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Abstract: Mechanical weeding is an important tool in organic farming. However, the use
of mechanical weeding in conventional agriculture is increasing, due to public demands to
lower the use of pesticides and an increased number of pesticide-resistant weeds. Ground
nesting birds are highly susceptible to farming operations, like mechanical weeding, which
may destroy the nests and reduce the survival of chicks and incubating females. This
problem has limited focus within agricultural engineering. However, when the number
of machines increases, destruction of nests will have an impact on various species. It is
therefore necessary to explore and develop new technology in order to avoid these negative
ethical consequences. This paper presents a vision-based approach to automated ground nest
detection. The algorithm is based on the fusion of visual saliency, which mimics human
attention, and incremental background modeling, which enables foreground detection with
moving cameras. The algorithm achieves a good detection rate, as it detects 28 of 30 nests

at an average distance of 3.8 m, with a true positive rate of 0.75.
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1. Introduction

In organic farming, weed control is based on mechanical solutions, but increased focus on decreasing
the use of pesticides in the conventional sector and an increased number of pesticide-resistant weeds
has created renewed interest in mechanical weeding. At the same time, the precision and capacity of
mechanical weed-control solutions have grown considerably. One therefore expects a significant growth
in the use of semi-autonomous agricultural machinery in the coming years.

Agricultural fields provide nesting habitat to a wide range of farmland bird populations, such as
skylark (Alauda arvensis), corn bunting (Emberiza calandra) and grey partridge (Perdix perdix), many
of which have declined in recent years [1]. However, ground nesting birds are highly susceptible to
farming operations, which may destroy the nests and reduce the survival of chicks and incubating females.
Therefore, in combination with other factors, e.g., higher predation levels, breeding in agricultural fields,
such as intensively-managed hayfields and row crops, is often characterized by relatively low reproductive
success, and it is suggested that such habitats probably represent population “sinks” [2,3]. Indeed, in [4],
it was shown that 50%—-100% of sky lark nests were destroyed by weeding row crops.

Since wildlife-friendly farming often results in lower efficiency, attempts have been made to develop
automatic systems capable of detecting wild animals in the crop [5,6]. However, these systems have
focused on larger species, i.e., fawns of roe deer (Capreolus capreolus) and leverets of brown hare
(Lepus europaeus), which are more easily detected and may be moved to safety upon detection in the
field. It is therefore necessary to explore and develop new technological solutions to ensure ethical and
effective crop production.

Monocular vision and stereo vision are commonly used in obstacle detection [7-10]. Here, obstacles
are found via 3D reconstruction, either via relative motion (monocular vision) or disparity maps (stereo
vision). For ground-based vehicles, obstacles are usually defined as objects that extend above the ground
plane [7—12]. This approach is not suited for the detection of bird nests in an agricultural setting, since bird
nests are located on the ground and may be smaller than the crops in height. Hence, spatial information
alone is not useful for recognizing these regions in the image as an obstacle. Other monocular-based
obstacle detection algorithms include appearance-based models [9,13], thresholding in the HSI (hue,
saturation and intensity) color space [10] and relative size [14].

In computer vision, visual saliency algorithms attempt to mimic human visual attention [15,16]. Salient
objects in an image are defined as the part of an image that catches our attention or objects that are of most
interest [15]. Visual saliency has been applied to both monocular- [17] and stereo-based obstacle
detection [18,19]; however, here, the visual saliency algorithm has been used as part of the 3D
reconstruction of the scene in order to detect obstacles that extend above the ground plane. Visual
saliency could also be used in earlier stages of the image processing chain, to detect regions that could
contain obstacles, regardless of the geometrical properties. This is part of the proposed algorithm in
this paper.

