework, including delays, energy 

dissipation, data rate privacy, storage, processing, computational, and communication costs. 
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9.1. Delay 

In SGAT, sensors transmit/forward the data at the end of the interval, which would cause a huge delay 

considering the volume of messages that each sensor needs to transmit during the network  

real-time operation. In addition, the messages traverse through multiple hops until it gets to the BS, 

which makes the accumulated delays significant. The other alternative scheme is having the sensors 

select one of the following subintervals () randomly to forward the message. This also will cause some 

unnecessary delays although it could help in hiding the temporal behavior of the sensors. ECAT scheme 

divides () into subintervals (), so the transmission will happen at the first available subinterval when 

the message is ready. We have simulated a smaller network to the one descripted in Section 8.3 for the 

transmission delays. It includes 48 SNs only with  distribution as presented in Figure 15. We have three 

simulations using SGAT, ECAT, and random delays. Figure 21 shows that delay per one-transmission 

increases throughout the network as the number of transmitted messages increases which could cause 

unjustifiable delays especially in the real time applications. Figure 22 also shows the average delays for 

the three schemes. It shows that using ECAT has improved delays by 64% compared to SGAT. The total 

delay for one message from a source to a destination (BS) is calculated according to expression  

Equation (37). It is a function of the distance from the BS (hc) which we technically have no control 

over after sensors deployment. In addition, it is a function of the chosen () and () values for the 

system. The larger the (), the more delays accumulated. We have simulated the same network using 

ECAT for the total delay as exhibited in Figure 23. It shows that the delay rises as the hc increases and 

as the size of the intervals widens. We conclude of these simulations that the performance of ECAT is 

better than SGAT while it continues to provide a good temporal privacy. Using a fixed delay will reduces 

the delays slightly but it provides a very week temporal privacy. 

 

Figure 21. Total accumulated delay per one node increases as number of messages increases 

in the WSN. ECAT sends the message only one subinterval after the message arrival. SGAT 

sends the message at the end of the big interval . In between, the approach of selecting one 

of the following subinterval randomly to send the message. Clearer image? 
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Figure 22. Average accumulated delay per one node. ECAT shows the good performance 

of a minimum average delay since it sends the message only one subinterval after the 

message arrival. 

 

Figure 23. The accumulated delay is a function of the hop count (hc) and the size of .  

9.2. Energy Cost 

In our work, we will assume a simple energy dissipation model [27,42,48,49]. The radio dissipates Ԑ 

nJ/bit for both transmission and reception by the sensors circuitry. Moreover, it consumes ԑ nJ/bit/m2 for 
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the transmitter amplifier to achieve an acceptable signal to noise ratio. Therefore, to transmit k bits for r 

distance, the total transmission energy dissipation will be: 

Et = k ×  Ԑ + k ×  r2 × ε (48) 

In addition, the receiver would consume for reception of k-bit message: 

Er = k ×  Ԑ (49) 

SGAT assumes that every node would send one message at the end of each interval where the message 

could be either real or fake. If we have N nodes in the network, then we expect N messages during each 

interval. The energy spent for transmission or reception is similar per one message because we have 

unified-size messages to prevent size correlation attacks by the adversary. If we have p percent of the 

nodes issue or forward real data at each interval, then 1 − p percent of the energy and the bandwidth is 

wasted on fake messages. We can adjust the amount of energy consumed by increasing the interval time 

(). However, increasing (), would increase the delay. The consumption of transmitting fake messages 

is a double fold since the transmitter will consume Et for every message and all the neighbors (Ni) will 

consume (𝑁𝑖 × 𝐸𝑟). When the transmission range increases, Ni increases. The total energy consumed in 

the network to send real and fake messages in one interval [48]:  

ER = (N)(k ×  Ԑ + k ×  r2  ×  ε) + (N ×  𝑁𝑖)(k ×  Ԑ) (50) 