Background subtraction is widely used in surveillance tasks to detect objects of interest. Here, the
camera is usually capturing a more or less static scene [20], although algorithms for highly dynamic
scenes have been proposed [21]. The output from background subtraction is the regions of an image

that lie outside a defined background model. In static setups, this model can be derived from median
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filtering over time [20] or a Gaussian mixture model, which models the expected intensity or RGB values
of a specific pixel in an image [22]. These approaches are not suitable for moving cameras, since the
assumptions for static setups are violated. In [9,13], a background model for moving cameras is presented.
Here, the model is based on background appearance and found via histogram methods. In this paper,
we base the background model on background appearance and introduce an incremental update scheme
based on visual saliency. The model exploits the homogeneity of row crop fields.

In this paper, we present an algorithm for nest detection during mechanical weeding. We treat these
nests as obstacles that should be avoided. However, these obstacles are placed on the ground and
potentially smaller in height than the crops in the field. Hence, detection based on spatial information is
not suitable. Instead, we propose an algorithm driven by visual attention. Here, both visual saliency and
incremental background modeling are fused to enable the detection of ground-lying nests while driving
towards them.

2. Materials and Methods

2.1. Data Collection

A thermal camera (FLIR A320) with a resolution of 380 x 240 pixels and a field of view of 45° x 34°
(H x V) and an RGB camera (Basler acA1600-20gc) with a resolution of 1624 x 1234 pixels and a field
of view of 43° x 34° were mounted next to each other on the front of an all-terrain vehicle. The cameras
were placed approximately 80 cm above the field and tilted 20°, to mimic the placement of a similar
camera setup on mechanical weeding machinery (Figure 1a). The cameras recorded uncompressed images
at a frame rate of approximately 5 frames per second (limited by the thermal camera). To compensate for
the low frame rate, the vehicle was driven at speeds of around 4—-5 km/h.

(b)

Figure 1. Photos from data collection. (a) Thermo-visual setup mounted on an all-terrain

vehicle; (b) man-made skylark nest with heated plastic eggs.

Man-made nests with 3-5 heated plastic eggs were placed on the ground in various crops (Figure 1b).
The eggs were heated to a temperature of approximately 35 °C (when they were placed in the nest) to
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resemble the temperature during incubation. The recordings took place 22 May 2014, and the weather
was sunny with an ambient temperature of around 25-26 °C.

The camera placement on the ATV gives an imaging range of 1-15 m in front of the vehicle. This is
illustrated in Figure 2, where h denotes the height of the camera, which was 0.8 m above the ground plane,

and x and y denote the range, which are approximately x = 1 m and y = 15 m for both cameras.

Figure 2. Geometrical properties of the setup for recording.

A single frame from the recordings is shown in Figure 3 (visual and thermal). A man-made nest is
shown in the center of both images. However, in the thermal image, the nest is impossible to locate
visually. Two factors make it almost impossible to detect the nest using the thermal camera. First, the
weather conditions have a great influence on the quality of the thermal image (with respect to detection),
as the surrounding soil is being heated by the Sun, making the difference in temperature between field
and eggs very small. Secondly, the eggs are so small that the thermal camera does not easily detect them.

Hence, we chose to omit thermal images in the nest detection algorithm presented in this paper.

(a) (b)

Figure 3. Images captured by the RGB and thermal camera. (a) Visual image of the field,
where the nest is placed in the middle of the image; (b) the same scenario in the thermal

domain (here, it is impossible to see the nest).

A total of 15 recordings, containing 68—134 frames, corresponding to driving distances of 9-19 m,
were made. The recordings all contain 2 bird nests, placed on the ground approximately 7 m apart. The
cooling box seen in the images was used for storage of the eggs and has been manually removed in the

analysis of nest detection performance.
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2.2. Visual Saliency

Visual saliency algorithms attempt to mimic human visual attention [15,16]. Salient objects in an
image are defined as the part of an image that catches our attention or objects that are of most interest [15].
In the literature, different approaches to calculating saliency have been presented. Among the most
popular is the version presented in [16]. Here, nine spatial scales are created using dyadic Gaussian
pyramids and used to calculate feature maps for both intensity, color and orientation. The features are
computed based on the center-surround features, which mimic the visual receptive fields. Center-surround
features are calculated as the difference between fine and coarse scales in the dyadic Gaussian pyramid
framework. By subtracting the coarser from the fine scales, the algorithm enhances small local regions
that stand out from their surroundings. Hence, they attract our attention.

In Figure 4, an image from the field is shown together with the calculated saliency map. The saliency
map is a gray scale image, where pixel intensity is related to how salient a region is. In the figure, it is
seen that the cooler box in to top right corner is most salient, which makes sense, as it stands out from

its surroundings.

(a) (b)

Figure 4. Example of visual saliency in captured data. (a) Input RGB color image;

(b) resulting saliency map.

In this research, we have utilized the saliency toolbox [23] for MATLAB to implement visual saliency.
A more detailed description of the algorithm can be found in [16,23].

2.3. Background Modeling

In [9], a background model is based on an appearance model. This model assumes that obstacles differ
in appearance from the ground, which is assumed to be relatively flat (this is utilized to calculate distance
to the object). The background is based on a reference region, which is defined as a trapezoidal area in
front of the camera. In [13], the same approach is used to model the background and adds tracking of
corner features to navigate a mobile robot. In [9], both a simplified and an incremental version of the
background model are presented. The simplified model is constructed based on the first captured image.
The model is constructed as follows:

1. Smooth the input color image with the Gaussian filter;

2. Transform the image into the HSI color space;



Sensors 2015, 15 5101

3. Calculate the histogram of the reference region (the trapezoidal area).

In the presented algorithm, a pixel is classified as an obstacle if: (1) the hue histogram bin value at the
pixel’s hue value is below a hue threshold; or (2) if the intensity bin value at the pixel’s intensity value
is below an intensity threshold. As the overall appearance of the input images may change over time as
the machine or vehicle moves, an update scheme of the reference histograms is presented in [9]. Here,
the robot is manually steered through the environment, whilst avoiding obstacles, and histograms from
regions without obstacles are used to update the model based on a simple OR function.

Like the algorithms described in [9,13], we assume that the background may be represented by an
appearance model. This is a strong assumption for an outdoor environment; however, it exploits the
homogeneity of a row crop field. The background model is constructed as follows:

1. Transform the image into the HSI color space;

2. Calculate the histogram of the reference region;

(a) In the first image, a specified region close to the camera is selected as the reference region
(Figure 5);

(b) In the subsequent frames, the histograms are updated via an incremental update scheme based
on input from visual saliency estimation (Figure 6).

In the initial frame, the reference region is defined as a specified region close to the camera, comparable
to the methods in [9,13]. In Figure 5, the initial reference region is shown. This region is used to calculate
the histograms for the background model.

Figure 5. Initial reference region selection.

In the subsequent frames, the reference histograms are incrementally updated based on saliency-based
reference region selection. In the saliency-based selection, it is assumed that salient regions in the image
are less likely to be part of the background. This assumption is also presented and utilized in [18,19],
where salient regions are excluded from the ground estimation algorithm, as these regions are less likely
to be part of the ground plane. In [21], saliency is utilized for background subtraction in highly dynamical
scenes, with the underlying assumption that salient regions are part of the foreground. In Figure 6, the
two stages of the reference region selection are shown.
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Figure 6. Example of visual saliency in captured data. (a) Input RGB color image;
(b) saliency map; (c¢) red regions are not selected for the background model.

The histograms of non-salient regions are utilized to update the reference histograms (denoted as uHist)

in the following manner:
uHisty[k] = a - Histy[k| + 3 - Hist;_1[k] (1)

Here, a + 3 = 1 and k indicate the k-th bin at time ¢. After each update, the histogram are normalized,
as the number of pixels used to calculate the histogram differs from frame to frame. In our algorithm, a
pixel that is not part of the background is initially labeled as a foreground pixel, based on the threshold
method described in [9]. These pixels are re-labeled as an obstacle (nest) or non-obstacle during fusion

with the saliency map.

2.4. Fusion

In Figure 7, the flow of the nest detection algorithm is shown. For each input image, the saliency
map (salmap) and foreground is found based on the algorithms presented in the previous sections. The
foreground is a binary image, where a pixel value of 1 corresponds to a foreground pixel. The saliency
map is a gray scale image, where pixel intensity is related to how salient a region is. The background
modeling utilizes the saliency map to construct reference region histograms for each frame, as described

in Section 2.3.