ECAT has improved the energy dissipation by reducing the amount of fake messages transmitted 

while maintaining the required temporal security. The number of total messages transmitted per interval 

has reduced from 100% to a certain percentage (p). We have simulated the WSN in Figure 15 as 

presented in Section 9.1 using SCAT to calculate the energy dissipation. Figure 24 exhibits the total 

energy dissipation per one message considering the transmitter, the recipients and the range of 

transmission. The size of the messages is 8000 bits, Ԑ is 50 nJ/bit and ԑ is 100 pJ/bit/m2. The simulation 

shows that the energy dissipation due to the increase of sensor range is marginal compared to the increase 

in energy dissipation due to the increase of neighbors (Ni). However, increasing the range could increase 

Ni if the WSN has uniform sensor distribution. We have also simulated the network to see how the 

transmission of fake messages has improved using ECAT. Figure 25 exhibits the simulation of  

40 subintervals (). The graph shows the maximum possible fake message at each subinterval ().  

For instance, the total fake messages during  = 10 is 16 messages while during  = 32 is 20 messages. 

The mean of fake transmissions is 19.5 (compared to 48 messages in SGAT). The average fake messages 

for the completely simulated period is 19.5 messages which shows about 59% reduction of possible fake 

messages comparted to SGAT. 

The number of fake message will be reduced further as the network gets busy transmitting real 

messages since a sensor node do not send a fake message at a subinterval where it has a real message to 

convey. We have simulated the same network with 70% probability of event occurrence. Figure 26 

shows that the average fake messages has reduced to 5.85 messages, which is almost 88% reduction 

from SGAT. This also will reduce the energy consumption significantly. 
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Figure 24. The energy dissipation increases as the number of neighbors and the sensor 

transmission range increases. Simulation assumed message size of 8000 bits, Ԑ is 50 nJ/bit 

and ԑ is 100 pJ/bit/m2. 

 

Figure 25. A simulation for the maximum possible fake messages per subinterval using 

ECAT. In SGAT, this number should be 48, which is one message per one sensor. ECAT 

has reduced it significantly. The mean in this simulation is 19.5, which is about 59% 

reduction of fake messages. 
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Figure 26. The average fake messages in a busy network with 70% of the slots occupied by 

real messages. The reduction of fake messages transmission in ECAT is about 88% 

compared to SGAT. 

The most expensive operation for energy consumption is transmission of bits from one node to 

another. We use two stages for air communication in our framework, (i) In the setup phase and; (ii) in 

the communication phase. The data transmission during setup phase is minimal. During communication 

phase, data will be forwarded hop-by-hop to the BS. Every packet is equally sized to prevent time and 

size correlation. We have introduced a probabilistic fake message transmission scheme which none of 

the other protocols adopted. Real messages are sent at the end of each subinterval time to prevent delays.  

The cost per message at one interval time is: 

Average Message Cost =  
R + (N − R)Pr + A

R
 (51) 

where R is the total number of SNs sending real messages at one subinterval time, Pr the probability of 

sending fake message by SNs, and A is the average number of acknowledgements in one interval. None 

of the other schemes addressed the issue of rate analysis attacks, which is one of the easiest attacks any 

adversary can use. Using fake messages is an expensive solution. However, we have designed FAC to 

be adaptive to the network traffic situation by using a closed-loop system. The sink can always increase 

or decrease the amount of fake messages used according to the reports it is getting about the system 

security. The threshold values of Rmin and Rmax are also adjustable according to the network situation. 

9.3. Transmission Rate Privacy 

To handle this issue, we have adopted two threshold values: Rmin and Rmax where the sensor needs to 

keep its message transmission rate between these two values. The sensor needs to send real message at 

the end of subinterval time slot. If it does not have a real message, then it needs to send a fake message 

only if that time slot is scheduled to send a fake message according to ECAT protocol, otherwise no 
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transmission will happen and the slot remains idle. Ideally, the sensor has a real message at the 

subinterval so it does not need to waste a slot by sending a fake message. The sensor can use this facility 

to control the threshold data rate. For instance, if the rate is high (such as in areas nearby the BS), it can 

replace fake messages with real messages which is a double fold beneficial. If all the fake messages are 

already replaced and still there is real messages above the threshold, then the sensor is required to queue 

the messages and delay the transmission to maintain same average message rate between Rmin and Rmax. 