Background Modeling
HSI foreground
blob
Input Image |salmap Fusion oS Nest Detection
RGB |salmap
Saliency Map

Figure 7. Flow of the nest detection algorithm.
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In the fusion stage of the algorithm, the most salient region is selected. This is implemented by
selecting the salient region with the highest pixel intensity values. The saliency map is converted to a
binary image, where only the pixels within the most salient regions has a value of 1. The foreground and
the binary saliency map is fused by an AND operation. To remove noise, blobs smaller than a given lower
threshold are removed, and the remaining blobs are detected. The output of the algorithm is the (x, y)

position of the largest blob, if it is above a given area threshold.

3. Results

This section presents the results of nest detection using the presented algorithm. The performance
is evaluated by the detection capabilities, including the detection range, of the algorithm. To evaluate
the performance, all frames in the dataset have been manually labeled. Here, both the bird nests and the
cooling box (visible in most of the dataset) have been labeled. The cooling box labels are used to suppress
the cooling box in the algorithm.

The visual saliency algorithm is computationally complex, but frame rates above 25 for
640 x 480 pixel images have been reported in the literature [24]. Thus, we have re-scaled the RGB images
to a resolution of 640 x 480 pixels, as it is required that the algorithm runs at a sufficient frame rate to
ensure timely detection of obstacles.

3.1. Background Model Update

To investigate the performance of the incremental background model update, a change in image
intensity has been implemented during algorithm evaluation. This change in intensity simulates a cloud
covering the Sun for a few seconds, thus changing the intensity from bright to darker and back to bright
again. In Figure 8, two images (Frames 1 and 40, respectively) from such a sequence are shown together

with the background model, as well as the resulting foreground detection.

(b)

Figure 8. Cont.
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Figure 8. Incremental background model simulation. (a) Bright RGB color image (initial

reference region); (b) dark RGB color image simulating a cloud; (¢) background model
for bright image; (d) updated model based on the incremental update of the histograms;
(e) resulting foreground detection for the bright image; (f) foreground detection for the dark

image (there is a nest just above the center of the image).

The intensity changes have been used in the following evaluation of the nest detection algorithm.

3.2. Nest Detection

In the evaluation of the algorithm, we used 0.00015 as a threshold for both the normalized hue and
intensity background models. The lower area (for removing small blobs) was set to five pixels, and the
area threshold for a blob to be detected was set to 30 pixels (after fusion with the saliency map). In
Table 1, the results from the evaluation are shown in a confusion matrix. It is seen that the total numbers
of false positives and true positives are almost similar. From the confusion matrix, the precision (PPV)
and true positive rate (TPR) can be calculated.

TP
PPV = 7p 1 Fp @
TP
TPR= —
s TP+ FN )

Here, TPR = 0.38 and PPV = 0.53, respectively.
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Table 1. Confusion matrix of nest detection.

Predicted
Positive | Negative
Positive | 284 (TP) | 453 (FN)
Negative | 245 (FP) | 333 (TN)

Observed

To maintain efficiency during weeding, the number of false positives needs to be decreased, as a false
positive would require an avoidance action when it is not needed. Here, tracking can be used to improve
the results shown in Table 1. It is also seen that the number of false negatives is high. This will be further

addressed in the following text.
3.2.1. Temporal Constraint

An analysis of the temporal occurrence of, e.g., false positives in one of the datasets shows that many
false positives can be avoided if a temporal constraint is applied (see Figure 9), meaning that the algorithm
must detect the object in multiple consecutive frames. This has been implemented via a naive tracking
scheme, where the position of the current detected object is compared to the position of the detected
object in the previous frames. The newly detected object is the same for both frames, if the object has not
moved too far, given by a distance threshold, in both the x- and y-direction [6]. If a detected object is
not within the distance threshold, a new track is added. An object is identified as an obstacle (nest) if the
distance threshold is met in two out of three consecutive frames. This ensures that detections, which only
occur in single frames or at random positions, are not mistaken for a nest.

False positives False positives
1 1
0.8 | i 0.8 :
0.6 i 0.6 | |
A A
8 8
0.4 ] i 0.4 :
0.2 H H 0.2} |
0 &= e e e () == e
0 20 40 60 80 0 20 40 60 80
Frame # Frame #
(a) (b)

Figure 9. Reduction of false positives due to tracking. Here, three consecutive frames are
evaluated. (a) False positives before tracking; (b) false positives after tracking.

3.2.2. Dealing with False Negatives

Due to the range of the system (1-15 m), the algorithm experiences many false negatives, as seen in

Table 1. During the manual labeling, the positions of the nests were known; hence, the true positions of
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the nests could be labeled even if the nests were several meters away. In this case, the nests are very small,
and the algorithm fails to detect them.

In Figure 10, the TPR and PPV are shown as a function of the evaluation distance, e.g., 2.90 m means
that the nest is only labeled within 2.90 m of the camera. This influences the number of false negatives, as
seen by the decrease in TPR as the evaluation distance increases.

Detection performance as a function of evaluated distance

1 ‘ ‘
— PPV
—TPR
0.8 .
Z 06} |
[aW
&
& 04 |
0.2 |

9.50 1.60 190 220 2.60 3.15 4.00 5.30 7.75 14.00
Meters

Figure 10. Performance as a function of evaluated distance.

By implementing temporal constraints and limiting the evaluation distance, the algorithm achieves
the performance shown in Table 2. Here, the evaluated distance has been adjusted to four meters. The
algorithm was able to detect 28 of the 30 nests in the dataset, with a mean detection distance of 3.8 m.
For these 28 nests, the detection performance is as shown in Table 2. The number of false positives and
false negatives has been reduced compared to Table 1. The numbers in Table 2 gives a TPR of 0.75 and a
PPV of 0.84.

Table 2. Confusion matrix of nest detection after tracking and limited evaluation distance
(four meters).

Predicted
Positive | Negative
Positive 237 78
Observed -
Negative 44 956

4. Discussion

Automated nest detection may be an important tool for the improvement of wildlife-friendly farming
practices and, as such, offers a potential for reducing wildlife mortality in agriculture. This is particularly
the case for farmland passerines, many of which are of conservation concern.

The presented algorithm is generic and not limited to bird nest detection, as it detects obstacles based

on background modeling and visual attention, rather than feature extraction and recognition. However,
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nests were chosen as the case study, due to the destruction of these nests during mechanical weeding and
the, to our knowledge, non-existent research within automated nest detection for agricultural machinery.

There were two types of obstacles present in the recorded data: bird nests and a cooling box (used for
egg storage). The algorithm is able to detect both types of obstacles, as it is generic, and finds objects
that grab our attention. The algorithm detects the cooling box in all 15 recordings, with a TPR of 0.83
and a mean detection distance of 7.7 m. When detecting the cooling box, there are no false positives, as
smaller obstacles can be removed due to size constraints. By relaxing the size constraint, the algorithm is
also able to detect the smaller obstacles, such as bird nests. The performance of the bird nest detection is
reported in this paper.

The nest detection algorithm achieves fair results, as it detects 28 of the 30 nests in the dataset, giving
a detection rate of 0.93. The mean detection distance is approximately 3.8 m, with a true positive rate
of 0.75. Hence, the algorithm is able to detect the nests in 75% of the frames in which they are present.
The typical driving speed in current mechanical weeding is 10—12 km/h. Here, the the machine needs
to be designed to react within 1.1 s given the achieved mean detection distance of 3.8 m. However, for
autonomous mechanical weeding, the expected driving speed is around 5-7 km/h [25,26]. Here, the
reaction time should be around 1.9 s, for the given distance, to avoid the nest. This puts some requirements
on the mechanical design of the machinery, which should be designed to avoid the nests by raising
the equipment from the ground, thus providing free space for the ground-lying nest. This mechanical
operation could be performed much faster than trying to avoid the nest by driving around it.