In contrast, if the message rate is low (as in the periphery sensors), then the sensor can transmit more 

fake messages during idle slots. We have simulated the network in Figure 15 for ECAT and assigned the 

Rmin to be thirteen messages for two consecutive () intervals (a total of 20 subintervals). We have 

assigned the Rmax to be 13 messages during this period, which is seven less than the total number of 

subintervals. That means we allow up to 13 real and fake messages during these two consecutive () 

intervals. Figure 27 exhibits the output of the simulation for four different individual transmissions.  

For instance, the first transmission shows, 14 real messages (blue bar), 2 fake messages (light blue bar), 

and four idle slots (green bar). The total real and fake messages is 16 (orange bar) which is above the 

assigned threshold, thirteen, by three messages, which is expressed by the brown bar. 

 

Figure 27. The simulation shows the total real messages, fake messages and idle slots. The 

threshold rate is thirteen messages over Tatr period. For instance, the first transmission shows 

total of sixteen messages, which is three above the threshold value. The sensor will cancel 

three fake messages. The third set shows the number of transmissions at the threshold. 

The SN will cancel three fake messages out of the four. In some worse cases, the sensors would need 

to queue the messages for next slots. For instance, if there is 15 real messages during this time, the 

system send only 13 messages and queue 2 messages for the next period. Ultimately, the overall message 

rate during Tatr will be within the assigned thresholds. 
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We have simulated this approach extensively for (500), (1000), (1500) and (2000) transmissions as 

exhibited in Figure 28. The first, third and fifth bar sets show the total amount of fake messages needed 

to be replaced with real messages to maintain Rmin for the thresholds of th = 10, th = 11 and  

th = 12 consecutively. For instance, a threshold of 10 means that the maximum number of messages 

transmitted should be 10 (out of 20 in our simulation). The second, fourth and sixth bar sets also show 

the number of messages which needed to be queued for the three consecutive threshold values. 

Therefore, if we have real messages above the number of scheduled fake messages, then we have to 

queue the messages for the next period of Tatr. Overall, this simulation exhibits a great preference since 

we always would like to reduce the amount of fake messages and keep the bandwidth busy with real 

messages whenever it is possible. In addition, the simulation exhibits very small messages need to be 

queued (delayed). It shows as we increase the threshold value the less fake messages replacement or 

delays is required. In summation, reducing the fake messages and keeping the delayed message minimal 

is the goal, which ECAT clearly achieves. 

 

Figure 28. Simulation for busy network with different Rmin threshold values th = 10, 11 and 

12. F stands for the number of fake messages has been reduced and D stand for the number 

of delayed messages to maintain Rmin. The simulation shows that the number of delayed 

messages is minimal while it decreases as the threshold increases. 

9.4. Storage Evaluation 

There are two sets of information stored in a SNi: (i) information related to the sensor itself such as 

random numbers: (ai, bi, ci), pseudonyms: (PIDi, BPIDi, FPIDi, APIDi), keys: (ki↔bs, bki, fbki);  

(ii) information related to neighbors which include, random numbers: (ai↔j, bj, cj), pseudonyms: 

(OHPIDi↔j, BPIDj, FPIDj), keys: (ki↔j), Misc: (linki↔j, j). 
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If we presume that the keys, the random numbers, the pseudonyms and the hash functions are all n 

bits long in average, and the required bits for miscellaneous data altogether is two bytes, and the average 

number of neighbors Nave, then the total storage memory required is:  

Storage = 10n + (7n + 16) × Nave (52) 

Chen et al. [16] indicated the storage for SAS, CAS, APR, DCARPS and EAC. We also calculated the 

storage for PhID, ACS, HIR and RHIR. All are listed in Table 4. The size of storage increases 

proportionally when the size of n increases. The most common hashing functions which are considered 

very secure are: MD4 [50] which uses 128-bits digest, SHA-1 [50] which uses 160-bits digest, and 

Whirlpool [50] which uses 512-bits digest [50]. 

Table 4. Performance Comparison. N is the total number of sensors; Nave is the average 

number of neighbors; k (only for RHIR) is number of stored hash values where the SN stores 

k hash values per one neighbor which are calculated in advance at setup phase.  