The achieved detection distance could be improved by a higher resolution and increased frame rate.
The recordings were performed at a low frame rate (5 fps), due to thermal camera synchronization (the
thermal camera operated at this low frame rate). An increased frame rate could increase the detection
distance, as the temporal constraint could be achieved over a shorter time span, thus increasing the
detection distance capabilities.

An increased resolution would also increase performance, as the nest would be visible at an earlier stage.
Increasing the resolution, however, is not free, as it increases the number of computations. Real-time
implementations of visual saliency do exist in the literature [24], where the saliency of a 640 x 480 pixel
image is calculated at almost 28 fps. However, at driving speeds of 5—7 km/h, the required frame rate is
lower. We are currently implementing the algorithm in Python, where it runs at 15 fps at a resolution of
640 x 480, using Itti’s algorithm for saliency [16]. The resolution could be increased by porting some
of the algorithm to a GPU or by only calculating saliency in regions of the image that are detected as
foreground. In this case, histogram-based saliency could be used for this [27].

The algorithm is designed to detect obstacles, big and small. In the case of nest detection, the detection
distance and subsequent reaction time are lower than for larger obstacles, such as the cooling box.
However, the action to be performed when detecting small obstacles is not to navigate around them, but
rather to lift the part of the machine in danger of hitting the nest. This can be done much faster than
navigating around it; thus, the requirements are lower. At a moving speed of around 7 km/h (2 m/s),
the worst case is when the nests are detected at the bottom of the field of view. Given the setup in the
experiment, this is one meter in front of the vehicle. This results in 0.5 s to react, which is sufficient for
lifting the equipment. Given a frame rate of 15 fps and a temporal constraint of three frames, the detection

distance needs to be 1.1 m in this worst case scenario. The achieved mean detection distance is 3.8 m,
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with the minimum achieved detection distance being two meters. Furthermore, the TPR is above 0.8
within these distances (see Figure 10); hence, the detection is more reliable. Thus, the algorithm is able to
detect the bird nests in time, when driving speeds are equal to expected driving speeds for autonomous
mechanical weeding.

The dataset was recorded over the course of one day. The weather was warm during the recordings,
resulting in unusable thermal images. It is clear that the thermal camera is not useful for all scenarios,
as shown in the dataset in this paper; however, for other, not so warm days, the thermal images could
potentially increase performance, as nest temperature could be utilized for detection, as well [28].
Therefore, future work should include real-time implementation and fusion with thermal imaging to
increase performance.

In the Results Section, clouds covering the Sun are simulated by decreasing and, subsequently,
increasing the intensity of the entire image. The incremental background modeling ensures that
the background model adapts to these changes. Another scenario is the presence of shadows, as in
Figure 11a, where the shadow from the vehicle is seen in the bottom right corner. Here, the saliency
algorithm highlights this region (Figure 11b). However, as the the ground is homogeneous in appearance,
the background model ensures that the ground in the shadow is not labeled as foreground. This results in
correct detection of the child and no detection of the shadow.

(a) (b) (c)

Figure 11. Example of the detection performance with shadows present in the image.
(a) Detection of a child using the presented algorithm; (b) saliency map; (¢) foreground
pixels based on the incremental background model.

To maintain efficiency, different avoidance strategies for different types of obstacles are preferable.
Hence, the type of obstacle needs to be recognized, which is a difficult task. Current machinery is able to
avoid obstacles by raising the implement, driving around the obstacle or stopping. Therefore, we suggest
that obstacle classification be based on the height of the obstacle, as this could provide useful information
for the choice of strategy.

5. Conclusions

An algorithm for automated detection of bird nests in row crops has been presented. The algorithm
is based on visual saliency and incremental background modeling. The incremental background model
exploits the homogeneity of the field and thereby represents the overall appearance of the field.



Sensors 2015, 15 5109

Fusion between saliency maps and foreground detection results in the detection of ground-lying bird
nests. The algorithm achieves fair results, as it detects 28 of the 30 nests present in the recordings, at an
average distance of 3.8 m.
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