No. Scheme Storage Cost (bits) Computation Cost 

1 SAS 2nN + 4nNave + 16 No hashing operations 

2 CAS 6n + 7nNave + 16 Two hashing orations and two encryptions 

3 HIR 2n + 2nNave One hashing function 

4 RHIR 2n + 2nNave + nkNave No hashing functions 

5 APR 9n + 7nNave + 2N − 2Nave − 2 Six hashing functions 

6 DCARPS 3n No hashing functions 

7 ACS 5nNave Two hashing functions 

8 PhID (3n + 2) × Nave Four hashing function 

9 EAC 6n + 6nNave + 2 Four hashing operations 

10 FAC 10n + (7n + 16) × Nave Four hashing operations & Oh encryptions 

9.5. Processing and Computational Evaluation 

Hash functions are used to calculate the pseudonyms and symmetric cryptography is used to encrypt 

the messages. Because we need to calculate three pseudonyms and one acknowledgement pseudonym 

after each transmission, using encryption to create pseudonyms was avoided since it requires more 

processing power compared to hash functions. When a SN senses data, it needs to calculate four OWH 

for PID, OHPID, and APID at the sender and OHPID at the receiver. If the system opts for data 

authentication, then another hash function is needed. The source node needs only one encryption for the 

data if Oh = 0, however, it needs Oh more encryptions if onion fashion is used. Each intermediary node 

needs one decryption operation and then another encryption to issue the new message. Chen et al. [16] 

indicates that SAS does not use hashing or encryption to create pseudonyms because it uses already 

created pseudonyms from a space. The other scheme by Chen et al. [16], CAS, uses two hashing 

operations and two encryption operations. APR uses at least six hashing functions. DCARPS uses 

constant IDs, so no hashing functions or encryptions for creating IDs. EAC has four hashing operations. 

It is clear that our framework needs a bit extra processing power due to the higher privacy and security 

we have achieved. None of the other schemes can achieve privacy against global threats and active 

adversary attacks. The power consumption due to the additional encryption operations is marginal 

compared to the power consumption caused by data transmission. Figure 29 exhibits different storage 
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size for different privacy schemes, which are discussed throughout this work. It shows that the increase 

in storage is linear and relatively comparable to the other protocols. The size of the storage would 

increase when the number of neighbors increases. Each SN has limited flash memory size, which could 

confine the maximum number of neighbors that a sensor can fit. As an example, TelosB mote [16,20] 

has 1 MB external flash memory. Thus, if one neighbor node requires 1.2 k bits of storage memory, then 

TelosB could fit more than 800 neighbors, which is very much more than what is needed in practical 

networks. Although FAC shows a bit of increase in the storage required to store the pseudonyms but it 

is the only one, among the discussed protocols in this work, provides a steady and functional anonymity 

and location privacy under strong global and active attack. In addition, the current technology provides 

sensors with sizable storage memory, which makes it not an issue at all. 

 

Figure 29. Size of storage memory using different privacy schemes. 

10. Conclusions and Future Work 

FAC is a modular framework that provides source, link and sink anonymity. It also provides temporal 

privacy and rate privacy. None of the previous related-work have a comprehensive solution for 

anonymity and location privacy. The three modules provided in FAC are made work together to prevent 

any statistical analysis attacks. The quadruple privacy (anonymity, temporal, rate, statistical) has 

provided a fortified SLP and BLP. FAC has addressed both local and global adversary. We have used a 

complex anonymity module where pseudonyms to replace real IDs are used. To provide temporal 

privacy both delays and fake messages are used. The use of fake messages was adjusted to manage the 

energy consumption. Two schemes are introduced, SGAT and ECAT. FAC is able to handle both 

homogenous and heterogeneous sensor nodes. FAC is both energy-aware and delay-aware. We have 
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demonstrated that FAC can withstand passive and active attacks by presenting scenarios and provided 

solutions. The memory cost was mathematically analyzed for the framework. The computational 

complexity for encryptions and hash functions was analyzed. To provide security for the BS against 

colluding active attacks, we have introduced onion encryptions. We have simulated the performance of 

the framework. The future work would include enhancement on the fake messages probabilistic scheme. 

In addition, we will implement FAC for different routing protocols such as clustered networks. We would 

plug FAC in some civil and military applications for further analysis, development and improvement. 
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